首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wetlands maintain biodiversity and provide numerous ecosystem services, so the pressure to perform successful restoration consequently is high. However, restoration projects rarely include an in-depth assessment of wetland potential for recovery, and restoration techniques may not be tailored to site-specific concerns. This study examined the seed bank of disturbed wetlands slotted for hydrologic, but not vegetation, restoration to determine if a seed bank comparable to that of nearby undisturbed wetlands persisted despite long-term anthropogenic disturbance. We compared the aboveground vegetation and seed bank compositions under drained, drawdown, and flooded conditions between undisturbed and historically ditched (“disturbed”) wetlands. Disturbed and undisturbed wetlands shared fewer than 30 % of total aboveground species. While undisturbed wetlands were dominated by graminoids, disturbed wetlands had greater cover of forbs. The seed banks of disturbed wetlands had high species diversity, but their composition was dissimilar to that of nearby undisturbed wetlands. In total, the seed banks of both disturbance histories germinated 56 species; drained conditions had the fewest germinants while flooded conditions had the most. Germinant richness was significantly affected by disturbance, moisture, and their interaction; evenness was significantly affected by moisture, and Shannon diversity by disturbance. Because the seed bank of disturbed wetlands included many fast-growing wetland plants, passive vegetation restoration and active hydrologic restoration may result in wetlands overgrown with weedy species and with fewer conservative wetland plants. An understanding of the capacity for seed banks to re-vegetate wetlands post-restoration and approximate undisturbed wetlands is crucial to the overall success of restoration projects.  相似文献   

2.
湿地土壤种子库与地上植被相似性关系研究评述   总被引:3,自引:0,他引:3  
刘庆艳  姜明  吕宪国  王国栋 《生态学报》2014,34(24):7465-7474
土壤种子库与地上植被的关系是土壤种子库研究的重要组成部分。当前,湿地生态系统面临严重威胁,研究湿地土壤种子库和地上植被关系既可以加强对土壤种子库和植物群落特征的认识,又可以为湿地保护与管理提供理论指导。检索了科学引文索引扩展版(SCIE)数据库中收录的1900—2012年间研究湿地土壤种子库与地上植被关系的文献,通过分析土壤种子库与地上植被的Srensen相似性系数,结果发现:不同湿地类型的土壤种子库和地上植被的相似性存在显著差异,河流湿地中两者的相似性最小;不同植被类型中土壤种子库与地上植被的相似性差异显著:草本群落的相似性大于乔木群落;不同气候带的湿地中两者的相似性也存在显著差异,其中亚热带地区相似性最小。总结了湿地种子库与地上植被相似性关系的时空变化特征。二者的相似性通常随着植物群落的演替而减小,在空间上也随着环境梯度而变化。分析了两者关系的影响因素,如种子传播、环境条件和繁殖策略等。对研究中存在的问题及发展方向提出建议。  相似文献   

3.
The restoration of degraded wetland ecosystems and the recovery of wetland biodiversity are important global issues. Generally, wetland restoration projects include activities to recover vegetation. A promising revegetation technique is one in which soil seed banks are utilized as the source of plant recolonization. Using such a technique, a pilot project to restore lakeshore vegetation was launched at Lake Kasumigaura, Japan, in 2002. In the project, lake sediments containing the seed banks were spread thinly (∼10 cm) on the surfaces of artificial lakeshores, which were constructed in front of concrete levees and had microtopographic variations. In total, 180 species, including six endangered or vulnerable species and 12 native submerged plants that had disappeared from the above-ground vegetation of the lake, were recorded in five recreated lakeshores (total area, 65,200 m2) during the first year of the restoration. The distribution of each restored species at the sites suggested the importance of microtopographic relief for recolonizing species-rich lakeshore vegetation. Furthermore, the origin of the source seed banks affected the species composition of the restored vegetation. On the other hand, the restoration sites were subject to exotic plant invasions. Here, we report lessons learned from the Lake Kasumigaura restoration project as a contribution to the establishment of ecologically sound revegetation techniques.  相似文献   

4.
通过幼苗萌发法和样方调查相结合的方法对三江平原不同演替恢复阶段的种子库特征及其与植被的关系进行了研究。将开垦湿地、不同演替恢复阶段湿地以及天然湿地不同土壤层次(0-5、5-10 cm和根茎)的种子库在两种水分条件下(湿润、淹水10 cm)进行萌发处理。结果表明: 随着演替恢复阶段的进行, 种子库的结构和规模逐渐扩大, 地表群落表现出由旱生物种占优势的群落逐渐演变成以小叶章(Calamagrostis angustifolia)占优势的湿生群落的演替趋势。恢复7年湿地、恢复14年湿地、天然湿地土壤种子库萌发物种数分别为24种、29种、39种, 植被物种数为21种、25种、14种。湿地类型、水分条件和土壤层次均显著影响种子库萌发的物种数及幼苗数(p < 0.01)。种子库具有明显的分层现象, 天然湿地0-5 cm土层种子库种子萌发密度是5-10 cm土层的4倍左右, 而恢复湿地仅1.3倍左右, 且土层间萌发物种相似性系数较低。湿润条件下的萌发物种数显著高于淹水条件, 且两种水分条件下萌发物种的生活型不同。由于恢复时间较短, 不同演替恢复阶段的种子库与植被相似性维持在30%以下。湿地中根茎分蘖出大量的湿地物种, 对于小叶章等优势物种的繁殖具有重要作用。研究表明, 在开垦湿地退耕后的次生演替阶段, 种子库能够保持大量的湿地物种, 通过对湿地种子库与植被的关系研究, 能够为三江平原湿地群落演替与湿地恢复提供策略指导。  相似文献   

5.
Questions: For wetland plants, dispersal by wind is often overlooked because dispersal by water is generally assumed to be the key dispersal process. This literature review addresses the role of seed dispersal by wind in wetlands. Why is wind dispersal relevant in wetlands? Which seeds are dispersed by wind and how far? And how can our understanding of wind dispersal be applied to wetland conservation and restoration? Methods: Literature review. Results and conclusions: Wind is a widely available seed dispersal vector in wetlands and can transport many seeds over long distances. Unlike water, wind can transport seeds in all directions and is therefore important for dispersal to upstream wetlands and to wetlands not connected by surface water flows. Wind dispersal transports seeds to a wider range of sites than water, and therefore reaches more sites but with lower seed densities. Many wetland plant species have adaptations to facilitate wind dispersal. Dispersal distances increase with decreasing falling velocity of seeds, increasing seed release height and selective release mechanisms. Depending on the adaptations, seeds may be dispersed by wind over many km or only a few m. The frequency of long‐distance wind dispersal events depends on these adaptations, the number of produced seeds, the structure of the surrounding vegetation, and the frequency of occurrence of suitable weather conditions. Humans reduce the frequency of successful long‐distance wind dispersal events in wetlands through wetland loss and fragmentation (which reduce the number and quality of seeds) and eutrophication (which changes the structure of the vegetation so that seed release into the wind flow becomes more difficult). This is yet another reason to focus on wetland conservation and restoration measures at increased population sizes, prevention of eutrophication, and the restoration of sites at short distances from seed sources.  相似文献   

6.
Question: Is raising groundwater tables successful as a wetland restoration strategy? Location: Kennemer dunes, The Netherlands; Moksloot dunes, The Netherlands and Bullock Creek fen, New Zealand. Methods: Generalizations were made by analysing soil dynamics and the responsiveness of integrative plant traits on moisture, nutrient regime and seed dispersal in three case studies of re wetted vs. control wetlands with the same actual groundwater levels. Soil conditions included mineral (calcareous and non‐calcareous) soils with no initial vegetation, mineral soils with established vegetation and organic soils with vegetation. Results: The responsiveness of traits to raised groundwater tables was related to soil type and vegetation presence and depended on actual groundwater levels. In the moist‐wet zone, oligotrophic species, ‘drier’ species with higher seed longevity occupied gaps created by vegetation dieback on rewetting. The other rewetted zones still reflected trait values of the vegetation prevalent prior to rewetting with fewer adaptations to wet conditions, increased nutrient richness and higher seed longevity. Moreover, ‘eutrophic’ and ‘drier’ species increased at rewetted sites, so that these restored sites became dissimilar to control wetlands. Conclusions: The prevalent traits of the restored wetlands do not coincide with traits belonging to generally targeted plant species of wetland restoration. Long‐term observations in restored and control wetlands with different groundwater regimes are needed to determine whether target plant species eventually re vegetate restored wetlands.  相似文献   

7.
High altitude wetlands on the Tibetan Plateau have been shrinking due to anthropogenic disturbances and global climate change. However, the few studies that have been conducted on wetlands are inconclusive about the effect of soil moisture on seed banks and potential of seed banks in wetlands with different levels of soil moisture for regeneration of dried wetlands. We investigated seed banks and plant communities along a soil moisture gradient. A structural equation model was used to analyze the direct and indirect effects of soil moisture on seed banks, as well as the relationship between plant communities and seed banks. Although soil moisture had no direct effects on seed bank richness and density and indirect effects on seed banks through plant community, it had indirect effects on the seed bank through soil pH. Soil moisture also did not have direct effects on plant community richness, but it had indirect effects through soil pH. Plant community composition changed with soil moisture, but aboveground plant abundance and seed banks composition did not change. Low similarity exists between plant community and seed banks for all wetlands, and similarity decreased along the moisture gradient. The key factor determining plant community diversity was soil pH, while seed bank diversity was mainly affected by soil pH and plant community diversity with wetland drying. Although potential for regenerating the plant community from the seed bank decreased with an increase in soil moisture, drained wetlands still have enough residual seeds for successful restoration of species-rich alpine meadows.  相似文献   

8.
Few wetland restoration projects include long‐term hydrologic and floristic data collection, limiting our understanding of community assembly over restored hydrologic gradients. Although reference sites are commonly used to evaluate outcomes, it remains unclear whether restoring similar water levels to reference sites also leads to similar plant communities. We evaluated long‐term datasets from reference and restored wetlands 15 years after restoration to test whether similar water levels in reference and restored sites led to vegetation similarity. We compared the hydrologic regimes for three different wetland types, tested whether restored wetland water levels were different from reference water levels, and whether hydrologic similarity between reference and restored wetlands led to similarity in plant species composition. We found restored wetlands had similar water levels to references 15 years after restoration, and that species richness was higher in reference than restored wetlands. Vegetation composition was similar across all wetland types and was weakly correlated to wetland water levels overall. Contrary to our hypothesis, water table depth similarity between restored and reference wetlands did not lead to similar plant species composition. Our results highlight the importance of the initial planting following restoration and the importance of hydrologic monitoring. When the restoration goal is to create a specific wetland type, plant community composition may not be a suitable indicator of restoration progress in all wetland types.  相似文献   

9.
Restoration efforts are being implemented globally to mitigate the degradation and loss of wetland habitat; however, the rate and success of wetland vegetation recovery post‐restoration is highly variable across wetland classes and geographies. Here, we measured the recovery of plant diversity along a chronosequence of restored temporary and seasonal prairie wetlands ranging from 0 to 23 years since restoration, including drained and natural wetlands embedded in agricultural and natural reserve landscapes in central Alberta, Canada. We assessed plant diversity using the following structural indicators: percent cover of hydrophytes, native and non‐native species, species richness, and community composition. Our findings indicate that plant diversity recovered to resemble reference wetlands in agricultural landscapes within 3–5 years of restoration; however, restored wetlands maintained significantly lower species richness and a distinct community composition compared to reference wetlands located within natural reserves. Early establishment of non‐native species during recovery, dispersal limitation, and depauperated native seed bank were probable barriers to complete recovery. Determining the success of vegetation recovery provides important knowledge that can be used to improve restoration strategies, especially considering projected future changes in land use and climate.  相似文献   

10.
Abstract: Conservation programs that facilitate restoration of natural areas on private land are one of the best strategies for recovery of valuable wetland acreage in critical ecoregions of the United States. Wetlands enrolled in the Conservation Reserve Enhancement Program (CREP) provide many ecological functions but may be particularly important as habitat for migrant and resident waterbirds; however, use of, and factors associated with use of, CREP wetlands as stopover and breeding sites have not been evaluated. We surveyed a random sample of CREP wetlands in the Illinois River watershed in 2004 and 2005 to quantify use of restored wetlands by spring migrating and breeding waterbirds. Waterbirds used 75% of wetlands during spring migration. Total use-day abundance for the entire spring migration ranged from 0 to 49,633 per wetland and averaged 6,437 ± 1,887 (SE). Semipermanent wetlands supported the greatest total number of use-days and the greatest number of use-days relative to wetland area. Species richness ranged from 0 to 42 (x̄ = 10.0 ± 1.5 [SE]), and 5 of these species were classified as endangered in Illinois. Density of waterfowl breeding pairs ranged from 0.0 pairs/ha to 16.6 pairs/ha (x̄ = 1.9 ± 0.5 [SE] pairs/ha), and 16 species of wetland birds were identified as local breeders. Density of waterfowl broods ranged from 0.0 broods/ha to 3.6 broods/ha and averaged 0.5 ± 0.1 (SE) broods/ha. We also modeled spring stopover use, waterbird species richness, and waterfowl reproduction in relation to spatial, physical, and floristic characteristics of CREP wetlands. The best approximating models to explain variation in all 3 dependent variables included only the covariate accounting for level of hydrologic management (i.e., none, passive, or active). Active management was associated with 858% greater use-days during spring than sites with only passive water management. Sites where hydrology was passively managed also averaged 402% greater species richness than sites where no hydrologic management was possible. Density of waterfowl broods was 120% greater on passively managed sites than on sites without water management but was 29% less on sites with active compared to passive hydrologic management. Densities of waterfowl broods also were greatest when ratios of open water to cover were 70:30. Models that accounted for vegetation quality and landscape variables ranked lower than models based solely on hydrologic management or vegetation cover in all candidate sets. Although placement and clustering of sites may be critical for maintaining populations of some wetland bird species, these factors appeared to be less important for attracting migrant waterbirds in our study area. In the context of restored CREP wetlands, we suggest the greatest gains in waterbird use and reproduction may be accomplished by emphasizing site-specific restoration efforts related to hydrology and floristic structure. (JOURNAL OF WILDLIFE MANAGEMENT 72(3):654–664; 2008)  相似文献   

11.
Studies of seed bank development have rarely been included in evaluations of wetland restoration. We compared the seed bank of a recently restored tidal freshwater marsh in Washington, D.C., Kingman Marsh, with seed banks of another restored site (Kenilworth Marsh) and two reference marshes (Dueling Creek and Patuxent Marsh). The density and richness of emerging seedlings from Kingman Marsh seed bank samples increased from less than 4 seedlings and 2 taxa/90-cm2 sample in 2000 (the year of restoration) to more than 130 seedlings and 10 taxa/90-cm2 sample in 2003. The most important seed bank taxa at Kingman Marsh included Cyperus spp., Juncus spp., Lindernia dubia , Ludwigia palustris , and the non-native Lythrum salicaria . These taxa are not abundant in most mid-Atlantic tidal freshwater marshes but are almost identical to those described for a created tidal freshwater wetland in New Jersey. Seed banks of both the restored sites contained few seeds of several important species found at the reference sites. Flooding had a significant negative effect on emerging seedling density and taxa density, suggesting that slight decreases in soil elevation in restored wetlands will dramatically decrease recruitment from the seed bank. Because seed banks integrate processes affecting growth and reproduction of standing vegetation, we suggest that seed banks are a useful metric of wetland restoration success and urge that seed bank studies be incorporated into monitoring programs for restored wetlands.  相似文献   

12.
The influence of urban land use on seed dispersal and wetland invasibility   总被引:1,自引:0,他引:1  
Urban habitats are generally considered highly invaded by exotic species due to the frequency and extent of disturbance caused by human activities and development. Our previous study had demonstrated that forested wetlands within residential areas are more extensively invaded than wetlands within industrial–commercial areas. In this study, we investigate whether the structure of the forest edge and seed dispersal can explain the differential in the invasion of wetlands surrounded by industrial and residential land use. Our results indicate that edges of industrially bordered wetlands are denser, with vegetation concentrated at the boundary of tree growth, whereas the edges of residentially bordered wetlands are more open and diffuse. This difference influences the number of seeds and species capable of dispersing into the wetland. Less dense edges resulted in a higher number of seeds entering residential wetlands; however, there were no differences in the numbers of exotic seeds or exotic species in the seed rain residential and industrial wetlands. Although seed dispersal could not directly explain differences in the current extent of invasion of these sites, seed dispersal did follow corridor pathways, including ditches and trails that breach the edges and extend through the wetlands. These disturbances act as corridors for seed dispersal into both types wetlands and may play a role in introducing new species to the interior of the wetland, an outcome supported by a higher number of exotic species in the seed banks of residential sites. Our results suggest that both the type of adjoining land use and the provision of access to people on trails in urban wetlands can affect the composition of these communities.  相似文献   

13.
Temporarily flooded depressions in arable fields support populations of specialised plant species that are affected by flooding and agricultural management. Depending on the degree of flooding, different proportions of wetland and arable species contribute to the seed bank. This is reflected by high inter-annual variations in plant communities with a high conservation value. Due to ongoing agricultural intensification, the biodiversity of temporarily flooded depressions has declined, and several plant species have become regionally extinct. Because seed banks harbour persistent seeds over long periods, they play a crucial role in the conservation and restoration of temporary wetland vegetation. This study focuses on the effects of different flooding regimes on plant species emerging from seed banks of temporarily flooded depressions in arable fields in northeast Germany. We cultivated soil samples from upper and lower wetland zones under short, intermediate and long-term flooding (5, 15 and 40 cm above soil surface) in a common garden experiment over 2 years. We observed significant changes in species composition depending on the flooding duration. Species richness declined and evenness increased with increasing flooding duration. Upper and lower zones showed similar species richness and evenness, but species compositions differed. Red List species emerged from all treatments although the species differed, indicating that all communities emerging under different flooding regimes have a high conservation value. Seed banks under fluctuating site conditions can constitute a series of alternating plant communities. This could be used to develop management strategies that benefit different communities with high conservation values.  相似文献   

14.
Soil seed banks of two montane riparian areas: implications for restoration   总被引:8,自引:0,他引:8  
Understanding the role of seed banks can be important for designing restoration projects. Using the seedling emergence method, we investigated the soil seed banks of two montane, deciduous riparian forest ecosystems of southeastern Arizona. We contrasted the seed banks and extant vegetation of Ramsey Canyon, which is the site of riparian restoration activities, with that of Garden Canyon, which has been less affected by human land uses. Fewer plant species were found at Ramsey Canyon than Garden Canyon, for both the seed bank and extant vegetation, and the vegetation at Ramsey Canyon (seed bank and extant) had consistently drier wetland indicator scores. As well, vegetation patterns within sampling zones (channel margins and adjacent riparian forests) differed between canyons. At Garden Canyon channel margins, the seed bank and extant vegetation had relatively high similarity, with herbaceous wetland perennial species dominating. Extant vegetation in the floodplain riparian forest zone at Garden Canyon had a drier wetland indicator score than the seed bank, suggesting that the floodplains are storing seeds dispersed from wetter fluvial surfaces. Vegetation patterns for Ramsey Canyon channel margins were similar to those for Garden Canyon floodplains. Vegetation patterns in the Ramsey Canyon riparian forest zone were indicative of non-flooded conditions with an abundance of upland species in the soil seed bank and extant vegetation. Channel geomorphology measurements indicated that much of the riparian forest zone at Ramsey Canyon is functionally a terrace, a condition that may be a legacy of channel erosion from historic land uses. Steep, erodible channel slopes may contribute to the low seed bank germinant density at Ramsey Canyon channel margins, and narrower flood-prone area may explain the greater terrestrialization of the vegetation in both sampling zones. We recommend testing the use of donor soils from more diverse stream reaches to restore biodiversity levels at Ramsey Canyon, following restoration activities such as channel-widening. Seed banks from Garden Canyon, for example, although predominantly consisting of herbaceous perennials, would supply species with a range of moisture tolerances, life spans, and growth forms. We also recommend that restorationists take care not to harm seed banks exposed during removal of introduced species; at Ramsey Canyon, soil seed banks were equally diverse in areas with high and low cover of the introduced Vinca major (a legacy of Ramsey Canyon land use).  相似文献   

15.
农田开垦对三江平原湿地土壤种子库影响及湿地恢复潜力   总被引:2,自引:0,他引:2  
种子库是湿地植被恢复的重要途径之一,不同时期的耕作土壤中残留的种子对开垦湿地恢复具有重要的作用.本文采用温室萌发法在两种水分条件下对三江平原天然湿地、不同开垦年限湿地种子库结构和规模进行了研究,以了解不同开垦年限湿地种子库特征及其在湿地植被恢复中的潜力.本次实验共萌发物种50种,随着开垦年限增加,萌发物种逐渐减少,天然湿地、开垦1年、3年、10年、20年的湿地分别为34种、31种、21种、21种和8种,萌发物种数与种子库规模均表现出极显著差异(F1=8.32,F2=5.946,P<0.001).种子库密度以天然湿地和开垦1年湿地最大,分别为7624粒/m2,9836粒/m2.随着开垦年限增加,种子库规模逐渐减小,开垦3年、10年种子库密度为4336粒/m2,4872粒/m2.开垦20 a后,显著减少为432粒/m2.湿润条件下萌发物种数及种子密度显著高于淹水处理,种子库具有明显的分层现象,0-5 cm土层种子库规模显著高于5-10 cm.小叶章(Calamagrostis angustifolia)作为该地区优势物种,由最初的1192粒/m2,经过20 a开垦后在种子库中消失.研究表明,在一定的开垦年限范围内,开垦湿地土壤中仍然保留大量的湿地物种种子,在湿地恢复中具有重要的作用.  相似文献   

16.
1. In most cases, the most important determinant of wetland vegetation is the water regime. Although water regime is usually described and managed at the scale of whole wetlands, the patterning of vegetation is likely to be determined by water regimes that are experienced at much finer spatial scales. In this study, we assess the significance of internal heterogeneity in water regimes and the role that this heterogeneity plays in vegetation patterning. 2. The effects of water regime on wetland plant species richness and vegetation structure were studied at Dowd Morass, a 1500 ha, Ramsar‐listed wetland in south‐eastern Australia that is topographically heterogeneous. Data on plant variables and water depth were collected along 45 (50 m) transects throughout the wetland and related to water regimes assigned individually for each transect. Wetland plants were assigned to plant functional groups (PFG) that describe the response of plants to the presence or absence of water at different life stages. 3. The classification of water depth data indicated four distinct water regimes in the wetland that were differentiated primarily by the duration of the dry period. Representatives of all PFGs co‐existed over small spatial scales where topographical variation was present, and the richness and cover of understorey species declined as transects became more deeply and permanently flooded. Some PFGs (e.g. amphibious fluctuation tolerator‐low growing and amphibious fluctuation responder‐morphologically plastic) were eliminated by extended periods of flooding, which increased the cover but not richness of submerged plants. Species richness and foliage projective cover declined as water regimes shifted from shallow and frequently exposed conditions to regimes typified by deeper and longer inundation. Cover of the structurally dominant woody species was compromised by deeply flooded conditions but vegetative regeneration occurred despite high water levels. 4. Internal topographical variation generates mosaics of water regimes at fine spatial scales that allow plant species with different water regime requirements to co‐exist over small distances. Deep water and an absence of dry periods result in decreased cover of plants and an overall loss of species richness in the understorey. Water regimes are described that promote regeneration and cover of structurally dominant taxa and increased species richness in the understorey. The study demonstrates a strong association between vegetation and the diverse water regimes that exist within a single wetland, a pattern that will be useful for modelling the effects of modified water regimes on wetland vegetation.  相似文献   

17.
Soil seed banks can play an important role in the regeneration of wetland vegetation. However, their potential role in the restoration of degraded wetland forests is less certain. I surveyed the soil seed bank and extant floras of four sites across a eucalypt wetland forest of variable vegetation condition. At each site, the extant vegetation was surveyed within two 5 × 5 m2 quadrats, each from which five composite soil seed bank samples were collected. Across the four sites, 57 (including 18 exotic) species were identified in the extant vegetation, while from the seed bank samples 6379 seedlings emerged from 80 taxa, 33 of which were exotic species. The soil seed bank was dominated by native and exotic monocots, and contained very few seeds of wetland tree or shrub species. Overall, the similarity between the extant and seed bank floras was very low (~24 %). Soil seed banks are likely to be of limited use in the restoration of degraded wetland forests, because the dominant species in such systems—woody and clonal plants—are typically absent from the soil seed bank. Wetland soil seed banks may contribute to the maintenance and diversity of understorey vegetation, however, they may also act as a source of exotic plant invasions, particularly when a wetland is degraded.  相似文献   

18.
Restoration and creation of freshwater wetlands using seed banks   总被引:12,自引:0,他引:12  
The minimum information about a seed bank needed for a wetland restoration or creation project is a species list. There are two basic techniques for determining the composition of seed banks: (1) mechanical separation of seeds from a volume of soil and (2) germination of seeds from a volume of soil under appropriate environmental conditions. The latter method always gives biased results. It is best to collect as many random samples as possible when sampling a wetland seed bank. These can be combined as needed for processing. Field studies in India have demonstrated that vestigial seed banks can be used to re-establish a former vegetation type in a monsoonal wet-land that had become overgrown by a species of grass. In less than a year, 9 of 1 I species in the vestigial seed bank were found growing in areas cleared of the grass. Vestigial seed banks of drained prairie wetlands in the northcentral United States contained a few wetland species after 70 years, although species diversity and seed density declined significantly after 20 to 30 years of drainage and cultivation. In Florida, U.S.A., wetlands have been established in strip-mined areas using donor soils from existing wetlands. Newly established wetlands quickly developed a dense cover of vegetation, although this vegetation often lacked many desirable wetland species. Experimental studies of soil moisture conditions using a seed bank from the Delta Marsh, Canada, demonstrated that soil moisture affected both the total number of seeds, and the relative proportion of seeds of each species that germinated from a seed bank. The density of seedlings of emergent wetland species in the treatments was directly proportional to soil moisture, while that of terrestrial annuals was inversely proportional. Emergent species made up nearly 90% of the seedlings in the wettest treatment and 0% in the driest.From a paper presented at the Third International Wetlands Conference, 19–23 September, 1988, University of Rennes, France.  相似文献   

19.
Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau   总被引:3,自引:0,他引:3  
The primary goal was to address several questions with regard to how soil seed banks change in a successional series. How does the composition of the viable seed bank change, and how does the relationship of the soil seed bank and vegetation change with succession? Can the seed bank be regarded as a potential as a source of seeds for wetland restoration? We collected soil seed bank samples and sampled the vegetation in four different successional stages and used the NMDS (nonmetric multidimensional scaling) to evaluate the relationship of species composition between the seed banks and vegetation. The difference of seed density and species richness in different habitats and soil depths also was compared. Viable seeds of half (37) the species in the early-successional stage were found in all the successional stages. Similarity between seed bank and vegetation increased with succession. Both seed density and species richness in the seed bank increased with successional age and decreased with soil depth. The majority of species from the early-successional stage produced long-lived seeds. Seed density and species richness increased with succession, mainly as a result of increasing seed production, and hypotheses predicting decreasing density of buried seeds and species richness were not confirmed. Seed banks play a minor role in contributing to the regeneration of vegetation, and managers cannot rely on soil-stored seed banks for restoration of wetlands.  相似文献   

20.
Ulrich Brose 《Ecography》2001,24(6):722-730
The purpose of this investigation was to explore the determinants of vascular plant species richness for temporary, isolated wetland habitats which are influenced by hydrologic gradients and characterized by variation in habitat area. The dependent variables total plant species richness and the number of obligate wetland species were analyzed consecutively. In regression analyses habitat area explained between 11 and 15% of the variation in the dependent variables. Habitat area was correlated with the heterogeneity of the hydroperiods between the upper and lower parts of the hydrologic gradients. In multivariate regression analyses, habitat heterogeneity accounted for 70-77% of the variation in the dependent variables, and habitat area did not have a significant impact. The results are most consistent with the habitat heterogeneity hypothesis. I therefore concluded that area is a surrogate variable for habitat heterogeneity which directly enhances vascular plant species diversity. There was no significant impact of isolation on species richness. The data suggest that the expanses of agricultural fields are not an effective barrier to the dispersal of the studied plant species. Only 10 of,52 wetland species were negatively influenced by isolation. This group of species did not differ from the other wetland species with respect to dispersal strategies and longevity of seed banks. However, the longevity of the seed banks was generally high, and there was a dominance of species whose propagules are transported with the soil clinging to the feet of birds. The results are discussed in the context of accurate dispersal strategies and remnant populations, which may counteract the effects of isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号