首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
Soil seed banks can play an important role in the regeneration of wetland vegetation. However, their potential role in the restoration of degraded wetland forests is less certain. I surveyed the soil seed bank and extant floras of four sites across a eucalypt wetland forest of variable vegetation condition. At each site, the extant vegetation was surveyed within two 5 × 5 m2 quadrats, each from which five composite soil seed bank samples were collected. Across the four sites, 57 (including 18 exotic) species were identified in the extant vegetation, while from the seed bank samples 6379 seedlings emerged from 80 taxa, 33 of which were exotic species. The soil seed bank was dominated by native and exotic monocots, and contained very few seeds of wetland tree or shrub species. Overall, the similarity between the extant and seed bank floras was very low (~24 %). Soil seed banks are likely to be of limited use in the restoration of degraded wetland forests, because the dominant species in such systems—woody and clonal plants—are typically absent from the soil seed bank. Wetland soil seed banks may contribute to the maintenance and diversity of understorey vegetation, however, they may also act as a source of exotic plant invasions, particularly when a wetland is degraded.  相似文献   

2.
Understanding plant community change over time is essential for managing important ecosystems such as riparian areas. This study analyzed historic vegetation using soil seed banks and the effects of riparian shrub removal treatments and channel incision on ecosystem and plant community dynamics in Canyon de Chelly National Monument, Arizona. We focused on how seeds, nutrients, and ground water influence the floristic composition of post-treatment vegetation and addressed three questions: (1) How does pre-treatment soil seed bank composition reflect post-treatment vegetation composition? (2) How does shrub removal affect post-treatment riparian vegetation composition, seed rain inputs, and ground water dynamics? and (3) Is available soil nitrogen increased near dead Russian olive plants following removal and does this influence post-treatment vegetation? We analyzed seed bank composition across the study area, analyzed differences in vegetation, ground water levels, and seed rain between control, cut-stump and whole-plant removal areas, and compared soil nitrogen and vegetation near removed Russian olive to areas lacking Russian olive. The soil seed bank contained more riparian plants, more native and fewer exotic plants than the extant vegetation. Both shrub removal methods decreased exotic plant cover, decreased tamarisk and Russian olive seed inputs, and increased native plant cover after 2 years. Neither method increased ground water levels. Soil near dead Russian olive trees indicated a short-term increase in soil nitrogen following plant removal but did not influence vegetation composition compared to areas without Russian olive. Following tamarisk and Russian olive removal, our study sites were colonized by upland plant species. Many western North American rivers have tamarisk and Russian olive on floodplains abandoned by channel incision, river regulation or both. Our results are widely applicable to sites where drying has occurred and vegetation establishment following shrub removal is likely to be by upland species.  相似文献   

3.
红壤侵蚀区植被恢复过程中土壤种子库变化特征   总被引:1,自引:0,他引:1  
土壤侵蚀作为一种自然营力和自然干扰形式对土壤种子库的次分布与物种组成具有一定的影响。本研究对典型红壤侵蚀区裸地(Ⅰ号)、马尾松林地(Ⅱ、Ⅲ、Ⅳ号)和次生林(Ⅴ号)等5处不同植被恢复区的土壤种子库物种组成、储量及分布格局进行研究,探究在植被恢复过程中土壤侵蚀对土壤种子库的影响。结果表明: 研究区土壤种子库共统计到21种物种,物种丰富度低,以草本种类为主。各样地土壤种子库密度为56.7~793.3粒·m-2,样地间差异显著,土壤种子库密度随着土壤侵蚀强度加重而明显下降。各样地浅层0~2 cm土壤种子库密度随着上坡-中坡-下坡的变化均呈增加趋势;剧烈侵蚀地和强烈侵蚀地土壤种子库主要分布在5~10 cm深层土壤内,且中上坡0~2 cm土层几乎没有种子。土壤侵蚀使得土壤种子库在土层中的分布呈现深层化,植被恢复后深层种子库积累仍需要较长的时间。  相似文献   

4.
Restoration of coastal plain depressions, a biologically significant and threatened wetland type of the southeastern United States, has received little systematic research. Within the context of an experimental project designed to evaluate several restoration approaches, we tested whether successful revegetation can be achieved by passive methods (recruitment from seed banks or seed dispersal) that allow for wetland "self-design" in response to hydrologic recovery. For 16 forested depressions that historically had been drained and altered, drainage ditches were plugged to reestablish natural ponding regimes, and the successional forest was harvested to open the sites and promote establishment of emergent wetland vegetation. We sampled seed bank and vegetation composition 1 year before restoration and monitored vegetation response for 3 years after. Following forest removal and ditch plugging, the restored wetlands quickly developed a dense cover of herbaceous plant species, of which roughly half were wetland species. Seed banks were a major source of wetland species for early revegetation. However, hydrologic recovery was slowed by a prolonged drought, which allowed nonwetland plant species to establish from seed banks and dispersal or to regrow after site harvest. Some nonwetland species were later suppressed by ponded conditions in the third year, but resprouting woody plants persisted and could alter the future trajectory of revegetation. Some characteristic wetland species were largely absent in the restored sites, indicating that passive methods may not fully replicate the composition of reference systems. Passive revegetation was partially successful, but regional droughts present inherent challenges to restoring depressional wetlands whose hydrologic regimes are strongly controlled by rainfall variability.  相似文献   

5.
In the Loess Plateau region, soil erosion is a serious problem. Vegetation restoration is an effective approach to control soil erosion and improve ecosystems. The soil seed bank generally plays an important role in vegetation restoration after disturbance. Thus, we reviewed soil seed bank studies to reveal the soil seed bank characteristics and its role in vegetation restoration in three vegetation types (forest, forest‐steppe, and steppe). We selected 38 seed bank studies and analyzed several seed bank characteristics, such as seed density, species composition, and the relationship between seed size and seed bank. We also assessed the role of the soil seed bank in vegetation restoration. The soil seed bank density ranged from 2,331 ± 1,993 to 6,985 ± 4,047 seeds/m2 among the different vegetation types. In the soil seed bank, perennial herbs and grasses accounted for 51.5% of the total species. Native species that were dominant or common in the standing vegetation usually had relatively high seed bank densities. Moreover, species with smaller seeds generally had higher soil seed bank densities. The present study indicates that the soil seed bank plays a significant role in spontaneous vegetation restoration, especially during the early successional stages in abandoned slope farmlands and grazing‐excluded grasslands. However, species with large seeds or transient soil seed banks should be reintroduced through seeding to accelerate target species restoration. More studies on soil seed banks need to be conducted to comprehensively reveal their characteristics.  相似文献   

6.
Wicken Fen National Nature Reserve (NNR) in Cambridgeshire, U.K. is a wetland of international importance isolated in a landscape dominated by arable farming. The prospect of species extinctions within the NNR led to the creation of the Wicken Fen Vision, an ambitious project that will eventually expand the reserve boundary by the purchase and restoration of c.50 km2 of arable land. We sampled three fields from each of three distinct age‐categories of restoration land (5, 15, and 60 years post‐arable), and three fields within the adjacent, undrained NNR, to determine (1) differences in seed bank composition across age‐categories, (2) relationships between restoration age, the seed bank and standing vegetation, and (3) changes in species traits across age‐categories. Historic arable management contributed to an apparent “vertical mixing” effect in the seed bank of the youngest two age‐categories, with associated and significant differences in species functional traits across the study area. Almost all plants associated with NNR vegetation were absent from restoration area seed banks and standing vegetation. Seed bank species common to all ages‐categories exhibited a bias toward moderate to high Ellenberg F (moisture) values, persistent seed banks, and lateral vegetative spread. Relatively short (c. 6 years) periods of drainage and plowing impact heavily upon seed bank diversity and soils, resulting in a lack of predrainage vegetation, even after decades of subsequent restoration adjacent to intact, species‐rich habitat. However, the seed banks of highly degraded fields can contribute toward the creation of novel wetland vegetation assemblages over time and under suitable environmental conditions.  相似文献   

7.
通过幼苗萌发法和样方调查相结合的方法对三江平原不同演替恢复阶段的种子库特征及其与植被的关系进行了研究。将开垦湿地、不同演替恢复阶段湿地以及天然湿地不同土壤层次(0-5、5-10 cm和根茎)的种子库在两种水分条件下(湿润、淹水10 cm)进行萌发处理。结果表明: 随着演替恢复阶段的进行, 种子库的结构和规模逐渐扩大, 地表群落表现出由旱生物种占优势的群落逐渐演变成以小叶章(Calamagrostis angustifolia)占优势的湿生群落的演替趋势。恢复7年湿地、恢复14年湿地、天然湿地土壤种子库萌发物种数分别为24种、29种、39种, 植被物种数为21种、25种、14种。湿地类型、水分条件和土壤层次均显著影响种子库萌发的物种数及幼苗数(p < 0.01)。种子库具有明显的分层现象, 天然湿地0-5 cm土层种子库种子萌发密度是5-10 cm土层的4倍左右, 而恢复湿地仅1.3倍左右, 且土层间萌发物种相似性系数较低。湿润条件下的萌发物种数显著高于淹水条件, 且两种水分条件下萌发物种的生活型不同。由于恢复时间较短, 不同演替恢复阶段的种子库与植被相似性维持在30%以下。湿地中根茎分蘖出大量的湿地物种, 对于小叶章等优势物种的繁殖具有重要作用。研究表明, 在开垦湿地退耕后的次生演替阶段, 种子库能够保持大量的湿地物种, 通过对湿地种子库与植被的关系研究, 能够为三江平原湿地群落演替与湿地恢复提供策略指导。  相似文献   

8.
This study summarises European research on seed banks in temperate forest systems and analyses for differences in seed bank composition between geographically scattered forests with a different land use history. Special attention is given to seed bank characteristics of ancient forest species. Results of Detrended Correspondence Analysis suggest that historical land use is a key factor in determining the seed bank composition. Particularly seed banks of forests on former heathland sites differ from seed banks of ancient forest due to a high contribution of early successional species. The effect of former land use decreases after 50 yr, due to seed senescence. Total seed density decreases with recent forest age. Seed bank composition of eastern European forests is different from northern or western European forests, a difference which is mainly caused by species with a higher Ellenberg indicator value for continentality, temperature and reaction. In general, ancient forest species are poorly represented. Only a limited number is mentioned to have a persistent seed bank, and their densities are relatively low, which means that restoration of typical ancient forest vegetation can not rely on the seed bank. However, there is still a considerable lack of knowledge concerning seed bank and germination characteristics of forest species.  相似文献   

9.
10.
以山西文峪河上游13种典型的河岸林为研究对象,通过土壤种子库和树种更新研究,分析群落种子库与林下更新随演替进展的变化趋势,以及该区河岸树种的繁殖对策。结果表明:13种群落的土壤种子库密度间于1290±103~3950±154粒/m2,63.5%的种子留存于0~5 cm的层次;种子库包含49种植物,以多年生草本为主,存在耐干扰种和湿地植物的种子;处于相同或相邻演替阶段的群落,种子库相似性较高;随演替进展,种子库密度、丰度、Shannon-Wiener指数及种子库与地上植被的相似性均呈降低趋势;处于演替后期的青杄Picea wilsonii林存在丰富的"青杄幼苗库";先锋种白桦Betula platyphylla的种子存在于演替各阶段的群落中,储量丰富,其更新主要依赖于风媒种子,并存在少量萌蘖;青杄、白杄P.meyeri、华北落叶松Larix principis-rupprechtii、油松Pi-nus tabulaeformis和辽东栎Quercus liaotongensis的种子库损耗严重,没有或仅存少量种子,其中云杉和油松的更新幼苗幼树多,属持久幼苗库更新;华北落叶松幼苗幼树少,且仅出现于林缘或林窗等开阔地,属植被空隙中季节性更新;辽东栎主要依赖丰富的幼苗库进行更新,同时存在一定的萌蘖;青杨Populus cathayana以大量风媒种子更新结合营养扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号