首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
沙冬青属植物具有抗寒、抗旱、抗盐碱等特性,是研究植物逆境胁迫和筛选天然抗逆基因库的理想材料。非生物胁迫是限制沙冬青属植物生长发育及地理分布的重要因素,研究沙冬青属植物响应非生物胁迫的蛋白质组学为发掘其相关抗逆蛋白质及探索抗逆机理奠定基础。通过对近年来国内外利用蛋白质组学技术研究沙冬青属植物应答逆境胁迫的相关成果进行总结归纳,综述沙冬青属植物对低温、干旱、高盐等非生物胁迫响应的蛋白质组学最新研究进展,探讨在非生物胁迫下沙冬青属植物蛋白质水平的动态变化,揭示特定的蛋白质网络以及相关逆境应答机制,并对蛋白质组学技术应用前景进行展望,以期为沙冬青属植物抗逆分子机制更深入、全面的研究提供参考依据。  相似文献   

2.
逆境胁迫是影响植物生长发育的重要因素,植物的抗逆机理是分子生物学研究的重要领域。随着分子生物学技术的发展,有关植物抗逆方面的研究已取得了很大的进展,初步揭示了植物应对逆境胁迫适应性的分子机理。沙冬青是我国温带荒漠地区惟一的常绿灌木,具有很强的抗逆性,是开展植物逆境胁迫研究和抗逆基因筛选的理想材料。本文综合论述了抗逆植物沙冬青的抗逆机理及逆境胁迫相关基因的分子生物学研究进展,为植物抗逆基因工程发掘更多的基因资源和抗旱植物的抗逆性研究提供思路。  相似文献   

3.
植物蛋白激酶与作物非生物胁迫抗性的研究   总被引:3,自引:0,他引:3  
干旱、盐碱、高温等非生物逆境胁迫严重影响作物生长发育、产量和品质。在遭受非生物逆境的威胁时,植物通过信号受体,可感知、转导胁迫信号,启动一系列抗逆相关基因的表达,最终缓解或抵御非生物逆境胁迫对植物造成的危害。其中,蛋白激酶和蛋白磷酸酯酶的磷酸化/去磷酸化作用在植物感受外界胁迫信号的分子传递过程中起到开关的作用。正常情况下,蛋白激酶磷酸化开启信号转导途径,启动相应的抗逆基因表达反应;当信号消失后,蛋白激酶去磷酸化将信号转导途径关闭,达到调控植物正常生长的目的。因此,蛋白激酶在调控感受胁迫信号、启动各种非生物逆境胁迫响应中起到了极其重要的作用。近年来,对植物蛋白激酶参与非生物胁迫响应的研究倍受关注。本文阐述了不同类型蛋白激酶在改良作物非生物胁迫抗性上的应用,为进一步研究提供资料。  相似文献   

4.
割手密作为现代甘蔗遗传杂交育种史上最为成功的野生亲本,对多种不良环境都具有很强的抗逆性,被公认为是抗逆基因的主要来源。但目前真正被有效利用的割手密抗逆亲本和抗逆基因非常有限,我国自育和引进甘蔗主栽品种的抗逆性仍然比较单一且普遍偏弱,因此加强割手密优良抗逆亲本筛选和抗逆基因挖掘利用研究意义重大。本文综述了不同基因型割手密在非生物逆境(干旱、低温等理化因素)和生物逆境(病虫害侵染)下的抗逆性鉴定及其抗逆基因克隆和功能验证等国内外相关研究进展;并探讨了当前割手密资源抗逆材料筛选和抗逆基因挖掘利用中存在的问题和今后的研究方向,希望为高效利用割手密优异抗逆基因资源开展甘蔗多抗逆性聚合育种提供参考。  相似文献   

5.
昆虫病原线虫对非生物胁迫的响应机制   总被引:3,自引:0,他引:3  
曹翠玲  刘倩  简恒  王金利 《昆虫学报》2009,52(3):312-318
昆虫病原线虫是农林害虫生物防治中重要的生防因子之一。它对非生物胁迫的耐受能力决定着线虫在田间的个体生存及控制害虫效果。线虫对环境胁迫的响应是一个整体性的复杂过程, 体现在群体遗传、发育阶段、生理生化和抗逆相关基因的表达调控等不同层次、不同水平上。本文综述了昆虫病原线虫抗逆相关领域的主要研究进展, 重点介绍线虫响应非生物胁迫的生理生化机制和相关抗性基因的分离鉴定, 并对该研究领域发展趋势进行了讨论和展望, 期望为我国研究线虫抗逆机理提供一些新的信息。  相似文献   

6.
向日葵作为我国五大油料作物之一,具有极高的食用价值和油用价值。向日葵在我国的种植分布集中在东北、西北和华北地区,时常面临着干旱、盐碱、温度和重金属胁迫的问题。主要综述了近年来向日葵面临的几种主要逆境胁迫的最新研究进展,以及在不同逆境胁迫下向日葵的耐受机制,并根据不同逆境胁迫筛选出了相应的抗逆向日葵品种,同时进行了生理差异和基因信息分析。通过阐明向日葵在逆境胁迫下的耐受机制,以期对向日葵高产育种及耐逆育种提供理论依据和指导方向。  相似文献   

7.
植物miRNA的分子特征及其在逆境中的响应机制   总被引:2,自引:0,他引:2  
逆境胁迫是影响植物生长发育、生物产量与品质形成的主要因素之一。通过诱导表达抗逆有关的编码基因与部分非编码基因是植物响应逆境的主要方式。miRNA作为一种非编码基因在植物生长、发育以及抗逆等过程中起重要的调控作用。研究表明:逆境胁迫下miRNA可以形成miRNA诱导沉默复合物(miRNA-induced silencing complex,miRISC),并与靶mRNA互补配对结合,进而引起靶mRNA的降解或者抑制其翻译,从而实现对下游抗逆相关基因表达的调控,最终引起代谢与信号转导途径的变化实现对逆境的响应。本文从植物逆境胁迫下诱导miRNA的产生、靶基因的识别以及作用机制等方面进行了综述。  相似文献   

8.
水稻遭受的非生物逆境包括干旱、淹涝、盐害、低温、高温等。非生物逆境抗性有着复杂的遗传和分子基础,解析水稻非生物逆境抗性的机制将有助于抗逆新品种的培育。抗逆性受到很多小效应遗传位点的控制,成百上千个与形态和生理响应以及发育相关的基因和抗逆性相关。尽管在水稻中已鉴定了很多抗逆相关基因,但直接利用抗逆基因进行水稻抗逆遗传改良的成功例子还非常少。最近的抗逆基因功能研究发现,很多基因在形态和生理水平响应或调控不同的逆境,这为理解水稻复杂的抗逆机制提供了新的线索。现简要概述了近年来水稻主要非生物逆境抗性相关基因分离和功能鉴定方面的研究进展。  相似文献   

9.
新疆野苹果是我国重要的野生果树资源,在栽培苹果起源研究和砧木利用方面有重要价值。本文在收集整理近年来有关新疆野苹果大量文献的基础上,从苹果砧木利用角度,就新疆野苹果对主要生物逆境、非生物逆境的抗性以及与主栽品种的嫁接亲和性进行了综述,以期为相关研究提供参考。  相似文献   

10.
内质网是所有分泌蛋白和大部分膜蛋白合成和折叠的场所。当植物处于逆境时,错误折叠和未折叠蛋白会大量积累在内质网,导致内质网胁迫,为了缓解胁迫,细胞会启动保守的未折叠蛋白应答途径去帮助蛋白折叠,或将错误折叠蛋白降解。内质网胁迫应答在植物发育、抗逆、抗病等过程中发挥了重要的作用。总结了近年来内质网胁迫在植物中的相关报道,对膜结合转录因子和内质网胁迫之间的关系进行了阐述,并提出在研究内质网胁迫途径中未解决的问题,以期为进一步理解内质网胁迫和抗逆的关系提供一些参考。  相似文献   

11.
Sugarcane is now an extremely important crop, particularly in tropical countries. Its use for sugar and ethanol production is critical and cultivated area and biomass yield are increasing. Environmental pollution by anthropogenic activities is perhaps one of the most disturbing problems the world is facing and the cultivation of crops is subjected to this pollution, which may result in drastic effects on crop production. Curiously, the literature on the study of abiotic stresses on sugarcane is very limited, indicating that there is far more research to be done and investigations on this topic need to be prioritized. In this article, we have tried to focus on four key abiotic stresses, drought, temperature, salt and toxic metals, to which sugarcane is most likely to be subjected and reviewed the scarce current literature on the subject.  相似文献   

12.
Sugarcane improvement: how far can we go?   总被引:1,自引:0,他引:1  
In recent years, efforts to improve sugarcane have focused on the development of biotechnology for this crop. It has become clear that sugarcane lacks tools for the biotechnological route of improvement and that the initial efforts in sequencing ESTs had limited impact for breeding. Until recently, the models used by breeders in statistical genetics approaches have been developed for diploid organisms, which are not ideal for a polyploid genome such as that of sugarcane. Breeding programs are dealing with decreasing yield gains. The contribution of multiple alleles to complex traits such as yield is a basic question underlining the breeding efforts that could only be addressed by the development of specific tools for this grass. However, functional genomics has progressed and gene expression profiling is leading to the definition of gene networks. The sequencing of the sugarcane genome, which is underway, will greatly contribute to numerous aspects of research on grasses. We expect that both the transgenic and the marker-assisted route for sugarcane improvement will contribute to increased sugar, stress tolerance, and higher yield and that the industry for years to come will be able to rely on sugarcane as the most productive energy crop.  相似文献   

13.
甘蔗是重要的糖料和能源作物,在我国,其糖产量占全国食糖产量的94%。甘蔗是高光合效率C4作物,其蔗糖含量是所有植物中最高的,其基因组中蕴藏着大量重要基因。因此,甘蔗基因克隆对甘蔗品种定向改良具有重要意义。从蔗糖代谢、生长发育和抗逆性三个方面全面总结甘蔗基因克隆的研究进展,并提出今后研究的建议,以期为今后甘蔗基因研究提供参考。  相似文献   

14.
The sustainability of global crop production is critically dependent on improving tolerance of crop plants to various types of environmental stress. Thus, identification of genes that confer stress tolerance in crops has become a top priority especially in view of expected changes in global climatic patterns. Drought stress is one of the abiotic stresses that can result in dramatic loss of crop productivity. In this work, we show that transgenic expression of a highly conserved cell death suppressor, Bax Inhibitor‐1 from Arabidopsis thaliana (AtBI‐1), can confer increased tolerance of sugarcane plants to long‐term (>20 days) water stress conditions. This robust trait is correlated with an increased tolerance of the transgenic sugarcane plants, especially in the roots, to induction of endoplasmic reticulum (ER) stress by the protein glycosylation inhibitor tunicamycin. Our findings suggest that suppression of ER stress in C4 grasses, which include important crops such as sorghum and maize, can be an effective means of conferring improved tolerance to long‐term water deficit. This result could potentially lead to improved resilience and yield of major crops in the world.  相似文献   

15.
Genetically modified sugarcane for bioenergy generation   总被引:2,自引:0,他引:2  
Sugarcane breeding has significantly progressed over the past 30 years, but attempts to further increase crop yield have been limited due to the complexity of the sugarcane genome. An alternative to boost the crop yield is the introduction of genes encoding desirable traits in the elite sugarcane cultivars. Genetically modified sugarcane with increased yield and pest and disease resistance has already proven its value not only by the increased sugar content but also for the improvement of the crop performance. However, transgene stability is still a challenge since transgene silencing seems to occur in a large proportion of genetically modified sugarcane plants. In addition, regulatory issues associated with the crop propagation model will also be a challenge to the commercial approval of genetically modified sugarcane.  相似文献   

16.
Sugarcane is a multipurpose crop whose components may be used, in addition to sugar production, for various energy carriers or end‐products (electricity, liquid biofuels and heat) which enhance its economic potential. For many years, plant breeders and agronomists have focused on increasing sucrose yields per hectare and millers on increasing recoverable sucrose per ton of sugarcane in sugar mills. Attempting to exploit the energy potential of sugarcane more fully, calls for a more holistic approach focusing on both sucrose and lignocellulosic components of sugarcane biomass, and gaining some insight into the management practices required to optimize sugarcane cropping systems in these respects. Such options include genotype selection, harvest date with respect to the crop's growing cycle, crop type (plant crop vs. ratoon crops) and harvesting systems (mechanical vs. manual). The effects of these factors are strongly modulated by climate and soil properties, and these interactions are overall poorly known. Here, we set out to examine sugarcane infield management × environmental interactions with respect to (i) sugarcane yield and partitioning of the aboveground biomass; and (ii) sugarcane milling products (recoverable sucrose yield and amounts of coproducts) and their derived energy carriers. Three Saccharum cv. cultivars (R570, R579 and R585) were planted in three locations on La Reunion Island with contrasting management practices and climatological conditions. Quality characteristics of the samples were assessed by conventional and near infrared spectroscopy methods. Product, coproducts and potential energy production were measured and computed using transfer equations and a mill‐operating model. Yields and quality characteristics from cultivars and harvesting systems were affected differently by environmental factors – low temperature and radiation, and water stress. The current study also provides valuable information on how combinations between environments, genotypes and practices affect yield and partitioning of the aboveground biomass, and food and energy production.  相似文献   

17.
There has been rapid economic development in China in recent decades, and demand for energy has consequently been increasing rapidly. Development and utilisation of clean and renewable energy has been promoted by the Chinese government to help sustain long-term and stable development. Sugarcane is being increasingly used in several countries as feedstock for renewable energy products, and is a major and expanding crop in southern China. In this paper, we discuss the potential of sugarcane as a feedstock for bioenergy production in China. It includes a review of (1) the existing sugarcane industry in China and key bio-physical factors affecting the extent to which sugarcane-based industries could supply feedstock for renewable energy production in China, (2) the economic and policy factors which are likely to affect production of bioenergy from sugarcane in China, and (3) recommendations on actions and policies that may assist with appropriate development of bioenergy production from sugarcane in China. Existing and expected future economic conditions are unlikely to favour production of biofuel from the sugar component in cane. However, the fibre component of cane remains an under-utilised resource component. A conclusion is made that sugarcane fibre has potential to contribute towards renewable electricity production in China. However, at present, favourable incentives do not exist to encourage this production. It is suggested that policies to facilitate cost-effective production of renewable electricity by sugar mills, consistent with national objectives regarding production of renewable energy, be considered by governments. Priorities for future research are in improving biomass yields per unit area of land and technologies for low-cost conversion of lignocellulosic biomass into biofuel.  相似文献   

18.
Global interest in sugarcane has increased significantly in recent years due to its economic impact on sustainable energy production. Sugarcane breeding and better agronomic practices have contributed to a huge increase in sugarcane yield in the last 30?years. Additional increases in sugarcane yield are expected to result from the use of biotechnology tools in the near future. Genetically modified (GM) sugarcane that incorporates genes to increase resistance to biotic and abiotic stresses could play a major role in achieving this goal. However, to bring GM sugarcane to the market, it is necessary to follow a regulatory process that will evaluate the environmental and health impacts of this crop. The regulatory review process is usually accomplished through a comparison of the biology and composition of the GM cultivar and a non-GM counterpart. This review intends to provide information on non-GM sugarcane biology, genetics, breeding, agronomic management, processing, products and byproducts, as well as the current technologies used to develop GM sugarcane, with the aim of assisting regulators in the decision-making process regarding the commercial release of GM sugarcane cultivars.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号