首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
Botrytis cinerea: the cause of grey mould disease   总被引:13,自引:0,他引:13  
Introduction:  Botrytis cinerea (teleomorph: Botryotinia fuckeliana ) is an airborne plant pathogen with a necrotrophic lifestyle attacking over 200 crop hosts worldwide. Although there are fungicides for its control, many classes of fungicides have failed due to its genetic plasticity. It has become an important model for molecular study of necrotrophic fungi.
  Taxonomy:  Kingdom: Fungi, phylum: Ascomycota, subphylum: Pezizomycotina, class: Leotiomycetes, order: Helotiales, family: Sclerotiniaceae, genus: Botryotinia.
  Host range and symptoms: Over 200 mainly dicotyledonous plant species, including important protein, oil, fibre and horticultural crops, are affected in temperate and subtropical regions. It can cause soft rotting of all aerial plant parts, and rotting of vegetables, fruits and flowers post-harvest to produce prolific grey conidiophores and (macro)conidia typical of the disease.
  Pathogenicity:  B. cinerea produces a range of cell-wall-degrading enzymes, toxins and other low-molecular-weight compounds such as oxalic acid. New evidence suggests that the pathogen triggers the host to induce programmed cell death as an attack strategy.
  Resistance:  There are few examples of robust genetic host resistance, but recent work has identified quantitative trait loci in tomato that offer new approaches for stable polygenic resistance in future.
  Useful websites:  http://www.phi-base.org/query.php , http://www.broad.mit.edu/annotation/genome/botrytis_cinerea/Home.html , http://urgi.versailles.inra.fr/projects/Botrytis/ , http://cogeme.ex.ac.uk  相似文献   

2.
Fusarium oxysporum is an asexual fungus that inhabits soils throughout the world. As a species, F. oxysporum can infect a very broad range of plants and cause wilt or root rot disease. Single isolates of F. oxysporum, however, usually infect one or a few plant species only. They have therefore been grouped into formae speciales (f.sp.) based on host specificity. Isolates able to cause tomato wilt (f.sp. lycopersici) do not have a single common ancestor within the F. oxysporum species complex. Here we show that, despite their polyphyletic origin, isolates belonging to f.sp. lycopersici all contain an identical genomic region of at least 8 kb that is absent in other formae speciales and non-pathogenic isolates, and comprises the genes SIX1, SIX2 and SHH1. In addition, SIX3, which lies elsewhere on the same chromosome, is also unique for f.sp. lycopersici. SIX1 encodes a virulence factor towards tomato, and the Six1, Six2 and Six3 proteins are secreted in xylem during colonization of tomato plants. We speculate that these genes may be part of a larger, dispensable region of the genome that confers the ability to cause tomato wilt and has spread among clonal lines of F. oxysporum through horizontal gene transfer. Our findings also have practical implications for the detection and identification of f.sp. lycopersici.  相似文献   

3.
4.
本文对尖孢镰刀菌(Fusarium oxysporum)的4个专化型12株菌的孢子萌发、核分裂时间及核DNA含量进行了比较,结果表明:不同专化型菌株孢子萌发速度基本一致,而萌发过程中发生第一次核分裂的时间不同。黄瓜、西瓜、荸荠、大豆各专化型第一次核分裂时间分别为:5.67hr、5.45hr、7.35hr、7.82hr,其核DNA含量分别为:0.321pg、o.306pg、0.177pg 0.174pg。测定结果显示出不同专化型菌株的孢子核DNA含量可能存在倍数关系,并推测F.oxysporum的黄瓜专化型与西瓜专化型为同一类型,而荸荠专化型与大豆专化型为同一类型。  相似文献   

5.
尖镰孢寄主范围广、遗传差异大,其种下存在多种寄主专化型。对尖镰孢寄主专化型的快速鉴定可为科学制定植物病害防控策略提供依据。利用Sherlock MIS脂肪酸鉴定系统对分离自番茄、棉花、黄瓜、茄子等4种寄主专化型的18株尖镰孢进行脂肪酸成分测定,共检测到10种脂肪酸。运用SPSS软件中的PCA法对被检测到的脂肪酸进行主成分分析,确定了18:1CIS9(W9)[X1],18:2 CIS 9,12/18:0a[X2]和18:00[X3]等3个脂肪酸为其主成分。利用Bayes逐步判别法建立了尖镰孢4种不同寄主专化型判别模型为Y1=-157.750+2.809X1+3.391X2+8.099X3;Y2=-178.343+0.586X1+7.587X2- 0.214X3;Y3=-129.132+2.749X1+4.163X2+4.476X3;Y4=-201.307+2.016X1+7.345X2+2.400X3。通过对43株未知寄主专化型菌株主成分脂肪酸的测定,利用判别法对尖镰孢进行判定,结果发现有40株与原寄主来源一致,判对率达93%。表明脂肪酸生物标记法可用于尖镰孢寄主专化型的快速鉴定。  相似文献   

6.
Pectic enzyme production by three formae speciales of Fusarium oxysporum , two of which (f. sp. niveum and melonis ) cause vascular wilts and one (f. sp. radicislycopersici ) a root rot, was studied in vitro. The two vascular wilt pathogens produced much higher levels of endo and lyase activities than the root rotting pathogen. Endo activity was greatest for the wilt fungi after 7 d during the growth phase when the pH of the medium was still acidic, but it declined thereafter. By contrast the lyase activity reached a peak after 20 d when growth was complete and the pH was alkaline. It then fell rapidly and was undetectable after 22 d. All the pectic activities degraded pectin and sodium polypectate and presented a similar profile during the incubation time studied. The preferred substrates were pectin for endo activity and polypectate for total and lyase activities. The behaviour of the forma specialis suggests that similar enzymes are produced by each taxon.  相似文献   

7.
Taxonomy: Imperfect, anamorphic fungus (subdivision Deuteromycotina, form-class Deuteromycetes, form-subclass Coelomycetidae, form-order Melanconiales, form-family Melanconiaceae) with 39 ‘accepted’ species [Sutton, B.C. (1992) The genus Glomerella and its anamorph Colletotrichum. In: Colletotrichum: Biology, Pathology and Control (Bailey, J.A. and Leger, M.J., eds). Wallingford, UK: CAB International, pp. 1–26.] which continue to be revised and clarified by molecular taxonomic techniques. Species complexes and subspecific groups have been proposed. Host range: Species of Colletotrichum attack a large number of important tropical and sub-tropical crop species and cause economically significant diseases of cereals, grain legumes, vegetables, forage legumes, fruit crops and perennial crops. Tropical and sub-tropical fruit production is significantly affected by postharvest anthracnose. Disease symptoms: Symptoms of the attack are commonly known as anthracnose and comprise dark, sunken, lenticular necrotic lesions containing the acervuli of the pathogen. Key attractions: A model fungus for research on host specificity, mycoherbicides, appressorial melanization, appressorial function, quiescent infection, fungal lifestyles, intracellular hemibiotrophy and the determinants of the switch from biotrophy to necrotrophy among others. Useful websites: http://www.uark.edu/depts/plant/ , http://www.sorghumanthracnose.org/ , http://www.iacr.bbscr.ac.uk/ppi/staff/roc_rc.html  相似文献   

8.
Abstract Isozymes of ten different enzymes and unspecific stained proteins were used as biochemical genetic markers to study genetic variation within and between E. graminis ff. sp. hordei, avenae, secalis and tritici. In addition, grainproteins of the corresponding host species were examined. In each forma specialis, one genotype proved to be predominant. 131 distinct isozyme and 93 protein bands were distinguishable in these genotypes. However, divergent banding patterns differed only in 8 bands from the predominant banding patterns found within the formae speciales avena, secalis and tritici. The genetic relationships between powdery mildew formae speciales and host species were computed by cluster analysis from similarity (F) and dissimilarity (D) coefficients and illustrated by phylogenetic trees. Marked correspondence was found between E. graminis ff. sp. secalis and tritici (F: 82–90%). Lower homologies were obtained from the comparison ofthese formae speciales respectively with E. graminis ff. sp. hordei (F: 28–34%) and avenae (F: 24–32%). All phylogenetic trees constructed revealed the same arrangement classification of the formae speciales with similar graduation. The comparison of the host species revealed the highest similarity between S. cereale and T. aestivum (F: 74%). Regression analysis confirmed significant correlation between the genetic relationships within host species and powdery mildew formae speciales (r2= 0.81).  相似文献   

9.
The genetic relatedness of five formae speciales of Fusarium oxysporum causing wilts of cucurbit plants was determined by DNA fingerprinting with the moderately repetitive DNA sequences FOLR1 to FOLR4. The four FOLR clones were chosen from a genomic library made from F. oxysporum f. sp. lagenariae 03-05118. Total DNAs from 50 strains representing five cucurbit-infecting formae speciales, cucumerinum, melonis, lagenariae, niveum, and momordicae, and 6 strains of formae speciales pathogenic to other plants were digested with EcoRV and hybridized with 32P-labeled FOLR probes. The strains were clearly distinguishable at the formae specialis level on the basis of FOLR DNA fingerprints. Fifty-two fingerprint types were detected among the 56 strains by using all FOLR probes. These probes were used to infer phylogenetic relationships among the DNA fingerprint types by the unweighted pair group method using averages and parsimony analysis. The fingerprint types detected in each of the formae speciales cucumerinum, lagenariae, niveum, and momordicae were grouped into a single cluster. However, two different genetic groups occurred in the formae specialis melonis. The two groups also differed in pathogenicity: one group caused wilts of muskmelon and oriental melon, while the second was pathogenic only to muskmelon. The fingerprint types of different formae speciales pathogenic to plants other than cucurbits were distinguishable from one another and from the fingerprints of the cucurbit-infecting strains. These results suggest that the cucurbit-infecting formae speciales are intraspecific variants distinguishable at the DNA level and in their host range.  相似文献   

10.
The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins.  相似文献   

11.
Stagonospora nodorum: cause of stagonospora nodorum blotch of wheat   总被引:1,自引:0,他引:1  
Stagonospora nodorum is an important pathogen of wheat and related cereals, causing both a leaf and glume blotch. This review summarizes recent advances in our understanding of taxonomy, control and pathogenicity of this species.
Taxonomy:   Stagonospora (syn. Septoria ) nodorum (Berk.) Castell. and Germano [teleomorph: Phaeosphaeria (syn. Leptosphaeria ) nodorum (Müll.) Hedjar.], kingdom Fungi, phylum Ascomycota, subphylum Euascomycota, class Dothideomycetes, order Pleosporales, family Phaeosphaeriaceae, genus Phaeosphaeria , species nodorum .
Host range:   Wheat, Triticum aestivum , T. durum , Triticale, are the main hosts but other cereals and wild grasses have been reported to harbour S. nodorum. Disease symptoms are lens-shaped necrotic lesions on leaves, girdling necrosis on stems (especially the nodes, hence ' nodorum ') and lesions on glumes. Mature lesions produce pycnidia scattered throughout the lesions, especially as tissue senesces.
Useful websites:   http://ocid.nacse.org/research/deephyphae/htmls/asco_taxlist_spat.html (taxonomic information), http://ohioline.osu.edu/ac-fact/0002.html (disease information), http://wwwacnfp.murdoch.edu.au/  (ACNFP homepage), http://www.broad.mit.edu/annotation/fungi/stagonospora_nodorum/index.html (genome sequence homepage), http://cogeme.ex.ac.uk/efungi/ (genome sequence annotation and analysis).  相似文献   

12.
Background: Coastal ecosystems in Mexico remain understudied in spite of their ecological, economic and conservation value and are being impacted by human activities along the coast. Knowledge on spatial patterns of plant species distribution that helps preserve these fragile ecosystems is crucial.

Aims: We evaluated differences in species richness, species diversity and species dominance patterns in 16 plant communities as well as the degree to which differences were driven by climatic conditions in sandy dunes in Yucatán. We evaluated the importance of invasive species in mediating patterns of species diversity and species dominance patterns.

Results: We found wide variation in plant species richness, species diversity and species dominance patterns among communities that stems from broad climatic differences along dune systems. Invasive plants represent almost one-third of total species richness and seem to be drastically changing the species dominance patterns in these communities.

Conclusions: Regional climatic differences along the Yucatán north coast seems to be a major driver of plant diversity and species composition. Our findings suggest that invasive plants have successfully colonised and spread along the coast over the past 30 years. Even though invasive species do not alter spatial patterns of species diversity, they are becoming more dominant with potential detrimental consequences for native plants.  相似文献   


13.
Fusarium species cause important diseases in many crops. Lack of knowledge on how Fusarium species and strains interact with their environment hampers growth management strategies to control root diseases. A field experiment involving asparagus as host plant and three phosphorus fertilization levels was designed to examine the seasonal changes and ecological relationships between Fusarium populations and their soil and plant environments. Fusarium taxa were identified and assessed using PCR-denaturing gradient electrophoresis of the EF1-alpha gene. Resulting profiles were analyzed with respect to 17 ecological parameters measured during the three main asparagus phenological phases across a growing season. Multivariate statistical analysis showed that Fusarium population structure was strongly influenced by soil P level while seasonal variation was less important. A significant relationship between Fusarium population composition and Fusarium crown and root rot incidence was also found in September. Canonical analysis further revealed significant relationships between Fusarium population structure, and plant manganese and iron contents, soil dehydrogenase activity and soil calcium concentration. If higher Fusarium crown and root rot incidence is related to the Fusarium community structure, strategies to reduce the incidence in asparagus plantations may be found through manipulation of the soil fertility.  相似文献   

14.
This review compares published surveys of microbial populations in plant tissue and cell cultures with the microbial saprophytes and pathogens found on field grown plants and microbial populations in the laboratory environment. From this comparison and the measured reduction in contamination after improvements in working practices in the laboratory, conclusions can be drawn about the importance of the explant and the laboratory as sources of contamination.

Mechanisms of pathogenicity in vitro are described to explain why bacteria, fungi, and yeasts that are not pathogenic to plants in the field become pathogens in plant tissue cultures. Conversely, plant metabolism and its effect on the tissue culture environment are described to explain why prokaryotes, viruses, and viroids that cause disease in the field can stay latent in vitro.

Detection methods for latent contaminants in plant tissue cultures are summarized, and the strategies and methods for prevention or treatment of contamination are discussed.  相似文献   


15.
The plant pathogenic basidiomycete fungi Phakopsora pachyrhizi and Phakopsora meibomiae cause rust disease in soybean plants. Phakopsora pachyrhizi originated in Asia–Australia, whereas the less aggressive P. meibomiae originated in Latin America. In the New World, P. pachyrhizi was first reported in the 1990s to have spread to Hawaii and, since 2001, it has been found in South America. In 2004, the pathogen entered continental USA. This review provides detailed information on the taxonomy and molecular biology of the pathogen, and summarizes strategies to combat the threat of this devastating disease.
Taxonomy: Phakopsora pachyrhizi Syd. & P. Syd; uredial anamorph: Malupa sojae (syn. Uredo sojae ); Domain Eukaryota; Kingdom Fungi; Phylum Basidiomycota; Order Uredinales; Class Urediniomycetes; Family Phakopsoraceae; Genus Phakopsora ( http://www.indexfungorum.org ). The nomenclature of rust spores and spore-producing structures used within this review follows Agrios GN (2005) Plant Pathology , 5th edn. London: Elsevier/Academic Press.
Host range: In the field, P. pachyrhizi infects leaf tissue from a broad range (at least 31 species in 17 genera) of leguminous plants. Infection of an additional 60 species in other genera has been achieved under laboratory conditions.
Disease symptoms: At the beginning of the disease, small, tan-coloured lesions, restricted by leaf veins, can be observed on infected soybean leaves. Lesions enlarge and, 5–8 days after initial infection, rust pustules (uredia, syn. uredinia) become visible. Uredia develop more frequently in lesions on the lower surface of the leaf than on the upper surface. The uredia open with a round ostiole through which uredospores are released.  相似文献   

16.
AIMS: To create a fast, sensitive and specific method for identifying Fusarium oxysporum f. sp. cucumerinum and F. o. luffae. METHODS AND RESULTS: Specific DNA bands were selected as probes from RAPD profiles of 13 formae speciales of F. oxysporum. The forma specialis-specific probe OPC18300c and OPC18520f could be used to identify F. o. cucumerinum and F. o. luffae by RAPD-PCR followed dot blot hybridization, respectively. CONCLUSIONS: A specific method for identifying F. o. cucumerinum and F. o. luffae was achieved. SIGNIFICANCE AND IMPACT OF THE STUDY: F. oxysporum formae speciales identification with a DNA probe can be relatively rapid and provides a method to identify the pathogen without host inoculation tests.  相似文献   

17.
Pantoea ananatis causes disease symptoms in a wide range of economically important agricultural crops and forest tree species worldwide. It is regarded as an emerging pathogen based on the increasing number of reports of diseases occurring on previously unrecorded hosts in different parts of the world. Its unconventional nature lies in the fact that, unlike the majority of plant pathogenic microbes, P. ananatis is capable of infecting humans and occurs in diverse ecological niches, such as part of a bacterial community contaminating aviation jet fuel tanks and contributing to growth promotion in potato and pepper.
Taxonomy: Bacteria; Gammaproteobacteria ; family Enterobacteriaceae ; genus Pantoea.
Microbiological properties: Gram-negative; facultatively anaerobic; most strains are motile and produce a yellow pigment in culture; indole positive.
Biology: Pantoea ananatis is a common epiphyte; it also occurs endophytically in hosts where it has been reported to cause disease symptoms and in hosts where no such symptoms have been described. Some strains are ice-nucleating, a feature which has been used as a biological control mechanism against some insect pests of agricultural crops and by the food industry.
Disease symptoms: Pantoea ananatis infects both monocotyledonous and dicotyledonous plants. The symptoms are diverse depending on the host infected, and include leaf blotches and spots, die-back, and stalk, fruit and bulb rot.
Biological control agent: Pantoea ananatis has both antifungal and antibacterial properties. These characteristics have the potential of being exploited by biological control specialists.  相似文献   

18.
Background: Large areas of heathland landscapes in Galicia, north-west Spain, have traditionally been extensively grazed by free-ranging cattle and wild ponies. Recently, a large reduction in the number of these larger herbivores has been observed, with unknown consequences for the habitat.

Aims: To evaluate the effects of grazing and herbivore density on plant diversity, community composition and vegetation structure of the endemic wet heathlands dominated by Erica mackayana in Galicia.

Methods: Field sampling of vascular plants, generalised linear models (GLMs), non-metric multidimensional distance scaling (NMDS).

Results: Grazed sites had significantly higher total and rare species richness and diversity than ungrazed sites. Higher densities of cattle resulted in lower numbers of rare species, while wild pony density had no effect on rare species richness. In grazed sites, vegetation was lower with greater variation in height, resulting in greater heterogeneity of the habitat. Precipitation and summer temperatures were related to plant diversity, mainly beta diversity. Soil organic matter negatively correlated with rare species.

Discussion: Grazing, mostly by wild ponies, was demonstrated to be positively related to plant diversity and vegetation structure. Lack of grazing or high cattle densities resulted in a negative effect on total and rare species richness and diversity. Future climate change may negatively affect heathland plant diversity. Galician wild ponies represent a unique case of sustainable management of a wild species and an invaluable cultural heritage. Moreover, they have a significant role in maintaining the endemic E. mackayana heathlands, what would justify specific conservation actions for these large herbivores.  相似文献   


19.
20.
Fusarium oxysporum is a ubiquitous species complex of soilborne plant pathogens that comprises many different formae speciales, each characterized by a high degree of host specificity. In this study, the evolutionary relationships between different isolates of the F. oxysporum species complex have been examined, with a special emphasis on the formae speciales lycopersici and radicis-lycopersici, sharing tomato as host while causing different symptoms. Phylogenetic analyses of partial sequences of a housekeeping gene, the elongation factor-1α (EF-1α) gene, and a gene encoding a pathogenicity trait, the exopolygalacturonase (pgx4) gene, were conducted on a worldwide collection of F. oxysporum strains representing the most frequently observed vegetative compatibility groups of these formae speciales. Based on the reconstructed phylogenies, multiple evolutionary lineages were found for both formae speciales. However, different tree topologies and statistical parameters were obtained for the cladograms as several strains switched from one cluster to another depending on the locus that was used to infer the phylogeny. In addition, mating type analysis showed a mixed distribution of the MAT1-1 and MAT1-2 alleles in the F. oxysporum species complex, irrespective of the geographic origin of the tested isolates. This observation, as well as the topological conflicts that were detected between EF-1α and pgx4, are discussed in relation to the evolutionary history of the F. oxysporum species complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号