共查询到20条相似文献,搜索用时 15 毫秒
1.
KLAUS Reinhold 《Evolutionary ecology》1998,12(2):245-250
The reason for the frequent occurrence of environmental sex determination (ESD) in reptiles is still not well understood, although much effort has been devoted to solving the issue. Stimulated by the occurrence of nest-site philopatry in some species, this paper examines a diploid model of the influence of nest-site philopatry on the evolution of ESD. Analysis shows that nest-site philopatry can lead to ESD because the fitnesses of sons and daughters are not influenced in the same way by nest-site quality. Daughters inherit the nest site and thus benefit more than sons from a high-quality nest site. Conversely, the fitness of daughters at low-quality nest sites is lower compared to the fitness of sons. Therefore, genes causing ESD can spread by causing the production of more sons at low-quality nest sites and more daughters at high-quality nest sites. Suggestions are made to test empirically whether nest-site philopatry led to the evolution of ESD. This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
2.
Reproducing lizards modify sex allocation in response to operational sex ratios 总被引:1,自引:0,他引:1
下载免费PDF全文

Sex-allocation theory suggests that selection may favour maternal skewing of offspring sex ratios if the fitness return from producing a son differs from that for producing a daughter. The operational sex ratio (OSR) may provide information about this potential fitness differential. Previous studies have reached conflicting conclusions about whether or not OSR influences sex allocation in viviparous lizards. Our experimental trials with oviparous lizards (Amphibolurus muricatus) showed that OSR influenced offspring sex ratios, but in a direction opposite to that predicted by theory: females kept in male-biased enclosures overproduced sons rather than daughters (i.e. overproduced the more abundant sex). This response may enhance fitness if local OSRs predict survival probabilities of offspring of each sex, rather than the intensity of sexual competition. 相似文献
3.
Environmental determination of sex in Apistogrammai (Cichlidae) and two other freshwater fishes (Teleostei) 总被引:1,自引:0,他引:1
Environmental sex determination by temperature could be revealed significantly in 33 Apistogramma-species and in Poecilia melanogaster . In some, but not all, Apistogramma-species pH also influences the sex ratio, whereas neither temperature nor pH affect the sex ratio of Pseudocrenilabrus multicolor victoriae . The sex in offspring of A. trifasciata is determined within a sensitive period of about 30 to at least 40 days after spawning. 相似文献
4.
Although variation in population sex ratios is predicted to increase the extinction rate of clades with environmental sex determination (ESD), ESD is still seen in a wide array of natural systems. It is unclear how this common sex-determining system has persisted despite this inherent disadvantage associated with ESD. We use simulation modelling to examine the effect of the sex ratio variance caused by ESD on population colonization and establishment. We find that an accelerating function of establishment success on initial population sex ratio favours a system that produces variance in sex ratios over one that consistently produces even sex ratios. This sex ratio variance causes ESD to be favoured over genetic sex determination, even when the mean global sex ratio under both sex-determining systems is the same. Data from ESD populations suggest that the increase in population establishment can more than offset the increased risk of extinction associated with temporal fluctuations in the sex ratio. These findings demonstrate that selection in natural systems can favour increased variance in a trait, irrespective of the mean trait value. Our results indicate that sex ratio variation may provide an advantage to species with ESD, and may help explain the widespread existence of this sex-determining system. 相似文献
5.
Sex reversal has been suggested to have profound implications for the evolution of sex chromosomes and population dynamics in ectotherms. Occasional sex reversal of genetic males has been hypothesized to prevent the evolutionary decay of nonrecombining Y chromosomes caused by the accumulation of deleterious mutations. At the same time, sex reversals can have a negative effect on population growth rate. Here, we studied phenotypic and genotypic sex in the common frog (Rana temporaria) in a subarctic environment, where strongly female‐biased sex ratios have raised the possibility of frequent sex reversals. We developed two novel sex‐linked microsatellite markers for the species and used them with a third, existing marker and a Bayesian modelling approach to study the occurrence of sex reversal and to determine primary sex ratios in egg clutches. Our results show that a significant proportion (0.09, 95% credible interval: 0.04–0.18) of adults that were genetically female expressed the male phenotype, but there was no evidence of sex reversal of genetic males that is required for counteracting the degeneration of Y chromosome. The primary sex ratios were mostly equal, but three clutches consisted only of genetic females and three others had a significant female bias. Reproduction of the sex‐reversed genetic females appears to create all‐female clutches potentially skewing the population level adult sex‐ratio consistent with field observations. However, based on a simulation model, such a bias is expected to be small and transient and thus does not fully explain the observed female‐bias in the field. 相似文献
6.
C. Alström-Rapaport M. Lascoux U. Gullberg 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1997,94(3-4):493-497
Various ecological factors (e.g. herbivory, difference between males and females in colonising ability) have been invoked to explain female-biased sex ratios in populations of willow species. It was implicitly assumed that genetic factors would lead to a balanced sex ratio in the absence of ecological disturbances. In an experiment carried out in a homogeneous environment and in the absence of herbivores the progeny sex ratio of 13 crosses of basket willow (Salix viminalis L.) was observed to range from extreme female bias to extreme male bias. The observed sex ratio cannot be explained by the presence of sex chromosomes without assuming that additional loci are also involved in the sex determination. Alternatively, the sex ratios in this study can be explained by a sex determination mechanism governed by multiple independent loci. Received: 1 February 1996 / Accepted: 14 June 1996 相似文献
7.
Background and Aims
Monoecious plants have the capacity to allocate resources separately to male and female functions more easily than hermaphrodites. This can be advantageous against environmental stresses such as leaf herbivory. However, studies showing effects of herbivory on male and female functions and on the interaction with the plant''s pollinators are limited, particularly in tropical plants. Here, the effects of experimental defoliation were examined in the monoecious shrub Croton suberosus (Euphorbiaceae), a wasp-pollinated species from a Mexican tropical dry forest.Methods
Three defoliation treatments were applied: 0 % (control), 25 % (low) or 75 % (high) of plant leaf area removed. Vegetative (production of new leaves) and reproductive (pistillate and staminate flower production, pollen viability, nectar production, fruit set, and seed set) performance variables, and the abundance and activity of floral visitors were examined.Key Results
Defoliated plants overcompensated for tissue loss by producing more new leaves than control plants. Production of staminate flowers gradually decreased with increasing defoliation and the floral sex ratio (staminate : pistillate flowers) was drastically reduced in high-defoliation plants. In contrast, female reproductive performance (pistillate flower production, fruit set and seed set) and pollinator visitation and abundance were not impacted by defoliation.Conclusions
The asymmetrical effects of defoliation on male and female traits of C. suberosus may be due to the temporal and spatial flexibility in the allocation of resources deployed by monoecious plants. We posit that this helps to maintain the plant''s pollination success in the face of leaf herbivory stress. 相似文献8.
9.
Penelope J. Watt 《Journal of evolutionary biology》1994,7(2):177-187
Parental sex ratio control was investigated in Gammarus duebeni, an amphipod with an environmentally mediated sex determining system. The effect on the F2 generation sex ratio of the photoperiodic conditions experienced by a) the P generation during and after copulation, b) the F1 generation before and after sex determination, and c) the F2 generation themselves during the period of sex determination, was tested. The photoperiodic conditions the F2 generation experienced during the period of sex determination had a significant effect on their sex ratio (more males were produced under long-day than under short-day conditions), but the photoperiodic conditions experienced by the F1 generation males and females or the P generation on the F1 male's side had no effect on the F2 sex ratio. However, the photoperiodic conditions the P generation on the F1 female's side experienced significantly affected the F2 sex ratio. When these animals experienced long-day conditions the F2 generation became female biased and when they experienced short-day conditions, male biased. It is proposed that the mechanism of control operates through the F1 generation mothers whilst in an embryonic stage of development in the P generation mother's brood pouch. The photoperiodically mediated effects of the embryonic F1 generation mother and the F2 generation on sex determination are additive. A mechanism by which both F1 generation maternal and F2 generation sex ratio control could operate in the field is proposed. 相似文献
10.
Environmental sex determination has been documented in a variety of organisms for many decades and the adaptive significance of this unusual sex-determining mechanism has been clarified empirically in most cases. In contrast, temperature-dependent sex determination (TSD) in amniote vertebrates, first noted 40 years ago in a lizard, has defied a general satisfactory evolutionary explanation despite considerable research effort. After briefly reviewing relevant theory and prior empirical work, we draw attention to recent comparative analyses that illuminate the evolutionary history of TSD in amniote vertebrates and point to clear avenues for future research on this challenging topic. To that end, we then highlight the latest empirical findings in lizards and turtles, as well as promising experimental results from a model organism, that portend an exciting future of progress in finally elucidating the evolutionary cause(s) and significance of TSD. 相似文献
11.
Sexual reproduction is one of the most taxonomically conserved traits, yet sex‐determining mechanisms (SDMs) are quite diverse. For instance, there are numerous forms of environmental sex determination (ESD), in which an organism’s sex is determined not by genotype, but by environmental factors during development. Important questions remain regarding transitions between SDMs, in part because the organisms exhibiting unique mechanisms often make difficult study organisms. One potential solution is to utilize mutant strains in model organisms better suited to answering these questions. We have characterized two such strains of the model nematode Caenorhabditis elegans. These strains harbour temperature‐sensitive mutations in key sex‐determining genes. We show that they display a sex ratio reaction norm in response to rearing temperature similar to other organisms with ESD. Next, we show that these mutations also cause deleterious pleiotropic effects on overall fitness. Finally, we show that these mutations are fundamentally different at the genetic sequence level. These strains will be a useful complement to naturally occurring taxa with ESD in future research examining the molecular basis of and the selective forces driving evolutionary transitions between sex determination mechanisms. 相似文献
12.
J. Sean Doody Enzo Guarino Arthur Georges Ben Corey Glen Murray Michael Ewert 《Evolutionary ecology》2006,20(4):307-330
Theoretical models suggest that in changing environments natural selection on two traits, maternal nesting behaviour and pivotal temperatures (those that divide the sexes) is important for maintaining viable offspring sex ratios in species with environmental sex determination (ESD). Empirical evidence, however, is lacking. In this paper, we provide such evidence from a study of clinal variation in four sex-determining traits (maternal nesting behaviour, pivotal temperatures, nesting phenology, and nest depth) in Physignathus lesueurii, a wide-ranging ESD lizard inhabiting eastern Australia. Despite marked differences in air and soil temperatures across our five study sites spanning 19° latitude and 1200 m in elevation, nest temperatures did not differ significantly among sites. Lizards compensated for climatic differences chiefly by selecting more open nest sites with higher incident radiation at cooler sites. Clinal variation in the onset of nesting also compensated for climatic differences, but to a lesser extent. There was no evidence of compensation through pivotal temperatures or nest depth. More broadly, our results extend to the egg stage the life history prediction that behaviour is the chief compensatory mechanism for climatic differences experienced by species spanning environmental extremes. Furthermore, our study was unique in revealing that nest site choice influenced mainly the daily range in nest temperatures, rather than mean temperatures, in a shallow-nesting reptile. Finally, indirect evidence suggests that the cue used by nesting lizards was radiation or temperature (through basking or assessing substrate temperatures), not visual detection of canopy openness. We conclude that maternal nesting behaviour and nesting phenology are traits subject to sex ratio selection in P. lesueurii, and thus, must be considered among the repertoire of ESD species for responding to climate change. 相似文献
13.
Sex determining (SD) mechanisms are highly variable between different taxonomic groups and appear to change relatively quickly during evolution. Sex ratio selection could be a dominant force causing such changes. We investigate theoretically the effect of sex ratio selection on the dynamics of a multi-factorial SD system. The system considered resembles the naturally occurring three-locus system of the housefly, which allows for male heterogamety, female heterogamety and a variety of other mechanisms. Sex ratio selection is modelled by assuming cost differences in the production of sons and daughters, a scenario leading to a strong sex ratio bias in the absence of constraints imposed by the mechanism of sex determination. We show that, despite of the presumed flexibility of the SD system considered, equilibrium sex ratios never deviate strongly from 1 : 1. Even if daughters are very costly, a male-biased sex ratio can never evolve. If sons are more costly, sex ratio can be slightly female biased but even in case of large cost differences the bias is very small (<10% from 1 : 1). Sex ratio selection can lead to a shift in the SD mechanism, but cannot be the sole cause of complete switches from one SD system to another. In fact, more than one locus remains polymorphic at equilibrium. We discuss our results in the context of evolution of the variable SD mechanism found in natural housefly populations. 相似文献
14.
15.
Because pollen disperses and ovules do not, a basic difference in dispersal abilities of male and female gametes exists in plants. With an analytical model, we show that the combination of such sex-biased dispersal of gametes and variation of habitat quality results in two opposite selective forces acting on the evolution of sex allocation in plants: (i) a plant should overproduce pollen in good patches and overproduce ovules in poor patches in order to equilibrate secondary sex ratios of gametes after pollen dispersal; (ii) a plant should overproduce ovules in good patches and overproduce pollen in poor patches in order to increase the likelihood that its progeny establishes in good patches. Our theoretical results indicate that the evolution of habitat-dependent sex allocation should be favoured in plants, in a direction that depends on the relative dispersal ability of pollen and seeds. We also show that superficially similar predictions obtained for habitat-dependent evolutionarily stable sex allocation in animals actually result from a completely different balance between the two underlying evolutionary forces. 相似文献
16.
Le Galliard JF Fitze PS Cote J Massot M Clobert J 《Journal of evolutionary biology》2005,18(6):1455-1463
Sex allocation theory predicts that facultative maternal investment in the rare sex should be favoured by natural selection when breeders experience predictable variation in adult sex ratios (ASRs). We found significant spatial and predictable interannual changes in local ASRs within a natural population of the common lizard where the mean ASR is female-biased, thus validating the key assumptions of adaptive sex ratio models. We tested for facultative maternal investment in the rare sex during and after an experimental perturbation of the ASR by creating populations with female-biased or male-biased ASR. Mothers did not adjust their clutch sex ratio during or after the ASR perturbation, but produced sons with a higher body condition in male-biased populations. However, this differential sex allocation did not result in growth or survival differences in offspring. Our results thus contradict the predictions of adaptive models and challenge the idea that facultative investment in the rare sex might be a mechanism regulating the population sex ratio. 相似文献
17.
The consequences of cytoplasmic sex‐ratio distortion and host repression for the evolution of host sex‐determining mechanisms are examined. Analytical models and simulations are developed to investigate whether the interplay between sex‐ratio distorters and host masculinizers or resistance genes can cause heterogamety switching (changes between male and female heterogamety). Switches from female heterogamety to a system analogous to male heterogamety can occur when selection favours the spread of autosomal masculinizers. However, the evolutionary outcome depends on the type of repressor and costs associated with repression, and also on aspects of population structure. Under most conditions, systems evolved to a polymorphic sex‐determining state although many systems were characterized by numerical dominance of male heterogamety. 相似文献
18.
Sex-specific dispersal in spatially varying environments leads to habitat-dependent evolutionary stable offspring sex ratios 总被引:2,自引:0,他引:2
When the environment varies spatially, so that some habitatsare more favorable to reproduction than others, an individualshould attempt to increase the number of offspring establishingin high-quality habitats. Hence, if male and female dispersalbehavior differ, it may be adaptive to produce more offspringof the more dispersing sex in low-quality habitats, since these
offspring are likely to disperse to another patch, and moreoffspring of the most philopatric sex in high-quality habitats,since these offspring are likely to remain in that patch. Sucha strategy is shown to be evolutionarily stable provided thatmale and female dispersal rates are different and that reproductivesuccess varies between habitats (lack of ideal free distribution).Highly biased sex ratios are predicted (1) in rare habitats,
(2) in poor habitats, (3) when difference between habitat qualityis large, (4) when at least one sex disperses at a rate closeto random with respect to habitat availability, (5) when bothsexes disperse at a high rate, (6) when individuals are unableto select their reproducing habitat, and, presumably, (7) withmoderate temporal variation of habitat quality. The model appearsto be a good candidate to explain the pattern of sex ratiovariation in a variety of species : phytophagous arthropods,species with environmental sex determination, and territorialpasserines. 相似文献
19.
In the evolution of sexual reproduction we would expect to see a close association between mating systems and sex determination mechanisms. Such associations are especially evident in the insect order Hymenoptera which shows great diversity with respect to both of these characteristics. The ancestral sex determination mechanism in this order is thought to be single‐locus complementary sex determination (sl‐CSD), which is inbreeding sensitive, and where inbreeding results in the production of sterile diploid males rather than daughters. Presently, however, there is insufficient data to give strong support to the hypothesis that sl‐CSD is truly the ancestral condition in the Hymenoptera, principally because of the difficulty of reliably determining the degree of male ploidy. Here we show that six ichneumonid parasitoids from the polyphyletic genus Diadegma are subject to sl‐CSD, using neuronal cell DNA flow cytometry to distinguish ploidy levels. The presence of sl‐CSD in these six species, together with earlier evidence from the authors for D. chrysostictos, provides considerable support for the notion that sl‐CSD was ancestral in the Aculeata/Ichneumonoidea clade, which contains all eusocial Hymenoptera. Moreover, because flow cytometry discriminates reliably between haploid and diploid males, and is independent of the maternal sex allocation or the need for genetic markers, it has considerable potential for the determination of ploidy more generally. 相似文献
20.
从全新视角概貌性解读蜜蜂Apis诸多生殖机制,依据的就是蜂王或产卵工蜂的卵子发生、性别决定假说、性位点研究以及蜂王级型确立机制。这种不同于单倍-二倍性性别决定机制的新诠释,适用于明确性别决定机制、简化定向育种方法、减少比较性实验的难度和时间、实施亲子鉴定和抽象并量化种群的概念。 相似文献