首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The non-photosynthetic, parasitic flowering plant Epifagus virginiana has recently been shown to contain a grossly reduced plastid genome that has lost many photosynthetic and chloro-respiratory genes. We have cloned and sequenced a 3.9 kb domain of plastid DNA from Epifagus to investigate the patterns of evolutionary change in such a reduced genome and to determine which genes are still present and likely to be functional. This 3.9 kb domain is colinear with a 35.4 kb region of tobacco chloroplast DNA, differing from it by a minimum of 11 large deletions varying in length from 354 bp to 11.5 kb, as well as by a number of small deletions and insertions. The nine genes retained in Epifagus encode seven tRNAs and two ribosomal proteins and are coextensive and highly conserved in sequence with homologs in photosynthetic plants. This suggests that these genes are functional in Epifagus and, together with evidence that the Epifagus plastid genome is transcribed, implies that plastid gene products play a role in processes other than photosynthesis and gene expression. Genes that are completely absent include not only photosynthetic genes, but surprisingly, genes encoding three subunits of RNA polymerase, four tRNAs and one ribosomal protein. In addition, only pseudogenes are found for two other tRNAs. Despite these defunct tRNA genes, codon and amino acid usage in Epifagus protein genes is normal. We therefore hypothesize that the expression of plastid genes in Epifagus relies on the import of nuclear encoded tRNAs and RNA polymerase from the cytoplasm.  相似文献   

2.
3.
The evolution of the plastid from a photosynthetic bacterial endosymbiont involved a dramatic reduction in the complexity of the plastid genome, with many genes either discarded or transferred to the nucleus of the eukaryotic host. However, this evolutionary process has not gone to completion and a subset of genes remains in all plastids examined to date. The various hypotheses put forward to explain the retention of the plastid genome have tended to focus on the need for photosynthetic organisms to retain a genetic system in the chloroplast, and they fail to explain why heterotrophic plants and algae, and the apicomplexan parasites all retain a genome in their non-photosynthetic plastids. Here we consider two additional explanations: the 'essential tRNAs' hypothesis and the 'transfer-window' hypothesis.  相似文献   

4.
Plastid Ontogeny during Petal Development in Arabidopsis   总被引:4,自引:0,他引:4       下载免费PDF全文
Imaging of chlorophyll autofluorescence by confocal microscopy in intact whole petals of Arabidopsis thaliana has been used to analyze chloroplast development and redifferentiation during petal development. Young petals dissected from unopened buds contained green chloroplasts throughout their structure, but as the upper part of the petal lamina developed and expanded, plastids lost their chlorophyll and redifferentiated into leukoplasts, resulting in a white petal blade. Normal green chloroplasts remained in the stalk of the mature petal. In epidermal cells the chloroplasts were normal and green, in stark contrast with leaf epidermal cell plastids. In addition, the majority of these chloroplasts had dumbbell shapes, typical of dividing chloroplasts, and we suggest that the rapid expansion of petal epidermal cells may be a trigger for the initiation of chloroplast division. In petals of the Arabidopsis plastid division mutant arc6, the conversion of chloroplasts into leukoplasts was unaffected in spite of the greatly enlarged size and reduced number of arc6 chloroplasts in cells in the petal base, resulting in few enlarged leukoplasts in cells from the white lamina of arc6 petals.  相似文献   

5.
The photosynthetic apparatus is composed of proteins encoded by genes from both the nucleus and the chloroplast. To ensure that the photosynthetic complexes are assembled stoichiometrically and to enable their rapid reorganization in response to a changing environment, the plastids emit signals that regulate nuclear gene expression to match the status of the plastids. One of the plastid signals, the chlorophyll intermediate Mg-ProtoporphyrinIX (Mg-ProtoIX) accumulates under stress conditions and acts as a negative regulator of photosynthetic gene expression. By taking advantage of the photoreactive property of tetrapyrroles, Mg-ProtoIX could be visualized in the cells using confocal laser scanning spectroscopy. Our results demonstrate that Mg-ProtoIX accumulated both in the chloroplast and in the cytosol during stress conditions. Thus, the signaling metabolite is exported from the chloroplast, transmitting the plastid signal to the cytosol. Our results from the Mg-ProtoIX over- and underaccumulating mutants copper response defect and genome uncoupled5, respectively, demonstrate that the expression of both nuclear- and plastid-encoded photosynthesis genes is regulated by the accumulation of Mg-ProtoIX. Thus, stress-induced accumulation of the signaling metabolite Mg-ProtoIX coordinates nuclear and plastidic photosynthetic gene expression.  相似文献   

6.
7.
8.
9.
In the leaves of rye seedlings (Secale cereale L.) grown at an elevated temperature of 32°C the formation of plastidic 70S ribosomes is specifically prevented. The resulting plastid ribosome-deficient leaves, which are chlorotic in light, represent a system for the identification of translation products of the 80S ribosomes among the chloroplastic proteins. Searching for the primary heat-sensitive event causing the 70S ribosome-deficiency, the thermostability of the chloroplastic capacity for RNA synthesis was investigated. The RNA polymerase activity of isolated normal chloroplasts from 22°-grown rye leaves was not inactivated in vitro at temperatures between 30° and 40°C. The ribosome-deficient plastids purified from bleached 32°-grown leaf parts contained significant RNA polymerase activity which was, however, lower than in functional chloroplasts. After application of [3H]uridine to intact leaf tissues [3H]uridine incorporation was found in ribosome-deficient plastids of 32°C-grown leaves. The amount of incorporation was similar to that in the control chloroplasts from 22°C-grown leaves. According to these results, it is unlikely that the non-permissive temperature (32°C) causes a general inactivation of the chloroplastic RNA synthesis in rye leaves.  相似文献   

10.
Review     
Most photosynthetic dinoflagellates harbour the peridinin plastid. This plastid is surrounded by three membranes and its characteristic pigments are chlorophyll c and the carotenoid peridinin. The evolutionary origin of this peculiar plastid remains controversial and is hotly debated. On the recently published tree of concatenated plastid-encoded proteins, dinoflagellates emerge from within the Chromista (clade containing cryptophytes, heterokonts, and haptophytes) and cluster specifically with Heterokonta. These data inspired a new version of the ‘chromalveolate’ model, according to which the peridinin plastid evolved by ‘descent with modification’ from a heterokont-like plastid that had been acquired from a rhodophyte by an ancestral chromalveolate. However, this model of plastid evolution encounters serious obstacles. Firstly, the heterokont plastid is surrounded by four membranes, which means that the ancestral peridinin plastid must have lost one of these primary membranes. However, such a loss could be traumatic, because it could potentially disturb protein import into and/or within the plastid. Secondly, on the phylogenetic tree of Dinoflagellata and Heterokonta, the first to diverge are not plastid, but heterotrophic, aplastidal taxa. Thus, when accepting the single origin of the heterokont and peridinin plastids, we would have to postulate multiple plastid losses, but such a scenario is highly doubtful when the numerous non-photosynthetic functions of plastids and their existence in heterotrophic protists, including parasitic lineages, are considered. Taking these obstacles into account, we suggest an alternative interpretation of the concatenated tree of plastid-encoded proteins. According to our hypothesis, the peridinin plastid evolved from a heterokont alga through tertiary endosymbiosis.  相似文献   

11.
Dinoflagellates are a diverse group of protists, comprising photosynthetic and heterotrophic free-living species, as well as parasitic ones. About half of them are photosynthetic with peridinin-containing plastids being the most common. It is uncertain whether non-photosynthetic dinoflagellates are primitively so, or have lost photosynthesis. Studies of heterotrophic species from this lineage may increase our understanding of plastid evolution. We analyzed an EST project of the early-diverging heterotrophic dinoflagellate Crypthecodinium cohnii looking for evidence of past endosymbiosis. A large number of putative genes of cyanobacterial or algal origin were identified using BLAST, and later screened by metabolic function. Phylogenetic analyses suggest that several proteins could have been acquired from a photosynthetic endosymbiont, arguing for an earlier plastid acquisition in dinoflagellates. In addition, intact N-terminal plastid-targeting peptides were detected, indicating that C. cohnii may contain a reduced plastid and that some of these proteins are imported into this organelle. A number of metabolic pathways, such as heme and isoprenoid biosynthesis, seem to take place in the plastid. Overall, these data indicate that C. cohnii is derived from a photosynthetic ancestor and provide a model for loss of photosynthesis in dinoflagellates and their relatives. This represents the first extensive genomic analysis of a heterotrophic dinoflagellate.  相似文献   

12.
Abstract More than 190 plastid genomes have been completely sequenced during the past two decades due to advances in DNA sequencing technologies. Based on this unprecedented abundance of data, extensive genomic changes have been revealed in the plastid genomes. Inversion is the most common mechanism that leads to gene order changes. Several inversion events have been recognized as informative phylogenetic markers, such as a 30‐kb inversion found in all living vascular plants minus lycopsids and two short inversions putatively shared by all ferns. Gene loss is a common event throughout plastid genome evolution. Many genes were independently lost or transferred to the nuclear genome in multiple plant lineages. The trnR‐CCG gene was lost in some clades of lycophytes, ferns, and seed plants, and all the ndh genes were absent in parasitic plants, gnetophytes, Pinaceae, and the Taiwan moth orchid. Certain parasitic plants have, in particular, lost plastid genes related to photosynthesis because of the relaxation of functional constraint. The dramatic growth of plastid genome sequences has also promoted the use of whole plastid sequences and genomic features to solve phylogenetic problems. Chloroplast phylogenomics has provided additional evidence for deep‐level phylogenetic relationships as well as increased phylogenetic resolutions at low taxonomic levels. However, chloroplast phylogenomics is still in its infant stage and rigorous analysis methodology has yet to be developed.  相似文献   

13.
14.
Dinoflagellates are a trophically diverse group of protists with photosynthetic and non-photosynthetic members that appears to incorporate and lose endosymbionts relatively easily. To trace the gain and loss of plastids in dinoflagellates, we have sequenced the nuclear small subunit rRNA gene of 28 photosynthetic and four non-photosynthetic species, and produced phylogenetic trees with a total of 81 dinoflagellate sequences. Patterns of plastid gain, loss, and replacement were plotted onto this phylogeny. With the exception of the apparently early-diverging Syndiniales and Noctilucales, all non-photosynthetic dinoflagellates are very likely to have had photosynthetic ancestors with peridinin-containing plastids. The same is true for all dinoflagellates with plastids other than the peridinin-containing plastid: their ancestors have replaced one type of plastid for another, in some cases most likely through a non-photosynthetic intermediate. Eight independent instances of plastid loss and three of replacement can be inferred from existing data, but as more non-photosynthetic lineages are characterized these numbers will surely grow. Received: 25 September 2000 / Accepted: 24 April 2001  相似文献   

15.
INCREASED SIZE EXCLUSION LIMIT 2 (ISE2) encodes a putative DEVH‐box RNA helicase originally identified through a genetic screening for Arabidopsis mutants altered in plasmodesmata (PD) aperture. Depletion of ISE2 also affects chloroplasts activity, decreases accumulation of photosynthetic pigments and alters expression of photosynthetic genes. In this work, we show the chloroplast localization of ISE2 and decipher its role in plastidic RNA processing and, consequently, PD function. Group II intron‐containing RNAs from chloroplasts exhibit defective splicing in ise2 mutants and ISE2‐silenced plants, compromising plastid viability. Furthermore, RNA immunoprecipitation suggests that ISE2 binds in vivo to several splicing‐regulated RNAs. Finally, we show that the chloroplast clpr2 mutant (defective in a subunit of a plastidic Clp protease) also exhibits abnormal PD function during embryogenesis, supporting the idea that chloroplast RNA processing is required to regulate cell–cell communication in plants.  相似文献   

16.
To survive, the marine dinoflagellate Dinophysis caudata Saville‐Kent must feed on the plastidic ciliate Myrionecta rubra (=Mesodinium rubrum), itself a consumer of cryptophytes. Whether Dcaudata has its own permanent chloroplasts or retains plastids from its ciliate prey, however, remains unresolved. Further, how long Dcaudata plastids (or kleptoplastids) persist and remain photosynthetically active in the absence of prey remains unknown. We addressed those issues here, using the first established culture of D. caudata. Phylogenetic analyses of the plastid 16S rRNA and psbA gene sequences directly from the three organisms (Dcaudata, Mrubra, and a cryptophyte) revealed that the sequences of both genes from the three organisms are almost identical to each other, supporting that the plastids of Dcaudata are kleptoplastids. A 3‐month starvation experiment revealed that Dcaudata can remain photosynthetically active for ~2 months when not supplied with prey. Dcaudata cells starved for more than 2 months continued to keep the plastid 16S rRNA gene but lost the photosynthesis‐related genes (i.e., psaA and psbA genes). When the prey was available again, however, Dcaudata cells starved for more than 2 months were able to reacquire plastids and slowly resumed photosynthetic activity. Taken all together, the results indicate that the nature of the relationship between Dcaudata and its plastids is not that of permanent cellular acquisitions. Dcaudata is an intriguing protist that would represent an interesting evolutionary adaptation with regard to photosynthesis as well as help us to better understand plastid evolution in eukaryotes.  相似文献   

17.
The chromalveolate hypothesis proposed by Cavalier-Smith (J Euk Microbiol 46:347–366, 1999) suggested that all the algae with chlorophyll c (heterokonts, haptophytes, cryptophytes, and dinoflagellates), as well as the ciliates, apicomplexans, oomycetes, and other non-photosynthetic relatives, shared a common ancestor that acquired a chloroplast by secondary endosymbiosis of a red alga. Much of the evidence from plastid and nuclear genomes supports a red algal origin for plastids of the photosynthetic lineages, but the number of secondary endosymbioses and the number of plastid losses have not been resolved. The issue is complicated by the fact that nuclear genomes are mosaics of genes acquired over a very long time period, not only by vertical descent but also by endosymbiotic and horizontal gene transfer. Phylogenomic analysis of the available whole-genome data has suggested major alterations to our view of eukaryotic evolution, and given rise to alternative models. The next few years may see even more changes once a more representative collection of sequenced genomes becomes available.  相似文献   

18.
The total loss of plastid DNA has never been reported for any alga or plant cell line, with the sole exception of the protozoan Euglena, yet plastid distribution at mitosis is apparently stochastric (Birky and Skavaril, Journal of Theoretical Biology, vol. 106, pp. 441–447, 1984) and accidental loss might be expected. It is not obvious how stem cells of photosynthetic eukaryotes avoid this problem. The chrysophyte alga Ochromonas danica, described as having but one or two plastids, can proliferate indefinitely without the benefit of photosynthesis. Under such conditions its plastid genome copy number per cell might drop to the absolute minimum compatible with maintaining its inheritance. In situ quantitation of Ochromonas plastid DNA in both photosynthetic and enriched mixotrophic growth, and in heterotrophic growth in prolonged darkness, suggests that plastids are capable of very wide variation (7 to >;200 genomes/plastid) in their DNA content, and likewise, cells can vary from one to >;8 plastids per cell, with total genomes numbers from 7 to >;1,000 per cell. Among many growth conditions tested, the smallest plastids were found in rapidly dividing cells grown in the dark, many of which contained but one plastid. The inability to find plastids with fewer than seven plastid genome equivalents of DNA, even in these rapidly multiplying cells grown in total darkness for months, suggests that multiple copies of the plastid genome may be very carefully maintained, even in the prolonged absence of photosynthesis. This implies that multiple copies are important for reasons other than photosynthetic capability; two possibilities are the biosynthetic steps necessary for eukaryote cell survival known to occur solely within a plastid, and/or the potential that multiple plastid genome copies provide to escape the effects of Muller's ratchet.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号