首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
Because smaller habitats dry more frequently and severely during droughts, habitat size is likely a key driver of survival in populations during climate change and associated increased extreme drought frequency. Here, we show that survival in populations during droughts is a threshold function of habitat size driven by an interaction with population density in metapopulations of the forest pool dwelling fish, Neochanna apoda. A mark–recapture study involving 830 N. apoda individuals during a one‐in‐seventy‐year extreme drought revealed that survival during droughts was high for populations occupying pools deeper than 139 mm, but declined steeply in shallower pools. This threshold was caused by an interaction between increasing population density and drought magnitude associated with decreasing habitat size, which acted synergistically to increase physiological stress and mortality. This confirmed two long‐held hypotheses, firstly concerning the interactive role of population density and physiological stress, herein driven by habitat size, and secondly, the occurrence of drought survival thresholds. Our results demonstrate how survival in populations during droughts will depend strongly on habitat size and highlight that minimum habitat size thresholds will likely be required to maximize survival as the frequency and intensity of droughts are projected to increase as a result of global climate change.  相似文献   

2.
Monitoring procedures for Alpine ibex Capra ibex are limited in habitats with reduced visibility and when physical capture and marking of the animals is not intended. Photographic sampling, involving using camera‐trap data and identifying ibex from natural markings, was adopted with capture‐recapture models to estimate the abundance of ibex in Austria. The software CAPTURE's model produced an average capture probability of 0.44 with an estimate of 34–51 ibex and a mean population size of 38 ibex. This first study showed the applicability of photographic capture‐recapture techniques to estimate the abundance of ibex based on their natural markings.  相似文献   

3.
I describe an open‐source R package, multimark , for estimation of survival and abundance from capture–mark–recapture data consisting of multiple “noninvasive” marks. Noninvasive marks include natural pelt or skin patterns, scars, and genetic markers that enable individual identification in lieu of physical capture. multimark provides a means for combining and jointly analyzing encounter histories from multiple noninvasive sources that otherwise cannot be reliably matched (e.g., left‐ and right‐sided photographs of bilaterally asymmetrical individuals). The package is currently capable of fitting open population Cormack–Jolly–Seber (CJS) and closed population abundance models with up to two mark types using Bayesian Markov chain Monte Carlo (MCMC) methods. multimark can also be used for Bayesian analyses of conventional capture–recapture data consisting of a single‐mark type. Some package features include (1) general model specification using formulas already familiar to most R users, (2) ability to include temporal, behavioral, age, cohort, and individual heterogeneity effects in detection and survival probabilities, (3) improved MCMC algorithm that is computationally faster and more efficient than previously proposed methods, (4) Bayesian multimodel inference using reversible jump MCMC, and (5) data simulation capabilities for power analyses and assessing model performance. I demonstrate use of multimark using left‐ and right‐sided encounter histories for bobcats (Lynx rufus) collected from remote single‐camera stations in southern California. In this example, there is evidence of a behavioral effect (i.e., trap “happy” response) that is otherwise indiscernible using conventional single‐sided analyses. The package will be most useful to ecologists seeking stronger inferences by combining different sources of mark–recapture data that are difficult (or impossible) to reliably reconcile, particularly with the sparse datasets typical of rare or elusive species for which noninvasive sampling techniques are most commonly employed. Addressing deficiencies in currently available software, multimark also provides a user‐friendly interface for performing Bayesian multimodel inference using capture–recapture data consisting of a single conventional mark or multiple noninvasive marks.  相似文献   

4.
Dynamic N‐mixture models have been recently developed to estimate demographic parameters of unmarked individuals while accounting for imperfect detection. We propose an application of the Dail and Madsen ( 2011 : Biometrics, 67 , 577–587) dynamic N‐mixture model in a manipulative experiment using a before‐after control‐impact design (BACI). Specifically, we tested the hypothesis of cavity limitation of a cavity specialist species, the northern flying squirrel, using nest box supplementation on half of 56 trapping sites. Our main purpose was to evaluate the impact of an increase in cavity availability on flying squirrel population dynamics in deciduous stands in northwestern Québec with the dynamic N‐mixture model. We compared abundance estimates from this recent approach with those from classic capture–mark–recapture models and generalized linear models. We compared apparent survival estimates with those from Cormack–Jolly–Seber (CJS) models. Average recruitment rate was 6 individuals per site after 4 years. Nevertheless, we found no effect of cavity supplementation on apparent survival and recruitment rates of flying squirrels. Contrary to our expectations, initial abundance was not affected by conifer basal area (food availability) and was negatively affected by snag basal area (cavity availability). Northern flying squirrel population dynamics are not influenced by cavity availability at our deciduous sites. Consequently, we suggest that this species should not be considered an indicator of old forest attributes in our study area, especially in view of apparent wide population fluctuations across years. Abundance estimates from N‐mixture models were similar to those from capture–mark–recapture models, although the latter had greater precision. Generalized linear mixed models produced lower abundance estimates, but revealed the same relationship between abundance and snag basal area. Apparent survival estimates from N‐mixture models were higher and less precise than those from CJS models. However, N‐mixture models can be particularly useful to evaluate management effects on animal populations, especially for species that are difficult to detect in situations where individuals cannot be uniquely identified. They also allow investigating the effects of covariates at the site level, when low recapture rates would require restricting classic CMR analyses to a subset of sites with the most captures.  相似文献   

5.
In tropical dry environments rainfall periodicity may affect demographic parameters, resulting in fluctuations in bird abundance. We used capture–recapture data for the Grey Pileated Finch from a Neotropical dry forest to evaluate the hypothesis that intra- and inter-annual survival, individuals entrance and population abundance, are related to local rainfall. Sampling occurred across 3 years, with individuals captured, tagged and evaluated for age and presence of brood patch every 14 days. Using the POPAN formulation, we generated demographic models to evaluate study population temporal dynamics. Best-fit models indicated a low apparent annual survival in the first year (16%) compared to other years (between 47 and 62%), with this low value associated with an extreme drought. The abundance of juveniles at each capture occasion was significantly dependent on the accumulated precipitation in the previous 14 days, and the juvenile covariate was a strong predictor of the intra-annual entrance probability (natality). Individuals entrance during the reproductive period corresponded to 53, 52 and 75% of total ingress for each year, respectively. The trend in sampled population size indicated positive exponential growth (Ninitial = 50, Nlast = 600), with intra-annual fluctuations becoming progressively more intense. Low survival was relevant during population decline at study onset, while at study end intense Individuals entrance promoted rapid population growth. Thus, the indirect effects of rainfall and the combined effect of two demographic rates operated synergistically on the immediate population abundance of Grey Pileated Finch, an abundant bird in a Neotropical dry forest.  相似文献   

6.
Prompt detection of declines in abundance or distribution of populations is critical when managing threatened species that have high population turnover. Population monitoring programs provide the tools necessary to identify and detect decreases in abundance that will threaten the persistence of key populations and should occur in an adaptive management framework which designs monitoring to maximize detection and minimize effort. We monitored a population of Litoria aurea at Sydney Olympic Park over 5 years using mark–recapture, capture encounter, noncapture encounter, auditory, tadpole trapping, and dip‐net surveys. The methods differed in the cost, time, and ability to detect changes in the population. Only capture encounter surveys were able to simultaneously detect a decline in the occupancy, relative abundance, and recruitment of frogs during the surveys. The relative abundance of L. aurea during encounter surveys correlated with the population size obtained from mark–recapture surveys, and the methods were therefore useful for detecting a change in the population. Tadpole trapping and auditory surveys did not predict overall abundance and were therefore not useful in detecting declines. Monitoring regimes should determine optimal survey times to identify periods where populations have the highest detectability. Once this has been achieved, capture encounter surveys provide a cost‐effective method of effectively monitoring trends in occupancy, changes in relative abundance, and detecting recruitment in populations.  相似文献   

7.
Mark‐recaptures studies are often conducted to monitor trends in sturgeon populations. However, many of these studies experience low recapture rates, minimal movement between marking‐recapture phases suggesting that sturgeon as a group are not conducive to mark‐recapture techniques. In this study, two mark‐recapture studies that were conducted differently were reviewed. A study was conducted on the Mattagami River using random nets set throughout the study area in both the mark and recapture phases. The other study was conducted on Lake of the Woods and marked sturgeon in tributaries during the spawning period and the recapture phase within the lake and river during the summer foraging period using random nets sets. Sturgeon's conduciveness to mark‐recapture studies was assessed on the Mattagami River mark‐recapture study by determining detection probability (p) using a hierarchical Bayesian model with data augmentation among three effects: individual effect, temporal effects, and behavioural response effects. Detection probability was constant over individuals and temporally suggesting model M0 (Otis, Burnham, White, & Anderson, 1978 ) was suitable for lake sturgeon in the Mattagami River; only the M0 would converge for the Lake of the Woods study. For this study, the assumption that “all individuals have the same probability of being captured during the marking phase” was believed to have been violated given approximately 16%–20% of adult Lake Sturgeon from a population spawn within a year. A population estimate accounting for p provided estimates 56% lower than calculated by a Chapman modification of the Peterson estimate for a closed population. Bias was believed to have been introduced as the Lake of the Woods population did not account for the non‐spawning adults that were encountered during the recapture phase and not vulnerable during the initial marking phase. This was not unique to the Lake of the Woods study as other sturgeon studies, especially multi‐year, assumes a closed population which potentially biased estimates and overestimated their recovery.  相似文献   

8.
Light‐level geolocators are currently widely used to track the migration of small‐sized birds, but their potentially detrimental effects on survival of highly aerial species have been poorly investigated so far. We recorded capture–recapture histories of 283 common swifts Apus apus and 107 pallid swifts Apus pallidus breeding in 14 colonies in Italy, Spain, Sweden and Switzerland that were equipped with 10 different types of geolocators (‘geolocator birds’), and compared their survival with that of, respectively, 215 common and 101 pallid swifts not equipped with geolocators (‘control birds’). Data were analysed using both GLMMs with return rate as a proxy for survival and mark–recapture models to estimate survival while accounting for recapture probability. In all the analyses, geolocator birds showed reduced apparent survival compared to controls. Geolocator weight was always lower than 3% of body mass, and did not affect survival per se. Geolocators with a light‐stalk, which is used in some geolocator models to reduce light sensor shading by feathers, decreased apparent survival more than models without light‐stalk. Apparent survival of geolocator birds significantly varied among sites, being much higher in northern Europe. Despite in our analyses we could only partly account for variable recapture probabilities among sites and for inter‐annual variability in survival, our results generally showed that equipping swifts with geolocators decreased their survival prospects, but also that the magnitude of this effect may depend on species‐specific traits. These conclusions are in line with those of other studies on aerial foragers. We suggest that future studies tracking the movements of aerial insectivorous birds should use devices designed to minimize drag.  相似文献   

9.
Over the past decade, there has been much methodological development for the estimation of abundance and related demographic parameters using mark‐resight data. Often viewed as a less‐invasive and less‐expensive alternative to conventional mark recapture, mark‐resight methods jointly model marked individual encounters and counts of unmarked individuals, and recent extensions accommodate common challenges associated with imperfect detection. When these challenges include both individual detection heterogeneity and an unknown marked sample size, we demonstrate several deficiencies associated with the most widely used mark‐resight models currently implemented in the popular capture‐recapture freeware Program MARK. We propose a composite likelihood solution based on a zero‐inflated Poisson log‐normal model and find the performance of this new estimator to be superior in terms of bias and confidence interval coverage. Under Pollock's robust design, we also extend the models to accommodate individual‐level random effects across sampling occasions as a potentially more realistic alternative to models that assume independence. As a motivating example, we revisit a previous analysis of mark‐resight data for the New Zealand Robin (Petroica australis) and compare inferences from the proposed estimators. For the all‐too‐common situation where encounter rates are low, individual detection heterogeneity is non‐negligible, and the number of marked individuals is unknown, we recommend practitioners use the zero‐inflated Poisson log‐normal mark‐resight estimator as now implemented in Program MARK.  相似文献   

10.
Wildlife populations consist of individuals that contribute disproportionately to growth and viability. Understanding a population's spatial and temporal dynamics requires estimates of abundance and demographic rates that account for this heterogeneity. Estimating these quantities can be difficult, requiring years of intensive data collection. Often, this is accomplished through the capture and recapture of individual animals, which is generally only feasible at a limited number of locations. In contrast, N‐mixture models allow for the estimation of abundance, and spatial variation in abundance, from count data alone. We extend recently developed multistate, open population N‐mixture models, which can additionally estimate demographic rates based on an organism's life history characteristics. In our extension, we develop an approach to account for the case where not all individuals can be assigned to a state during sampling. Using only state‐specific count data, we show how our model can be used to estimate local population abundance, as well as density‐dependent recruitment rates and state‐specific survival. We apply our model to a population of black‐throated blue warblers (Setophaga caerulescens) that have been surveyed for 25 years on their breeding grounds at the Hubbard Brook Experimental Forest in New Hampshire, USA. The intensive data collection efforts allow us to compare our estimates to estimates derived from capture–recapture data. Our model performed well in estimating population abundance and density‐dependent rates of annual recruitment/immigration. Estimates of local carrying capacity and per capita recruitment of yearlings were consistent with those published in other studies. However, our model moderately underestimated annual survival probability of yearling and adult females and severely underestimates survival probabilities for both of these male stages. The most accurate and precise estimates will necessarily require some amount of intensive data collection efforts (such as capture–recapture). Integrated population models that combine data from both intensive and extensive sources are likely to be the most efficient approach for estimating demographic rates at large spatial and temporal scales.  相似文献   

11.
12.
Estimating population density as precise as possible is a key premise for managing wild animal species. This can be a challenging task if the species in question is elusive or, due to high quantities, hard to count. We present a new, mathematically derived estimator for population size, where the estimation is based solely on the frequency of genetically assigned parent–offspring pairs within a subsample of an ungulate population. By use of molecular markers like microsatellites, the number of these parent–offspring pairs can be determined. The study's aim was to clarify whether a classical capture–mark–recapture (CMR) method can be adapted or extended by this genetic element to a genetic‐based capture–mark–recapture (g‐CMR). We numerically validate the presented estimator (and corresponding variance estimates) and provide the R‐code for the computation of estimates of population size including confidence intervals. The presented method provides a new framework to precisely estimate population size based on the genetic analysis of a one‐time subsample. This is especially of value where traditional CMR methods or other DNA‐based (fecal or hair) capture–recapture methods fail or are too difficult to apply. The DNA source used is basically irrelevant, but in the present case the sampling of an annual hunting bag is to serve as data basis. In addition to the high quality of muscle tissue samples, hunting bags provide additional and essential information for wildlife management practices, such as age, weight, or sex. In cases where a g‐CMR method is ecologically and hunting‐wise appropriate, it enables a wide applicability, also through its species‐independent use.  相似文献   

13.
Abstract: All natural populations fluctuate in abundance and age structure through time; understanding why they do so is a critical step towards their effective management and conservation. However, the long‐term data sets needed for such an understanding are rarely available, especially for tropical organisms. A 17‐year capture‐mark–recapture study yielded detailed information on the demography of water pythons (Liasis fuscus) and their main prey, the dusky rat (Rattus colletti), on the Adelaide River flood plain in tropical Australia. The link between annual rainfall patterns and rat demography was highly non‐linear. Rat numbers were low during years with low and high rainfall at the end of the wet season (April). Numbers of both predators and prey fluctuated considerably among years. Annual fluctuations in rat numbers generated a corresponding variation in rates of female python reproduction, python body condition and survival. Although variation in recruitment, survival and prey abundance all had a significant impact on annual fluctuations in python numbers, our analyses suggest that recruitment constituted the main determinant in driving the population dynamics of these large tropical predators. In combination with our other studies on this system, the data show that population dynamics of the water python population is ultimately driven by annual variation in rainfall, mediated via shifts in prey availability. The water pythons and the dusky rats of the Adelaide River flood plain thus demonstrate an unusually clear and direct link between an abiotic factor (rainfall) and predator–prey population dynamics.  相似文献   

14.
Estimates of population parameters for the short‐finned pilot whale, Globicephala macrorhynchus, are scarce in literature, contributing to an International Union for Conservation of Nature (IUCN) status of Data Deficient. In this study, photo‐identification data collected over 7 yr from Madeira were used to estimate for the first time survivorship, capture probability, and abundance in this species using mark‐recapture methodology. The Cormack‐Jolly‐Seber model estimated that the adult island‐associated (i.e., resident and regular visitor) whales had a constant survival rate of 0.960 (95% CI: 0.853–0.990) and an annual capture probability varying between 0.372 (CI: 0.178–0.619) and 0.843 (CI: 0.619–0.947). A parameterization of the Jolly‐Seber model estimated that 140 island‐associated whales (CI: 131–151) used the area throughout the course of the study. Based on a closed population model, the most precise (lower CV) annual estimate of the total number of pilot whales using the southern and eastern waters of Madeira (~900 km2) in a 3 mo period covering summer/autumn was 334 animals (CI: 260–437). No trend was observed. Despite including biases, the approach used in this study provided plausible estimates of population parameters, which can contribute to the regional conservation strategies.  相似文献   

15.
The tucuxi (Sotalia fluviatilis) is a small dolphin endemic to the Amazon River basin. Because the abundance and trends are currently unknown for the species, this study aimed to estimate its abundance in a lake system of the Central Amazon. A total of 10 two‐day sampling periods were carried out from March to June of 2013 throughout a 13.5 km2 area in the Mamirauá Reserve. In the 104 encounters with the species, a minimum number of 389 dolphins were sighted and photographed, which allowed the positive identification of 49 individuals. Mark‐recapture models were used to estimate an abundance of 119 individuals (95% CI = 105–150) (corrected for the proportion of identifiable individuals). This is the first estimation of S. fluviatilis abundance using mark‐recapture analyses and, together with the photo‐id catalog made available, provides a useful reference for future studies regarding tucuxi dolphins.  相似文献   

16.
Mountain lions (Puma concolor) are often difficult to monitor because of their low capture probabilities, extensive movements, and large territories. Methods for estimating the abundance of this species are needed to assess population status, determine harvest levels, evaluate the impacts of management actions on populations, and derive conservation and management strategies. Traditional mark–recapture methods do not explicitly account for differences in individual capture probabilities due to the spatial distribution of individuals in relation to survey effort (or trap locations). However, recent advances in the analysis of capture–recapture data have produced methods estimating abundance and density of animals from spatially explicit capture–recapture data that account for heterogeneity in capture probabilities due to the spatial organization of individuals and traps. We adapt recently developed spatial capture–recapture models to estimate density and abundance of mountain lions in western Montana. Volunteers and state agency personnel collected mountain lion DNA samples in portions of the Blackfoot drainage (7,908 km2) in west-central Montana using 2 methods: snow back-tracking mountain lion tracks to collect hair samples and biopsy darting treed mountain lions to obtain tissue samples. Overall, we recorded 72 individual capture events, including captures both with and without tissue sample collection and hair samples resulting in the identification of 50 individual mountain lions (30 females, 19 males, and 1 unknown sex individual). We estimated lion densities from 8 models containing effects of distance, sex, and survey effort on detection probability. Our population density estimates ranged from a minimum of 3.7 mountain lions/100 km2 (95% CI 2.3–5.7) under the distance only model (including only an effect of distance on detection probability) to 6.7 (95% CI 3.1–11.0) under the full model (including effects of distance, sex, survey effort, and distance × sex on detection probability). These numbers translate to a total estimate of 293 mountain lions (95% CI 182–451) to 529 (95% CI 245–870) within the Blackfoot drainage. Results from the distance model are similar to previous estimates of 3.6 mountain lions/100 km2 for the study area; however, results from all other models indicated greater numbers of mountain lions. Our results indicate that unstructured spatial sampling combined with spatial capture–recapture analysis can be an effective method for estimating large carnivore densities. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

17.
A subgroup of a population of Tursiops truncatus in southern Brazil is known for a cooperative behavior with artisanal fishermen whereby the dolphins shoal fish towards net‐casting fishermen. Combining photo‐identification data collected between September 2007 and 2009 with mark‐recapture and Pollock's robust design models, we assessed abundance within seasons and survival and temporary emigration rates of dolphins between seasons. We also reanalyzed a previous data set collected during 1989–1991, and Cormack‐Jolly‐Seber models were applied to estimate survival rates for each of the study periods. The abundance of marked “cooperative” dolphins varied between seasons from 18 (CI: 17–24) to 21 (CI: 20–24). The total abundance varied from 59 in the winter of 2008 (CI: 49–72) to 50 in the autumn of 2009 (CI: 40–62). The annual adult survival was estimated to be 0.917 (CI: 0.876–0.961), close to that estimated from data collected in the 1990s (0.941; CI: 0.888–0.998). The emigration probability was low (0.031; CI: 0.011–0.084) and different capture probabilities between the “cooperative” and “noncooperative” dolphins indicated a degree of behavioral segregation. The precision of our estimates is likely to provide sufficient power to detect population change, but we recommend a precautionary management approach to protect this vulnerable dolphin community and its unique cooperative feeding tradition.  相似文献   

18.
The population dynamics of island species are considered particularly sensitive to variation in environmental, demographic and/or genetic processes. However, few studies have attempted to evaluate the relative importance of these processes for key vital rates in island endemics. We integrated the results of long‐term capture–mark–recapture analysis, prey surveys, habitat quality assessments and molecular analysis to determine the causes of variation in the survival rates of Komodo dragons Varanus komodoensis at 10 sites on four islands in Komodo National Park, Indonesia. Using open population capture–mark–recapture methods, we ranked competing models that considered environmental, ecological, genetic and demographic effects on site‐specific Komodo dragon survival rates. Site‐specific survival rates ranged from 0.49 (95% CI: 0.33–0.68) to 0.92 (0.79–0.97) in the 10 study sites. The three highest‐ranked models (i.e. ΔQAICc < 2) explained ~70% of variation in Komodo dragon survival rates and identified interactions between inbreeding coefficients, prey biomass density and habitat quality as important explanatory variables. There was evidence of additive effects from ecological and genetic (e.g. inbreeding) processes affecting Komodo dragon survival rates. Our results indicate that maintaining high ungulate prey biomass and habitat quality would enhance the persistence of Komodo dragon populations. Assisted gene flow may also increase the genetic and demographic viability of the smaller Komodo dragon populations.  相似文献   

19.
Open population capture‐recapture models are widely used to estimate population demographics and abundance over time. Bayesian methods exist to incorporate open population modeling with spatial capture‐recapture (SCR), allowing for estimation of the effective area sampled and population density. Here, open population SCR is formulated as a hidden Markov model (HMM), allowing inference by maximum likelihood for both Cormack‐Jolly‐Seber and Jolly‐Seber models, with and without activity center movement. The method is applied to a 12‐year survey of male jaguars (Panthera onca) in the Cockscomb Basin Wildlife Sanctuary, Belize, to estimate survival probability and population abundance over time. For this application, inference is shown to be biased when assuming activity centers are fixed over time, while including a model for activity center movement provides negligible bias and nominal confidence interval coverage, as demonstrated by a simulation study. The HMM approach is compared with Bayesian data augmentation and closed population models for this application. The method is substantially more computationally efficient than the Bayesian approach and provides a lower root‐mean‐square error in predicting population density compared to closed population models.  相似文献   

20.
A standard approach to model how selection shapes phenotypic traits is the analysis of capture–recapture data relating trait variation to survival. Divergent selection, however, has never been analyzed by the capture–recapture approach. Most reported examples of differences between urban and nonurban animals reflect behavioral plasticity rather than divergent selection. The aim of this paper was to use a capture–recapture approach to test the hypothesis that divergent selection can also drive local adaptation in urban habitats. We focused on the size of the black breast stripe (i.e., tie width) of the great tit (Parus major), a sexual ornament used in mate choice. Urban great tits display smaller tie sizes than forest birds. Because tie size is mostly genetically determined, it could potentially respond to selection. We analyzed capture/recapture data of male great tits in Barcelona city (N = 171) and in a nearby (7 km) forest (N = 324) from 1992 to 2008 using MARK. When modelling recapture rate, we found it to be strongly influenced by tie width, so that both for urban and forest habitats, birds with smaller ties were more trap‐shy and more cautious than their larger tied counterparts. When modelling survival, we found that survival prospects in forest great tits increased the larger their tie width (i.e., directional positive selection), but the reverse was found for urban birds, with individuals displaying smaller ties showing higher survival (i.e., directional negative selection). As melanin‐based tie size seems to be related to personality, and both are heritable, results may be explained by cautious personalities being favored in urban environments. More importantly, our results show that divergent selection can be an important mechanism in local adaptation to urban habitats and that capture–recapture is a powerful tool to test it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号