首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The interleukin-2-dependent mouse natural killer (NK) cell line NKB61A2 concomitantly exhibits NK and natural cytotoxic (NC) activities. This was determined by the cells' ability to lyse both the NK-sensitive YAC-1 lymphoma and the NC-sensitive WEHI-164 fibrosarcoma cell lines in a 4- and 18-hour 51Cr release assay, respectively. Cell-free supernatant from NKB61A2 cells grown in culture for 48 h had substantial lytic activity against WEHI-164. The mouse mast cell line PT18-A17 and the rat basophilic leukemia cell line RBL-2H3, which both express NC activity, also produced a soluble factor during culture which lysed WEHI-164 cells. This activity was increased in the basophilic/mast cells by crossbridging the surface IgE receptors. Similar results were obtained by triggering the basophilic NC cells with the calcium ionophore ionomycin and the tumor promoter phorbol-12-myristate-13-acetate (PMA). Such triggering of NKB61A2 cells, however, did not significantly increase their NC activity. Interestingly, both ionomycin and PMA had an inhibitory effect on the NK activity of NKB61A2. Recently it has been found that tumor necrosis factor (TNF) is a major mediator of NC activity. To determine if the soluble factor responsible for the NC activity of the NK clone was related to TNF, a rabbit polyclonal antiserum to mouse TNF was tested against the cell-free culture medium of NKB61A2, PT18-A17, RBL-2H3 and murine recombinant TNF (Mu-rTNF). The lytic activity of the culture medium from all these cells and the Mu-rTNF control was abrogated by this antibody. These data suggest that the murine cell line NKB61A2 has both NK and NC activities and that the NC activity is due to a factor immunologically similar to TNF. In addition, the enhancement of NC activity in the NK cell line is apparently under control by a separate pathway, different from that in the basophilic cells.  相似文献   

2.
The murine IL-3-dependent mast cell line, PT18-A17, and the rat basophilic leukemia cell line, RBL-2H3, were found to mediate natural cytotoxic (NC) activity via the release of a soluble factor which specifically lysed NC-sensitive WEHI-164 but not NK-sensitive YAC-1 tumor cells. The release of this NC cell-specific cytotoxic factor was enhanced by triggering of both types of cells via IgE receptor bridging. This factor had activity on TNF-sensitive but not TNF-resistant cell lines and could be neutralized by two independently produced polyclonal anti-mouse TNF antisera. It was not neutralized by antibodies against mouse IFN-alpha/beta or IFN-gamma. Moreover, it was not neutralized by a monoclonal or a polyclonal anti-human TNF, demonstrating that the rodent TNF differed antigenically from human TNF. These results indicate that the cytotoxic factor released from a murine IL-3-dependent mast cell line and from a rat basophilic leukemia cell line is immunologically and functionally related to murine TNF.  相似文献   

3.
The granules of mast cells contain a myriad of mediators that are stored and protected by the sulfated glycosaminoglycan (GAG) chains that decorate proteoglycans. Whereas heparin is the GAG predominantly associated with mast cells, mast cell proteoglycans are also decorated with heparan sulfate and chondroitin sulfate (CS). This study investigated a unique CS structure produced by mast cells that was detected with the antibody clone 2B6 in the absence of chondroitinase ABC digestion. Mast cells in rodent tissue sections were characterized using toluidine blue, Leder stain and the presence of mast cell tryptase. The novel CS epitope was identified in rodent tissue sections and localized to cells that were morphologically similar to cells chemically identified as mast cells. The rodent mast cell-like line RBL-2H3 was also shown to express the novel CS epitope. This epitope co-localized with multiple CS proteoglycans in both rodent tissue and RBL-2H3 cultured cells. These findings suggest that the novel CS epitope that decorates mast cell proteoglycans may play a role in the way these chains are structured in mast cells.  相似文献   

4.
Amino acid sequence of a mouse mucosal mast cell protease   总被引:11,自引:0,他引:11  
The amino acid sequence has been determined of a mouse mucosal mast cell protease isolated from the small intestines of mice infected with Trichinella spiralis. The active protease contains 226 residues. Those corresponding to the catalytic triad of the active site of mammalian serine proteases (His-57, Asp-102, and Ser-195 in chymotrypsin) occur in identical positions. A computer search for homology indicates 74.3% and 74.1% sequence identity of the mouse mast cell protease compared to those of rat mast cell proteases I and II (RMCP I and II), respectively. The six half-cystine residues in the mouse mast cell protease are located in the same positions as in the rat mast cell proteases, cathepsin G, and the lymphocyte proteases, suggesting that they all have identical disulfide bond arrangements. At physiological pH, the mouse and rat mucosal mast cell proteases have net charges of +3 and +4, respectively, as compared to +18 for the protease (RMCP I) from rat connective tissue mast cells. This observation is consistent with the difference in solubility between the mucosal and connective tissue mast cell proteases when the enzymes are extracted from their granules under physiological conditions.  相似文献   

5.
A murine interleukin 3 (IL 3)-dependent basophilic mast cell line, PT-18 (A17), and a rat basophilic leukemic cell line, RBL-2H3, were shown to be capable of selective natural cytotoxic (NC) but not natural killer (NK) cell activity. The basophilic cell types could also be augmented in their NC activity by bridging of their surface IgE receptors. IgE-mediated triggering of the basophilic cells was accomplished by coating the cells with IgE and exposing the IgE-bound cells to specific antigen or to anti-IgE monoclonal antibody. Another method of triggering was by direct binding of basophilic cells to anti-IgE receptor monoclonal antibody. Basophilic cells, triggered by these methods, not only displayed increased NC activity but also released a soluble factor capable of selectively lysing NC tumor targets, WEHI-164, but not three of the NK-sensitive targets, YAC-1, RLM1, and RBL-5. Normal C3H/HeJ mouse embryonic fibroblasts were also not lysed. Dose response and time course of the cytotoxic factor release from triggered RBL-2H3 cells were similar to those of tritiated serotonin release. As with serotonin or histamine release, the NC-specific cytotoxic factor (NCCF) was not released in the absence of extracellular calcium. Therefore, NCCF appears to be released along with other mediators during the triggering of basophilic cells by bridging of IgE receptors. The m.w. of the native form of this factor, determined by a gel filtration method, was about 43,000.  相似文献   

6.
Summary Functional interactions between mast cells and peripheral nerves may occur at sites of association seen in vivo. To study the interactions, we developed a tissue culture model of murine sympathetic neurons co-cultured with rat basophilic leukaemia (RBL-2H3) cells (homologues of mucosal mast cells) or rat peritoneal mast cells. In co-cultures of up to 3 days, light microscopy identified neurite contacts with peritoneal mast cells or RBL-2H3 cells, but not with glial cells or fibroblasts. Electron microscopy confirmed membrane-membrane contact between neurites and RBL-2H3 cells. Time-lapse analysis of interactions between neurons and RBL-2H3 cells showed that 60–100% of the cells in a given field acquired neurite contact within 17 h. In matching control studies, there was no increase in the frequency of neurite contact with cells of the rat plasmacytoma line (YB2/0): these were not selected as targets, and contacts were broken if formed. Time-lapse records of the derivation of neurites from their path suggested a neurotropic effect of mast cells, with neurite contact ensuing when the intervening distance was less than 36±4 m. Once formed, contacts were invariably maintained throughout the period of examination (up to 72 h), in contrast to YB2/0 or fibroblast contacts. We conclude that neurons selectively form and maintain connections with cells representative of rat connective tissue-type and mucosal mast cells in vitro. Similar interactions in vivo could promote nerve/mast cell contacts, which may allow bidirectional communication between the nervous and immune systems.  相似文献   

7.
The activation of mast cells by immunoglobulin E-mediated stimuli is considered as a central event in allergic responses. In this regard, chitosan oligosaccharides (COS) of two different molecular weight ranges (1–3 kDa and 3–5 kDa) were investigated for their capabilities against the activation of RBL-2H3 mast cell sensitized with dinitrophenyl-specific immunoglobulin E antibody and stimulated by antigen dinitrophenyl-bovine serum albumin. It was found that COS significantly inhibited RBL-2H3 cell degranulation via attenuating the releases of histamine and β-hexosaminidase. Moreover, the inhibitory activity of COS was accompanied by a reduction in intracellular Ca2+ elevation. Notably, the expression of immunoglobulin Fc epsilon receptor I (Fc?RI) in RBL-2H3 cells was down-regulated by COS treatment in a dose-dependent manner. The suppressive effect of COS on RBL-2H3 cell activation suggested that COS may be potential candidates of novel inhibitors against allergic reactions.  相似文献   

8.
Polyphosphate (polyP) is a pro-inflammatory agent and a potent modulator of the human blood-clotting system. The presence of polyP of 60 phosphate units was identified in rat basophilic leukemia (RBL-2H3) mast cells using specific enzymatic assays, urea-polyacrylamide gel electrophoresis of cell extracts, and staining of cells with 4,6-diamidino-2-phenylindole (DAPI), and the polyP-binding domain of Escherichia coli exopolyphosphatase. PolyP co-localizes with serotonin- but not with histamine-containing granules. PolyP levels greatly decreased in mast cells stimulated to degranulate by IgE. Mast cell granules were isolated and found to be acidic and decrease their polyP content upon alkalinization. In agreement with these results, when RBL-2H3 mast cells were loaded with the fluorescent calcium indicator fura-2 acetoxymethyl ester to measure their intracellular Ca(2+) concentration ([Ca(2+)](i)), they were shown to possess a significant amount of Ca(2+) stored in an acidic compartment different from lysosomes. PolyP derived from RBL-2H3 mast cells stimulated bradykinin formation, and it was also detected in human basophils. All of these characteristics of mast cell granules, together with their known elemental composition, and high density, are similar to those of acidocalcisomes. The results suggest that mast cells polyP could be an important mediator of their pro-inflammatory and pro-coagulant activities.  相似文献   

9.
In basophils, mast cells, and the RBL-2H3 tumor mast cell line, cross-linking the high-affinity immunoglobulin E receptor (Fc epsilon R1) stimulates a series of responses, particularly the activation of phospholipase C (PLC), that lead to allergic and other immediate hypersensitivity reactions. The mechanism of activation of PLC, however, is not clear. Here, we show that cross-linking Fc epsilon R1 on RBL-2H3 cells causes the tyrosine phosphorylation of at least 12 cellular proteins, including PLC gamma 1 (PLC gamma 1) and the receptor beta and gamma subunits. 32P-labeled PLC gamma 1 can be detected by anti-phosphotyrosine antibody as early as 10 s after the addition of antigen. The tyrosine-phosphorylated 33-kDa beta subunit and 9- to 11-kDa gamma subunit of the Fc epsilon R1 are additionally phosphorylated on serine and theonine residues, respectively, and are found as complexes with other phosphotyrosine-containing proteins in antigen-stimulated cells. Our results indicate a means by which the Fc epsilon R1 may control PLC activity in RBL-2H3 cells and raise the possibility that other receptor-mediated signalling events in mast cells may also be controlled through protein tyrosine phosphorylation.  相似文献   

10.
Phospholipase A2 activity in lysates of mast cells such as rat mastocytoma RBL-2H3 cells and mouse bone marrow-derived IL-3-dependent mast cells (BMMC) was measured using phosphatidylcholine (PC), phosphatidylethanolamine (PE), or phosphatidylserine (PS) as a substrate. Both types of cells exhibited phospholipase A2 activity with a similar pH profile; the optimum pH observed with PS as a substrate was 5.5-7.4, whereas that with PE or PC was 8.0-9.0. PE and PC bearing an arachidonate at the sn-2 position were cleaved more efficiently by PE, PC-hydrolyzing phospholipase A2 than phospholipids with a linoleate. A monoclonal antibody raised against rabbit platelet 85-kDa cytosolic phospholipase A2 absorbed the PE, PC-hydrolyzing activity. PS-hydrolyzing activity was purified from RBL-2H3 cells and BMMC by sequential heparin-Sepharose, butyl-Toyo-pearl, and reverse-phase HPLC. On reverse-phase HPLC, the PS-hydrolyzing activity of RBL cells was separated into two peaks, A and B. The peak B activity was inhibited by the anti-rat 14-kDa group II phospholipase A2 antibody, while the peak A activity was not. The partially purified peak A activity hydrolyzed PS about 10-fold more efficiently than PE at optimum pH of 5.5-7.4. No appreciable hydrolysis was observed with PC or phosphatidylinositol (PI). Thus, mast cells may express at least three distinct phospholipases A2; 14-kDa group II phospholipase A2, 85-kDa cytosolic arachidonate preferential phospholipase A2, and a novel phospholipase A2 that shows high substrate specificity for PS.  相似文献   

11.
Proteolytic digest of fibronectin (FN), but not intact FN, induced TNF-alpha secretion of rat basophilic leukemia (RBL-2H3) cells. As a result of the identification of FN fragment responsible for TNF-alpha secretion, a 30-kDa fragment derived from the carboxyl-terminal heparin-binding (Hep 2) domain of FN was isolated from the FN digest. The TNF-alpha secretion was abrogated by treatment of RBL-2H3 cells with cycloheximide, indicating the de novo synthesis of TNF-alpha, but not with polymyxin B, excluding the possible TNF-alpha induction by some contaminated lipopolysaccharides. A 22-mer synthetic peptide originated from the Hep 2 domain, termed FNIII14, which has been found to negatively modulate the beta1 integrin activation, had the ability to induce TNF-alpha production, whereas this activity of FNIII14 disappeared by shuffling a YTIYVIAL sequence essential for the integrin-inactivating activity. FNIII14 suppressed the spreading of RBL-2H3 cells on FN substrate, wherein RBL-2H3 cell proliferation was inhibited with FNIII14 in a dose-dependent manner. Thus, it appears that FN fragments containing the YTIYVIAL anti-adhesive site affect the activation status of RBL-2H3 mast cells, characterized by the stimulation of TNF-alpha production and growth suppression, probably due to negative regulation of beta1 integrin activity.  相似文献   

12.
The current study examined the role of PLD2 in the maintenance of mast cell structure. Phospholipase D (PLD) catalyzes hydrolysis of phosphatidylcholine to produce choline and phosphatidic acid (PA). PLD has two isoforms, PLD1 and PLD2, which vary in expression and localization depending on the cell type. The mast cell line RBL-2H3 was transfected to overexpress catalytically active (PLD2CA) and inactive (PLD2CI) forms of PLD2. The results of this study show that PLD2CI cells have a distinct star-shaped morphology, whereas PLD2CA and RBL-2H3 cells are spindle shaped. In PLD2CI cells, the Golgi complex was also disorganized with dilated cisternae, and more Golgi-associated vesicles were present as compared with the PLD2CA and RBL-2H3 cells. Treatment with exogenous PA led to the restoration of the wild-type Golgi complex phenotype in PLD2CI cells. Conversely, treatment of RBL-2H3 and PLD2CA cells with 1% 1-Butanol led to a disruption of the Golgi complex. The distribution of acidic compartments, including secretory granules and lysosomes, was also modified in PLD2CI cells, where they concentrated in the perinuclear region. These results suggest that the PA produced by PLD2 plays an important role in regulating cell morphology in mast cells.  相似文献   

13.
Piperine has been shown to have anti-inflammatory properties. The molecular mechanisms by which it mediates anti-inflammatory activities remain elusive. Type II phosphatidylinositol 4-kinase(s) are key components in FcεRI receptor-mediated signaling leading to inflammatory mediators release in RBL-2H3 cells. The effects of piperine on IgE-mediated signaling and mast cell degranulation were investigated. Pretreatment of RBL-2H3 cells with piperine inhibited IgE-induced activation of type II PtdIns 4-kinase(s). In vitro lipid kinase assays showed piperine-inhibited type II PtdIns 4-kinase activity in a dose-dependent fashion with no effect on PtdIns 3-kinase activity. Concomitantly, pretreatment of RBL-2H3 cells with piperine also inhibited IgE-induced β-hexosaminidase release in RBL-2H3 cells. These results suggest that type II PtdIns 4-kinases are part of piperine-mediated anti-inflammatory signaling mechanisms.  相似文献   

14.
Mast cells possess specialized granules that, upon stimulation of surface FcR with IgE, fuse with the plasma membrane, thereby releasing inflammatory mediators. A family of membrane fusion proteins called SNAREs, which are present on both the granule and the plasma membrane, plays a role in the fusion of these granules with the plasma membrane of mast cells. In addition to the SNAREs themselves, it is likely that the SNARE accessory protein, N-ethylmaleimide-sensitive factor (NSF), affects the composition and structure of the SNARE complex. NSF is a cytoplasmic ATPase that disassembles the SNARE complexes. To investigate the role of NSF in mast cell degranulation, we developed an assay to measure secretion from transiently transfected RBL (rat basophilic leukemia)-2H3 mast cells (a tumor analog of mucosal mast cells). RBL-2H3 cells were cotransfected with a plasmid encoding a human growth hormone secretion reporter along with either wild-type NSF or an NSF mutant that lacks ATPase activity. Human growth hormone was targeted to and released from secretory granules in RBL-2H3 cells, and coexpression with mutant NSF dramatically inhibited regulated exocytosis from the transfected cells. Biochemical analysis of SNARE complexes in these cells revealed that overexpression of the NSF mutant decreased disassembly and resulted in an accumulation of SNARE complexes. These data reveal a role for NSF in mast cell exocytosis and highlight the importance of SNARE disassembly, or priming, in regulated exocytosis from mast cells.  相似文献   

15.
Annexin A1 (ANXA1) is cleaved at the N terminal in some activated cells, such as macrophages, neutrophils, and epithelial cells. We previously observed that ANXA1 was proteolytically cleaved in lung extracts prepared from a murine OVA-induced asthma model. However, the cleavage and regulatory mechanisms of ANXA1 in the allergic response remain unclear. In this study, we found that ANXA1 was cleaved in both Ag-induced activated rat basophilic leukemia 2H3 (RBL-2H3) cells and bone marrow-derived mast cells. This cleavage event was inhibited when intracellular Ca(2+) signaling was blocked. ANXA1-knockdown RBL-2H3 cells produced a greater amount of eicosanoids with simultaneous upregulation of cytosolic phospholipase A(2) (cPLA(2)) activity. However, there were no changes in degranulation activity or cytokine production in the knockdown cells. We also found that cPLA(2) interacted with either full-length or cleaved ANXA1 in activated mast cells. cPLA(2) mainly interacted with full-length ANXA1 in the cytosol and cleaved ANXA1 in the membrane fraction. In addition, introduction of a cleavage-resistant ANXA1 mutant had inhibitory effects on both the phosphorylation of cPLA(2) and release of eicosanoids during the activation of RBL-2H3 cells and bone marrow-derived mast cells. These data suggest that cleavage of ANXA1 causes proinflammatory reactions by increasing the phosphorylation of cPLA(2) and production of eicosanoids during mast-cell activation.  相似文献   

16.
A neutral protease with an estimated Mr of about 26 kD and responsible for cleavage of myosin LC2 was isolated from hamster skeletal muscle. Complementary DNAs were generated by RT-PCR using total hamster muscle RNA and degenerate oligonucleotide primers based on the sequences of two internal peptides. The nucleotide sequences of the resultant cDNAs were subsequently determined and the complete amino acid sequence of the protease deduced. Although the hamster protein shared 63-85% identity in nucleotide and amino acid sequences with rat and mouse mast cell proteases, it had a higher degree of specificity for myosin LC2 than mast cell proteases which also digested myosin LC1 and myosin heavy chains. As a result, the hamster protease was designated mekratin because of its unique enzymatic specificities to distinguish it from other mast cell proteases. A polyclonal antibody was raised specific to the hamster muscle and human cardiac muscle mekratins without apparent cross-reaction with rat mast cell proteases. We have earlier demonstrated the presence in excess of a neutral protease that specifically cleaves LC2 in human hearts obtained at end stage idiopathic dilated cardiomyopathy (IDC). Western analyses revealed that heart tissue from patients with IDC contained 5-10 fold more mekratin than control samples. Furthermore, the level of the protease in human IDC tissues was similar to that seen in myopathic hamster skeletal muscle. No bands were recognized by the antibody when IDC myofibrils were probed due to the removal of soluble proteins during sample preparation. Thus, these results strongly suggest that the anti-mekratin antibody will provide positive identification of IDC in many cases and diagnosis by exclusion may be replaced.  相似文献   

17.
Eotaxin is a potent chemokine that acts via CC chemokine receptor 3 (CCR3) to induce chemotaxis, mainly on eosinophils. Here we show that eotaxin also induces chemotactic migration in rat basophilic leukemia (RBL-2H3) mast cells. This effect was dose-dependently inhibited by compound X, a selective CCR3 antagonist, indicating that, as in eosinophils, the effect was mediated by CCR3. Eotaxin-induced cell migration was completely blocked in RBL-RacN17 cells expressing a dominant negative Rac1 mutant, suggesting a crucial role for Rac1 in eotaxin signaling to chemotactic migration. ERK activation also proved essential for eotaxin signaling and it too was absent in RBL-RacN17 cells. Finally, we found that activation of Rac and ERK was correlated with eotaxin-induced actin reorganization known to be necessary for cell motility. It thus appears that Rac1 acts upstream of ERK to signal chemotaxis in these cells, and that a Rac-ERK-dependent cascade mediates the eotaxin-induced chemotactic motility of RBL-2H3 mast cells.  相似文献   

18.
Previously we reported that the mAb AD1 recognized a heavily glycosylated 50- to 60-kDa protein (AD1 Ag) sterically close to the high-affinity IgE receptor on rat basophilic leukemia (RBL-2H3) cells. The N-terminal amino acid sequence of the AD1 Ag was nearly identical to that of human CD63 (melanoma-associated Ag ME491). In this study we cloned the cDNA of AD1 Ag from a rat basophilic leukemia 2H3 cDNA library. An open reading frame of 238 amino acids was identified that contained the N-terminal 43 amino acid sequence. No evidence of a signal peptide was found. However, four predominantly hydrophobic stretches of sequence were predicted to form membrane-spanning helices, and three putative N-glycosylation sites were identified. The AD1 Ag and CD63 were highly conserved between rat and human, suggesting that the sequence of this protein is important for its function. By immunostaining various rat tissues, the AD1 Ag was found localized to mast cells. However, it was located to lysosomes, secretory granules and the plasma membrane of RBL-2H3 cells and to lysosomes and plasma membrane of many other cultured cell lines. The AD1 Ag could be induced by placing cells in culture. Fibroblasts and hepatocytes freshly isolated from rat embryos stained very weakly for AD1 Ag; however, after 24 to 48 h in culture they were strongly positive. This increase in the expression of the AD1 Ag was accompanied by an increase in detectable RNA message. Therefore, AD1/ME491/CD63 Ag is a mast cell marker in tissue, but is also associated with other cells in culture.  相似文献   

19.
Fluorescent and biotinylated analogs of mast cell degranulating (MCD) peptide were synthesized and the labels fluoresceinisothiocyanate and N-hydroxysuccinimidobiotin were conjugated at position 1 in the MCD peptide sequence. The analogs with these moieties retained histamine-releasing activity as high as that of the parent MCD peptide in rat peritoneal mast cell assays. These labeled analogs were used in rat basophilic leukemia cells (RBL-2H3) to demonstrate by confocal microscopy and flow cytometry the specific binding of MCD peptide to mast cell receptors. Consequently MCD peptide was found to compete with and inhibit the binding of fluorescent IgE on RBL cells as monitored by flow cytometry. Thus MCD peptide may prove to be useful in the study of IgE receptor-bearing cells.  相似文献   

20.
The SH2-containing protein tyrosine phosphatase1 (SHP-1) is important for signaling from immune receptors. To investigate the role of SHP-1 in mast cells we overexpressed the wild-type and the phosphatase-inactive forms of SHP-1 in rat basophilic leukemia 2H3 (RBL-2H3) mast cell line. The phosphatase-inactive SHP-1 (C453S or D419A) retains its ability to bind tyrosine phosphorylated substrates and thereby competes with the endogenous wild-type enzyme. Overexpression of wild-type SHP-1 decreased the FcepsilonRI aggregation-induced tyrosine phosphorylation of the beta and gamma subunits of the receptor whereas the dominant negative SHP-1 enhanced phosphorylation. There were also similar changes in the tyrosine phosphorylation of Syk. However, receptor-induced histamine release in the cells expressing either wild-type or dominant negative SHP-1 was similar to that in the parental control cells. In contrast, compared with the parental RBL-2H3 cells, FcepsilonRI-induced c-Jun N-terminal kinase phosphorylation and the level of TNF-alpha mRNA was increased in the cells overexpressing wild-type SHP-1 whereas the dominant negative SHP-1 had the opposite effect. The substrate-trapping mutant SHP1/D419A identified pp25 and pp30 as two major potential substrates of SHP-1 in RBL-2H3 cells. Therefore, SHP-1 may play a role in allergy and inflammation by regulating mast cell cytokine production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号