首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 94 毫秒
1.
Models of environmental sex determination (ESD) usually assume that genetic influences on sex are polygenic, but the validity of this (or any other) form of genotype-environment interaction is virtually unknown. In the Atlantic silverside, Menidia menidia, sex is determined by an interaction between temperature and genotype and the response of sex ratio to temperature differs among populations from different latitudes. We examined the genetic basis of this pattern by measuring among family variation in the proportion of females, F/(F + M), within and among high (21°C) and low (15°C) temperatures for two populations: one from Nova Scotia (NS) where the level of ESD is low, and another from South Carolina (SC) where the level of ESD is high. In NS fish, temperature had a significant influence on sex ratio in only 1 of 23 families. The distribution of the fraction of females within temperatures for families from NS was highly heterogeneous and tended to fall into distinct classes (0.0, 0.25, 0.5, 1.0) like that expected from Mendelian segregation of a major sex factor(s). In contrast, temperature had a highly significant influence on sex ratio in all SC families examined (N = 24). Family sex ratios within temperatures were highly heterogeneous and, at least at 15°C, did not conform to simple Mendelian ratios. At 21°C, the proportion of females in most SC families was near zero and so the underlying sex tendencies of different families could not be discerned. Based on a previous study, mid-latitude fish appear to have an intermediate form of sex determination: simple Mendelian sex-ratio patterns exist and there is a moderate thermal influence on sex ratio in most but not all families. We suggest that sex determination in M. menidia is controlled by an interaction between major genetic factors, polygenic factors, and temperature and that the relative importance of each component differs with latitude. High latitude populations appear to have evolved a major sex-determining factor(s) that overrides the effect of temperature, and this factor(s) is lacking in low latitude populations.  相似文献   

2.
Although variation in population sex ratios is predicted to increase the extinction rate of clades with environmental sex determination (ESD), ESD is still seen in a wide array of natural systems. It is unclear how this common sex-determining system has persisted despite this inherent disadvantage associated with ESD. We use simulation modelling to examine the effect of the sex ratio variance caused by ESD on population colonization and establishment. We find that an accelerating function of establishment success on initial population sex ratio favours a system that produces variance in sex ratios over one that consistently produces even sex ratios. This sex ratio variance causes ESD to be favoured over genetic sex determination, even when the mean global sex ratio under both sex-determining systems is the same. Data from ESD populations suggest that the increase in population establishment can more than offset the increased risk of extinction associated with temporal fluctuations in the sex ratio. These findings demonstrate that selection in natural systems can favour increased variance in a trait, irrespective of the mean trait value. Our results indicate that sex ratio variation may provide an advantage to species with ESD, and may help explain the widespread existence of this sex-determining system.  相似文献   

3.
Theoretical models suggest that in changing environments natural selection on two traits, maternal nesting behaviour and pivotal temperatures (those that divide the sexes) is important for maintaining viable offspring sex ratios in species with environmental sex determination (ESD). Empirical evidence, however, is lacking. In this paper, we provide such evidence from a study of clinal variation in four sex-determining traits (maternal nesting behaviour, pivotal temperatures, nesting phenology, and nest depth) in Physignathus lesueurii, a wide-ranging ESD lizard inhabiting eastern Australia. Despite marked differences in air and soil temperatures across our five study sites spanning 19° latitude and 1200 m in elevation, nest temperatures did not differ significantly among sites. Lizards compensated for climatic differences chiefly by selecting more open nest sites with higher incident radiation at cooler sites. Clinal variation in the onset of nesting also compensated for climatic differences, but to a lesser extent. There was no evidence of compensation through pivotal temperatures or nest depth. More broadly, our results extend to the egg stage the life history prediction that behaviour is the chief compensatory mechanism for climatic differences experienced by species spanning environmental extremes. Furthermore, our study was unique in revealing that nest site choice influenced mainly the daily range in nest temperatures, rather than mean temperatures, in a shallow-nesting reptile. Finally, indirect evidence suggests that the cue used by nesting lizards was radiation or temperature (through basking or assessing substrate temperatures), not visual detection of canopy openness. We conclude that maternal nesting behaviour and nesting phenology are traits subject to sex ratio selection in P. lesueurii, and thus, must be considered among the repertoire of ESD species for responding to climate change.  相似文献   

4.
Traditional models predict that organisms should allocate to sex based on their condition relative to the condition of their competitors, tracking shifts in mean condition in fluctuating environments, and maintaining an equilibrium sex ratio. In contrast, when individuals are constrained to define their condition absolutely, environmental fluctuations induce fluctuating sex ratios and the evolutionary loss of condition‐dependent sex allocation in short‐lived organisms. Here, we present a simulation model of temperature‐dependent sex determination (TSD) in fluctuating environments that specifically examines the importance of relativity in defining individual condition. When relativity in condition is allowed to evolve, short‐lived organisms evolve switchlike TSD reaction norms and define their condition relative to the annual temperature distribution, thus preventing biased cohort sex ratios in extreme years. Long‐lived organisms also evolve switchlike reaction norms, but define condition less relatively and experience biased cohort sex ratios. The predictions are supported by data from painted turtles, where TSD reaction norms exhibit pivotal temperatures of sex determination that partially track mean annual temperature. Examining relativity in amniotic vertebrates provides a conceptual framework for multifactorial sex determination and suggests new ways of exploring adaptive hypotheses of sex allocation by focusing on the importance of frequency‐dependent selection on sex.  相似文献   

5.
Environmental sex determination in a splash pool copepod   总被引:3,自引:0,他引:3  
The sex-determining mechanism has important demographic and genetic consequences by virtue of its effect on the population sex ratio. Here we investigate the effect of temperature dependent sex determination (TSD) on the primary sex ratio of the harpacticoid copepod, Tigriopus californicus . At the two experimental temperatures (15° and 22°C) used in this study, the primary sex ratio is almost always biased in favour of males. Higher temperatures induce masculinization and the change in sex ratio is not caused by differential mortality of the sexes. The mean level of TSD in the population is small (proportion of males increases by ~5% between 15° and 22°C) because only one-third of the families actually exhibit a significant sex-ratio response while the rest of the population is insensitive to temperature. A comparison of the primary sex ratio and the level of TSD between two locations reveals few differences among populations. Finally, individuals still exhibited TSD after having been maintained under constant temperature conditions in the lab for several generations. In addition the proportion of temperature-sensitive individuals remained unchanged. This suggests that the observed level of TSD is not an artefact of testing field-captured individuals in a novel laboratory environment. At this point the adaptive significance of temperature-dependent sex determination in T. californicus remains unknown.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 76 , 511–520.  相似文献   

6.
Selection is expected to maintain primary sex ratios at an evolutionary equilibrium. In organisms with temperature-dependent sex determination (TSD), targets of sex-ratio selection include the thermal sensitivity of the sex-determining pathway (hereafter, sex determination threshold) and nest-site choice. However, offspring sex may be canalized for nests located in thermally extreme environments; thus, genetic variance for the sex determination threshold is not expressed and is invisible to direct selection. The concept of 'effective heritability' accounts for this dependence and provides a more realistic prediction of the expected evolutionary response to selection in the wild. Past estimates of effective heritability of the sex determination threshold, which were derived from laboratory data, suggested that the potential for the sex determination threshold to evolve in the wild was extremely low. We re-evaluated original estimates of this parameter by analysing field-collected measures of nest temperatures, vegetation cover and clutch sex ratios from nests in a population of painted turtles (Chrysemys picta). We coupled these data with measurements of broad-sense heritability of the sex determination threshold in C. picta, using an experiment that splits clutches of eggs between a constant temperature (i.e. typical laboratory incubation) and a daily fluctuating temperature (i.e. similar to natural nests) with the same mean. We found that (i) the effective heritability of the sex determination threshold appears to have been historically underestimated and the effective heritability of nest-site choice has been overestimated and (ii) significant family-by-incubation treatment interaction exists for sex for C. picta between constant- and fluctuating-temperature regimes. Our results suggest that the thermal sensitivity of the sex-determining pathway may play a larger, more complex role in the microevolution of TSD than traditionally thought.  相似文献   

7.
Spatial structure has been shown to favor female‐biased sex allocation, but current theory fails to explain male biases seen in many taxa, particularly those with environmental sex determination (ESD). We present a theory and accompanying individual‐based simulation model that demonstrates how population structure leads to male‐biased population sex ratios under ESD. Our simulations agree with earlier work showing that the high productivity of female‐producing habitats creates a net influx of sex‐determining alleles into male‐producing habitats, causing larger sex ratio biases, and lower productivity in male‐producing environments (Harts et al. 2014). In contrast to previous findings, we show that male‐biasing habitats disproportionately impact the global sex ratio, resulting in stable male‐biased population sex ratios under ESD. The failure to detect a male bias in earlier work can be attributed to small subpopulation sizes leading to local mate competition, a condition unlikely to be met in most ESD systems. Simulations revealed that consistent male biases are expected over a wide range of population structures, environmental conditions, and genetic architectures of sex determination, with male excesses as large as 30 percent under some conditions. Given the ubiquity of genetic structure in natural populations, we predict that modest, enduring male biased allocation should be common in ESD species, a pattern consistent with reviews of ESD sex ratios.  相似文献   

8.
Environmental sex determination (ESD) is a system of sexual determination that is influenced by a variable environment. Once sex is determined it is then fixed for life. The model of Charnov & Bull (1977) proposes that ESD is favoured by natural selection when an individual's fitness as a male or female is strongly influenced by environmental conditions and when the individual has little control over which environment it will experience. Adaptive sex ratio variation is considerably easier for organisms with ESD, and this feature is the ultimate cause for the evolution and maintenance of ESD. ESD is taxonomically widely expressed, and more cases are likely to be discovered. Both environmental and genotypic sex determination mechanisms are found in closely related species. Evidence of geographical variation in the degree and in the critical environmental values of ESD within the same species has also been discovered, e.g. in the fish Menidia menidia and in the crustacean Gammarus duebeni. The factors causing sex determination in invertebrates include temperature, daylength, nutrition, density, humidity, ionic composition of the environment, pH, carbon dioxide, UV light, metabolic products, parasites, exposure to the opposite sex of the same species, and in parasitoids also host size, age and type. In vertebrates temperature is the dominant factor causing sex determination, though in fish also pH, salinity, light, water quality and nutrition, and in turtles water potential of the substrate have some effect on the sex expression. Most of these factors influence growth through resource availability or developmental speed. In most cases of ESD in invertebrates and fish, the environmental factor has a gradual effect on the sex expression, in contrast to the typical steep threshold mode found in reptiles. These differences might be due to the fact that invertebrates exhibiting ESD are commonly parasitic or confined to aquatic environments, where less spatial microhabitat differentiation exists. Sex ratio data available from nature for animals with ESD are quite limited, except for reptiles. In the laboratory sex ratios can be varied more widely than what is observed in nature. There are a number of characteristic features some of which are found in each species exhibiting ESD: (1) Patchy environments, (2) variable sex ratios, (3) parthenogenesis in addition to bisexuality, (4) parasitism, (5) aquatic habitats, (6) sexual dimorphism, (7) females larger than males, and (8) local mate competition.  相似文献   

9.
The sex ratios of the progenies of woodlice Porcellionides pruinosus (Crustacea, Isopoda) raised at different temperatures were studied. Females from three French populations sampled in the wild produced highly female-biased broods at 20°C and male-biased broods above 30°C. The effect of high temperature was not due to selective mortality of females. Sex determination was thus sensitive to temperature in P. pruinosus. We also found an interpopulation variability of sex ratio thermosensitivity and a weak inheritance of male-biased sex ratios at high temperatures. Samples taken from a wild population throughout the year showed that while the thermal conditions required for changes in the sex ratio occurred, there was no significant variation in the sex ratio. On the other hand, almost all the females and many males in the four populations studied harboured intracytoplasmic bacteria. These maternally inherited symbionts belong to the genus Wolbachia and are known to possess a feminizing effect. While in other arthropods Wolbachia are destroyed at high temperatures, the symbionts of P. pruinosus were detected by a PCR procedure whatever the rearing temperatures. In light of these results, we propose that the thermosensitivity of sex determination in P. pruinosus could reflect the removal of the cytoplasmic effect on sex determination rather than environmental sex determination sensu stricto. The reduction in the amount of bacteria (but not their entire elimination), or the inhibition of bacterial metabolism, may be responsible for sex ratio variations relating to temperature. The incomplete inheritance of male-biased sex ratios at high temperatures might reflect a selection of thermo-tolerant bacterial strains.  相似文献   

10.
Abstract.— Although natural populations of most species exhibit a 1:1 sex ratio, biased sex ratios are known to be associated with non‐Mendelian inheritance, as in sex‐linked meiotic drive and cytoplasmic inheritance (Charnov 1982; Hurst 1993). We show how cultural inheritance, another type of non‐Mendelian inheritance, can favor skewed primary sex ratios and propose that it may explain the female‐biased sex ratios commonly observed in reptiles with environmental sex determination (ESD). Like cytoplasmic elements, cultural traits can be inherited through one sex. This, in turn, favors skewing the primary sex allocation in favor of the transmitting sex. Female nest‐site philopatry is a sex‐specific, culturally inherited trait in many reptiles with ESD and highly female‐biased sex ratios. We propose that the association of nest‐site selection with ESD facilitates the maternal manipulation of offspring sex ratios toward females.  相似文献   

11.
Frequent independent origins of environmental sex determination (ESD) are assumed within amniotes. However, the phylogenetic distribution of sex-determining modes suggests that ESD is likely very ancient and may be homologous across ESD groups. Sex chromosomes are demonstrated to be old and stable in endothermic (mammals and birds) and many ectothermic (non-avian reptiles) lineages, but they are mostly non-homologous between individual amniote lineages. The phylogenetic pattern may be explained by ancestral ESD with multiple transitions to later evolutionary stable genotypic sex determination. It is pointed out here that amniote ESD shares several key aspects with sequential hermaphroditism of fishes such as a lack of sex differences in genomes, biased population sex ratios, and potentially also molecular mechanism related to general stress responses. Here, it is speculated that ESD evolves via a heterochronic shift of the sensitive period of sex change from the adult to the embryonic stage in a hermaphroditic amniote ancestor. Also see the video abstract here https://youtu.be/q2mjtlCefu4 .  相似文献   

12.
Frequency‐dependent selection should drive dioecious populations toward a 1:1 sex ratio, but biased sex ratios are widespread, especially among plants with sex chromosomes. Here, we develop population genetic models to investigate the relationships between evolutionarily stable sex ratios, haploid selection, and deleterious mutation load. We confirm that when haploid selection acts only on the relative fitness of X‐ and Y‐bearing pollen and the sex ratio is controlled by the maternal genotype, seed sex ratios evolve toward 1:1. When we also consider haploid selection acting on deleterious mutations, however, we find that biased sex ratios can be stably maintained, reflecting a balance between the advantages of purging deleterious mutations via haploid selection, and the disadvantages of haploid selection on the sex ratio. Our results provide a plausible evolutionary explanation for biased sex ratios in dioecious plants, given the extensive gene expression that occurs across plant genomes at the haploid stage.  相似文献   

13.
Global warming poses a threat to organisms with temperature‐dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present‐day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits.  相似文献   

14.
Sex is determined genetically in some species (genotypic sex determination, or GSD) and by the environment (environmental sex determination, or ESD) in others. The two systems are generally viewed as incompatible alternatives, but we have found that sex determination in a species of montane lizard ( Bassiana duperreyi , Scincidae) in south-eastern Australia is simultaneously affected by sex chromosomes and incubation temperatures, as well as being related to egg size. This species has strongly heteromorphic sex chromosomes, and yet incubation at thermal regimes characteristic of cool natural nests generates primarily male offspring. We infer that incubation temperatures can over-ride genetically determined sex in this species, providing a unique opportunity to explore these alternative sex-determining systems within a single population.  相似文献   

15.
枣镰翅小卷蛾性信息素通讯系统   总被引:1,自引:1,他引:0  
采用单个雌蛾性信息素腺体分析技术对枣镰翅小卷蛾Ancylis sativa Liu雌蛾性信息素的组分和组分间的精确比例进行了测定,结果表明,枣镰翅小卷蛾雌蛾的性信息素系统由二个顺反异构体组分组成,即反-9-十二碳烯醋酸酯(E9-12∶Ac)和顺-9-十二碳烯醋酸酯(Z9-12∶Ac)组成,E9-12∶Ac与Z9-12∶Ac的比例为6.5∶3.5;雌蛾产生和释放性信息素具有时辰节律性,在光周期14L∶10D、温度为21℃时,性信息素产生的高峰期为进入黑暗期6.5 h;不同日龄雌蛾产生的性信息素有差异,1日龄最低,2日龄最高,3~5日龄居中,不同日龄雌蛾产生的性信息素组分间的比例无显著差异;对3个世代雌蛾产生的性信息素的量及组分间的比例的研究表明,越冬代含量最高,为(10.1±7.0)ng/头,第2代为(9.5±4.6)ng/头,第1代仅为(1.4±1.0)ng/头,3个世代性信息素组分间的比例无显著差异,在63.1%~64.3%(E)范围内。  相似文献   

16.
The evolutionary significance of sex-determining mechanisms, particularly temperature-dependent sex determination (TSD) in reptiles, has remained unresolved despite extensive theoretical work. To investigate the evolutionary significance of this unusual sex-determining mechanism, I incubated eggs of the common snapping turtle (Chelydra serpentina) at a male-producing temperature (26°C), a female-producing temperature (30°C), and an intermediate temperature that produced both sexes about equally (28°C). Laboratory experiments indicated that two performance variables, but no morphological measurements, were significantly influenced by incubation temperature (P ≤ 0.05): hatchlings from cooler incubation treatments swam faster than turtles from warmer incubation treatments, and hatchlings from 28°C exhibited a greater propensity to run than did individuals from 26°C and 30°C. In the field, hatchlings from the all-male and all-female producing temperatures had significantly higher first-year survivorship than did consexuals from the incubation temperature that produced both sexes (G = 6.622, P = 0.03). Significant directional selection was detected on propensity of hatchlings to run (β′ = –0.758, P = 0.05): turtles that tended to remain immobile had a higher probability of first-year survivorship than did individuals that moved readily. Thus, the effects of the gender × incubation temperature interaction on survivorship of hatchling turtles observed in the field experiment may have been mediated by temperature-dependent antipredator behavior. These results provide a possible functional explanation for the evolutionary significance of TSD in turtles that is consistent with predictions of theoretical models.  相似文献   

17.
 Various ecological factors (e.g. herbivory, difference between males and females in colonising ability) have been invoked to explain female-biased sex ratios in populations of willow species. It was implicitly assumed that genetic factors would lead to a balanced sex ratio in the absence of ecological disturbances. In an experiment carried out in a homogeneous environment and in the absence of herbivores the progeny sex ratio of 13 crosses of basket willow (Salix viminalis L.) was observed to range from extreme female bias to extreme male bias. The observed sex ratio cannot be explained by the presence of sex chromosomes without assuming that additional loci are also involved in the sex determination. Alternatively, the sex ratios in this study can be explained by a sex determination mechanism governed by multiple independent loci. Received: 1 February 1996 / Accepted: 14 June 1996  相似文献   

18.
In fishes, sex is determined by genetics, the environment or an interaction of both. Temperature is among the most important environmental factors that can affect sex determination. As a consequence, changes in temperature at critical developmental stages can induce biases in primary sex ratios in some species. However, early sex ratios can also be biased by sex-specific tolerances to environmental stresses that may, in some cases, be amplified by changes in water temperature. Sex-specific reactions to environmental stress have been observed at early larval stages before gonad formation starts. It is therefore necessary to distinguish between temperature effects on sex determination, generally acting through the stress axis or epigenetic mechanisms, and temperature effects on sex-specific mortality. Both are likely to affect sex ratios and hence population dynamics. Moreover, in cases where temperature effects on sex determination lead to genotype–phenotype mismatches, long-term effects on population dynamics are possible, for example temperature-induced masculinization potentially leading to the loss of Y chromosomes or feminization to male-biased operational sex ratios in future generations. To date, most studies under controlled conditions conclude that if temperature affects sex ratios, elevated temperatures mostly lead to a male bias. The few studies that have been performed on wild populations seem to confirm this general trend. Recent findings suggest that transgenerational plasticity could mitigate the effects of warming on sex ratios in some populations.  相似文献   

19.
There are many theoretical and empirical studies explaining variation in offspring sex ratio but relatively few that explain variation in adult sex ratio. Adult sex ratios are important because biased sex ratios can be a driver of sexual selection and will reduce effective population size, affecting population persistence and shapes how populations respond to natural selection. Previous work on guppies (Poecilia reticulata) gives mixed results, usually showing a female‐biased adult sex ratio. However, a detailed analysis showed that this bias varied dramatically throughout a year and with no consistent sex bias. We used a mark‐recapture approach to examine the origin and consistency of female‐biased sex ratio in four replicated introductions. We show that female‐biased sex ratio arises predictably and is a consequence of higher male mortality and longer female life spans with little effect of offspring sex ratio. Inconsistencies with previous studies are likely due to sampling methods and sampling design, which should be less of an issue with mark‐recapture techniques. Together with other long‐term mark‐recapture studies, our study suggests that bias in offspring sex ratio rarely contributes to adult sex ratio in vertebrates. Rather, sex differences in adult survival rates and longevity determine vertebrate adult sex ratio.  相似文献   

20.
At Arapaho Prairie, in the sandhills of western Nebraska, the dioecious annual Croton texensis (Euphorbiaceae) exhibits biased sex ratios. Moreover, the direction of bias changes from year to year: in 1994 the study population was significantly female biased, in 1995 and 1996 it was significantly male biased, and in 1997 and 1998 the sex ratio did not differ from 1 : 1. Such variation in the observed sex ratio in plants is frequently attributed to environmental sex determination (ESD), which is favored by natural selection if the rate of fitness gain across an environmental gradient is greater for one sex than the other. We performed experiments to determine: (1) whether variation in the sex ratio is correlated with environmental conditions, as would be expected if ESD is operating, and (2) whether ESD, if present, would be favored by natural selection. In a common garden experiment in which water and fertilizer were manipulated the sex ratio was marginally male biased in treatments in which water was added, but not different from 1 : 1 in other treatments. In field plots into which seeds were planted none of several soil characteristics, nor overall plot quality for C. texensis (measured as average plant biomass) were correlated with plot sex ratio. However, plots in which a large number of planted seeds emerged tended to be female biased. These results provide very weak evidence for sex ratio bias across an environmental gradient, and thus provide little evidence for ESD. Moreover, sex-by-environment interactions for fitness, which are required for the evolution of ESD, were absent for all measured variables. Thus, ESD does not appear to be favored by natural selection in this population. Instead, these biases may have been caused by differences between the sexes in germination and/or early mortality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号