首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino acid sequence of rat mast cell protease I (chymase)   总被引:8,自引:0,他引:8  
The amino acid sequence has been determined for rat mast cell protease I (RMCP I), a product of peritoneal mast cells. The active enzyme contains 227 residues, including three corresponding to the catalytic triad characteristic of serine protease (His-57, Asp-102, and Ser-195 in chymotrypsin). A computer search for homology indicates 73% and 33% sequence identity of RMCP I with rat mast cell protease II from mucosal mast cells and bovine chymotrypsin A, respectively. When the structure of RMCP I is compared to those of cathepsin G from human neutrophils and two proteases expressed in activated lymphocytes, 48-49% of the sequences are identical in each case. RMCP I has six half-cystine residues at the same positions as in RMCP II, cathepsin G, and the two lymphocyte proteases, suggesting disulfide pairs identical with those reported for RMCP II. A disulfide bond near the active site seryl residue and substrate binding site, present in pancreatic and plasma serine proteases, is not found in RMCP I or in the other cellular proteases. These results indicate that RMCP I and other chymotrypsin-like proteases of granulocyte and lymphocyte origin are more closely related to each other than to the pancreatic or plasma serine proteases.  相似文献   

2.
The Ca2+ -activated neutral protease can proteolyze both Ca2+ -dependent cyclic nucleotide phosphodiesterase and smooth muscle myosin light chain kinase. Ca2+ -dependent cyclic nucleotide phosphodiesterase from rat brain was converted to the Ca2+ -independent active form by Ca2+ -activated protease. The proteolytic effects on myosin light chain kinase of Ca2+-activated protease differed in the presence and absence of the Ca2+-calmodulin (CaM) complex. In the presence of bound CaM, myosin light chain kinase (130k dalton) was degradated to a major fragment of 62 kDa, which had Ca2+/CaM-dependent enzyme and CaM-binding activity. When digestion occurred in the absence of bound CaM, myosin light chain kinase cleaved to a fragment of 60 kDa. This peptide had no enzymatic activity in the presence or absence of the Ca2+-CaM complex. Available evidence suggests that the Ca2+-activated proteases may recognize the conformational change of smooth muscle myosin light chain kinase induced by Ca2+-CaM complex.  相似文献   

3.
We have isolated a human cDNA which corresponds to a developmentally regulated sarcomeric myosin heavy chain. RNA hybridization and DNA sequence analysis indicate that this cDNA, called SMHCP, encodes a perinatal myosin heavy chain isoform. The nucleotide and deduced amino acid sequences of the 3.4-kb cDNA insert show strong homology with other sarcomeric myosin heavy chains. The strongest homology is to a previously described 970-bp cDNA encoding a rat perinatal isoform (Periasamy, M., D. F. Wieczorek, and B. Nadal-Ginard. 1984. J. Biol. Chem. 259:13573-13578). The homology between the analogous human and rat perinatal myosin heavy chain cDNAs is maintained through the highly isoform-specific final 20 carboxyl-terminal amino acids, as well as the 3' untranslated region. Ribonuclease protection studies show that the mRNA encoding this isoform is expressed at high levels in 21-wk fetal skeletal tissue and not in fetal cardiac muscle. In contrast to the rat perinatal isoform, which was not found to be expressed in adult hind-leg tissue, the gene encoding SMHCP continues to be expressed in adult human skeletal tissue, but at lower levels relative to fetal skeletal tissue.  相似文献   

4.
Amino acid sequence of a mouse mucosal mast cell protease   总被引:11,自引:0,他引:11  
The amino acid sequence has been determined of a mouse mucosal mast cell protease isolated from the small intestines of mice infected with Trichinella spiralis. The active protease contains 226 residues. Those corresponding to the catalytic triad of the active site of mammalian serine proteases (His-57, Asp-102, and Ser-195 in chymotrypsin) occur in identical positions. A computer search for homology indicates 74.3% and 74.1% sequence identity of the mouse mast cell protease compared to those of rat mast cell proteases I and II (RMCP I and II), respectively. The six half-cystine residues in the mouse mast cell protease are located in the same positions as in the rat mast cell proteases, cathepsin G, and the lymphocyte proteases, suggesting that they all have identical disulfide bond arrangements. At physiological pH, the mouse and rat mucosal mast cell proteases have net charges of +3 and +4, respectively, as compared to +18 for the protease (RMCP I) from rat connective tissue mast cells. This observation is consistent with the difference in solubility between the mucosal and connective tissue mast cell proteases when the enzymes are extracted from their granules under physiological conditions.  相似文献   

5.
In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.  相似文献   

6.
The action of two alkaline proteases from white skeletal muscle on myofibrillar proteins is shown. Purified myosin was readily degraded by both proteases, but only protease I was able to degrade myosin heavy chain from actomyosin. The effect of inhibitor on both proteases was also studied. The activity of protease II on azocasein was not affected, while the action of protease I on both azocasein and myosin was inhibited. The implication of proteases and inhibitor on the turnover of myofibrillar proteins is considered.  相似文献   

7.
A cDNA clone corresponding to the complete amino acid sequence of a putative protease CCP2 of murine cytotoxic T lymphocytes was isolated and sequenced. The clone encodes a 248-residue long serine esterase. The deduced N-terminal amino acid sequence is identical over 40 residues to that of granzyme C, a protease of unknown function present in granules of cytotoxic lymphocytes. Analysis of the sequence of granzyme C/CCP2 reveals high homology to other granzyme proteases, i.e. granzyme A (40%) and granzyme B (67%) and to rat mast cell protease II (46%). The amino acids lining the specificity pocket are well conserved between granzyme B, C, and rat mast cell protease II, but not granzyme A, suggesting a similar general specificity of these three proteases.  相似文献   

8.
Myosin light and heavy chains from skeletal and cardiac muscles and from the electric organ of Electrophorus electricus (L.) were characterised using biochemical and immunological methods, and compared with myosin extracted from avian, reptilian, and mammalian skeletal and cardiac muscles. The results indicate that the electric tissue has a myosin light chain 1 (LC1) and a muscle-specific myosin heavy chain. We also show that monoclonal antibody F109-12A8 (against LC1 and LC2) recognizes LC1 of myosin from human skeletal and cardiac muscles as well as those of rabbit, lizard, chick, and electric eel. However, only cardiac muscles from humans and rabbits have LC2, which is recognized by antibody F109-16F4. The data presented confirm the muscle origin of the electric tissue of E. electricus. This electric tissue has a profile of LC1 protein expression that resembles the myosin from cardiac muscle of the eel more than that from eel skeletal muscle. This work raises an interesting question about the ontogenesis and differentiation of the electric tissue of E. electricus.  相似文献   

9.
The primary structures of light chains isolated from the human myocardium with idiopathic dilated cardiomyopathy (IDC) were determined and compared with the sequence structures of myosin light chains obtained from control human heart myosin. Sequences were determined by chemical analysis and the identity of N-terminal residues established by mass spectrometry. The N-terminal residues in essential (ELC) and regulatory (RLC) light chains were blocked and were identified to be trimethyl alanine. The amino acid sequences of ELC and RLC from control human myosin revealed a high degree of homology with those purified from rat and chicken cardiac myosin. Comparison with a published partial chemical sequence of the human heart myosin light chains revealed significant variations. However, there was very good agreement with published sequences obtained by molecular biological techniques. Sequences of the light chains from cardiomyopathic myosin revealed no difference in the primary structures when compared with control human heart myosin light chains indicating IDC had no influence on, nor was caused by, altered myosin light chain gene expression.  相似文献   

10.
The position of the N terminus of myosin light chain 1 (LC1) and myosin light chain 2 (LC2) of rabbit skeletal muscle was mapped on the myosin head with a monoclonal antibody (SI304), which recognized the amino acid sequence N-trimethylalanyl-prolyl-lysyl-lysyl at the N terminus of LC1 and LC2. The complex of the antibody and myosin was observed by electron microscopy. By selective cleavage of the N terminus of LC1 or LC2 with papain or chymotrypsin, the position of the N terminus of LC1 and LC2 was determined separately. The N terminus of LC2 is located at the head-rod junction. The N terminus of LC1 is 11 nm (+/- 3 nm, standard deviation) from the head-rod junction. This position is near the actin-binding site of the myosin head.  相似文献   

11.
 Serine proteases are the most abundant granule constituents of several major hematopoietic cell lineages. Due to their high abundance and their strict tissue specificity they have become important phenotypic cell markers used for studies of various aspects of hematopietic cell development. Using a polymerase chain reaction (PCR)-based strategy for the isolation of trypsin-related serine proteases, we were able to isolate cDNAs for two of the major neutrophil and monocyte serine proteases in the mouse, cathepsin G and mouse protease 3 (myeloblastin). The internal PCR fragments were used as probes to screen a mouse mast cell cDNA library and a cDNA library originating from a mouse monocytic cell line (WEHI-274.1). Full-length cDNAs for mouse cathepsin G and proteinase 3 were isolated and their complete sequences were determined. Northern blot analysis revealed expression of cathepsin G in immature cells of the monocyte macrophage lineage but also in the connective tissue mast cell line MTC. Proteinase 3 was expressed in several cell lines of myelo-monocytic origin and in one B-cell line, but not in any of the other cell lines tested. The isolation of cDNAs for mouse cathepsin G and mouse proteinase 3, together with the previous characterization of the gene for mouse N-elastase, and the entire or partial amino acid sequences for porcine azurocidine, equine N-elastase and proteinase 3, rat, dog, and rabbit cathepsin Gs in evolutionary relatively distantly related mammalian species, indicates that these four members of the serine protease family have been maintained for more than 100 million years of mammalian evolution. This latter finding indicates a strong evolutionary pressure to maintain specific immune functions associated with these neutrophil and monocyte proteases. All amino acid positions of major importance for the cleavage site selection have also been fully conserved between mouse and human proteinase 3 and a few minor changes have occurred between mouse and human cathepsin G. Received: 3 August 1996 / Revised: 24 February 1997  相似文献   

12.
It has been known that isoforms of myosin essential light chain (LC) exhibit the isoform-specific sorting within cardiac myocytes and fibroblasts. In order to analyze which domain of LC is responsible for the sorting, various chimeric cDNA constructs between human nonmuscle isoform (LC3nm) and chicken fast skeletal muscle isoform (LC3f) were generated and expressed in cultured chicken cardiac myocytes. If chimeras contained LC3f sequence at the place that was restricted by BssHII and PstI, they were preferentially sorted to sarcomeres and precisely localized at A-bands, and their incorporation levels into the A-bands were identical with that of the wild type LC3f. However, other chimeras were distributed throughout the cytoplasm like the wild type LC3nm. Comparison of amino acid sequences revealed that 12 amino acids are different between chicken LC3f and human LC3nm in the BssHII-PstI fragment, and these amino acids are located within the second EF-hand of LC. These results indicated that the second EF-hand is responsible for the isoform-specific sorting of LC. Although the second EF-hand is not included in the key contacts with myosin heavy chain, it is supposed that this domain is important for the relative disposition of neighboring domains. Thus, the 12 amino acids in the second EF-hand might play a key role for modulation of overall configuration of LC, thereby influencing the precise association of the key contacts.  相似文献   

13.
From an RNK-16 lambda-gt11 library, we have isolated and sequenced a novel cDNA rat NK cell protease 1 (RNKP-1) that has characteristics unique to serine proteases. The cDNA clone is 1102 bp and contains a complete open reading frame with an AUG start codon and a TAA stop codon. The open reading frame translates into a protein of 248 amino acids that has one glycosylation site. The characteristic N-terminal Ile-Ile-Gly-Gly and the His, Asp, and Ser amino acid residues that form the catalytic triad of serine proteases are present. The nucleotide and amino acid sequences have 87 and 80% identity, respectively, with the murine CTL-specific serine protease CCPI. However, there are extensive differences in the substrate binding regions of these proteases. Comparison of hydropathic profiles and amino acid sequences of other proteases indicate that RNKP-1 is distinct and belongs to the subfamily of serine proteases of bone marrow origin. Northern blot analysis of poly A+ RNA from rat splenocytes cultured with Con A showed 1000 and 1400 nucleotide mRNA are detected with RNKP-1 after 1 day of Con A-stimulation. The expression of the two mRNA bands continues through day 5 of culture with the lectin and may represent RNKP-1 mRNA plus related sequences due to cross-hybridization. RNKP-1 is also expressed in RNK-16 cells, but is not expressed in freshly isolated rat splenocytes, brain, lung, or lymph node tissues. The induction of RNKP-1 expression in the Con A-cultured spleen cells is accompanied by increases in both NK and lymphokine-activated killer lymphocyte activities. These data indicate that RNKP-1 is a unique serine protease that may be preferentially expressed in NK cells.  相似文献   

14.
We have cloned a DNA from a human pancreatic cDNA library using a cloned rat pancreatic elastase 1 cDNA as a probe, and determined its nucleotide sequence. This cDNA contains a coding region of 810 nucleotides which encodes a 270-amino-acid protein. The deduced amino acid sequence shows less than 60% homologies with rat and porcine pancreatic elastase 1, although its substrate binding region is homologous with those of the above elastases 1. When this deduced amino acid sequence was compared with known amino acid sequences of pancreatic proteases other than elastases, it was found to contain an amino acid sequence which was highly homologous with the N-terminal amino acid sequence of porcine pancreatic protease E. We also purified human pancreatic protease E isozymes from human pancreatic juice, and determined their N-terminal amino acid sequences. One of the isozymes does not hydrolyze elastin but does hydrolyze a synthetic substrate. Endoglycosidase F digests glycoside bonds of the isozyme. These results suggest that the cDNA cloned by us corresponded to one of the human protease E isozymes.  相似文献   

15.
Calcium regulation of porcine aortic myosin   总被引:1,自引:0,他引:1  
Calcium regulation of actin-activated porcine aortic myosin MgATPase was studied. The MgATPase of the purified actomyosin was stimulated about 10-fold by 0.1 mM Ca2+. The 20,000 molecular weight light chain subunit (LC20) of myosin was phosphorylated by an endogenous kinase that required Ca2+. Half-maximal activation of both kinase and ATPase occurred at about 0.9 microM Ca2+. Phosphorylated and unphosphorylated myosins, free of actin, kinase, and phosphatase, were purified by gel filtration. The MgATPase of phosphorylated myosin was activated by rabbit skeletal muscle actin; unphosphorylated myosin was actin activated to a much lesser extent. Actin activation was maximal in the presence of Ca2+. Regulation of the aortic myosin MgATPase seems to involve both direct interaction of calcium with phosphorylated myosin and calcium activation of the myosin kinase. The MgATPase of trypsin-treated actomyosin did not require Ca2+ for full activity. The trypsin-treated actomyosin was devoid of LC20. When purified unphosphorylated aortic myosin was treated with trypsin, the LC20, was cleaved and the MgATPase, which was not appreciably actin activated before exposure to protease, was increased and was activated by skeletal muscle actin. After incubation of this light chain-depleted myosin with light chain from rabbit skeletal muscle myosin, the actin activation but not the increased activity, was abolished. Unphosphorylated LC20 seems to inhibit actin activation in this smooth muscle.  相似文献   

16.
The lysosomal cysteine protease cathepsin B is one of several proteases that have been linked to tumour progression. Its increased expression and secretion in tumour cells may facilitate the degradation of extracellular matrix proteins, leading to tumour cell invasion and metastasis. Specific inhibitory monoclonal antibodies are a possible alternative to synthetic inhibitors as a therapeutic tool for cancer treatment. An inhibitory monoclonal antibody, which binds to an epitope near the active site of cathepsin B and inhibits its proteolytic activity, was prepared and its effect on invasion of ras-transformed MCF-10A neoT cells was tested in vitro. Here we present the nucleotide sequences of the heavy and light chains of the inhibitory antibody and compare them to the murine immunoglobulin germline sequences for possible somatic hypermutations. Since no harmful mutations were found, a mouse/human chimeric antibody was constructed by fusing murine V(H) and V(L) variable regions of the inhibitory antibody with human gamma 1 and K constant regions, respectively. Chinese hamster ovary K1 cells were co-transfected with expression vectors pcD-NA3L and pcDNA3H and the reactivity of the isolated chimeric antibody was tested by ELISA and Western blotting. We could demonstrate an inhibitory effect of the chimeric antibody.  相似文献   

17.
We have cloned a human cDNA encoding a new serine protease that has been called polyserase-2 (polyserine protease-2) because it is the second identified human enzyme with several tandem serine protease domains in its amino acid sequence. The first serine protease domain contains all characteristic features of these enzymes, whereas the second and third domains lack one residue of the catalytic triad of serine proteases and are predicted to be catalytically inactive. This complex domain organization is also present in the sequences of mouse and rat polyserase-2 and resembles that of polyserase-1, which also contains three serine protease domains in its amino acid sequence. However, polyserase-2 lacks additional domains present in polyserase-1, including a type II transmembrane motif and a low-density lipoprotein receptor A module. Enzymatic analysis demonstrated that both full-length polyserase-2 and its first serine protease domain hydrolyzed synthetic peptides used for assaying serine proteases. Nevertheless, the activity of the isolated domain was greater than that of the entire protein, suggesting that the two catalytically inactive serine protease domains of polyserase-2 may modulate the activity of the first domain. Northern blot analysis showed that polyserase-2 is expressed in fetal kidney; adult skeletal muscle, liver, placenta, prostate, and heart; and tumor cell lines derived from lung and colon adenocarcinomas. Finally, analysis of post-translational processing mechanisms of polyserase-2 revealed that, contrary to those affecting to the membrane-bound polyserase-1, this novel polyprotein is a secreted enzyme whose three protease domains remain as an integral part of a single polypeptide chain.  相似文献   

18.
A new lead-precipitation technique for demonstrating magnesium-activated actomyosin adenosine triphosphatase (ATPase) at physiological pH and electrolyte levels in fixed skeletal muscle sections is reported. This method is compared with standard acid- and alkali-denatured muscle stained for calcium myosin ATPase as well as calcium-formalin denatured and pyrophosphate-formalin denatured muscle also stained for calcium myosin ATPase. The technique was developed using hamster skeletal muscle; however, it has also been applied to human, rat, and cat muscle. The fiber-type staining intensities of the formalin-denatured magnesium actomyosin ATPase closely resemble those of the formalin-denatured calcium myosin ATPase in rodents, but intensities in Type 1 fibers are reversed relative to calcium myosin ATPase in human muscle. Cat muscle shows intermediate characteristics.  相似文献   

19.
A tryptic protease with the characteristics of a mast cell tryptase was purified from dog mastocytoma cells propagated in nude mice. Partial amino acid sequence of the mastocytoma tryptase revealed unexpected differences in comparison with other mast cell and leukocyte granule protease sequences. Extraction from mastocytoma homogenates at high ionic strength, followed by gel filtration and benzamidine affinity chromatography yielded a product with several closely spaced bands (Mr 30,000-32,000) on gel electrophoresis and a single N-terminal sequence. Nondenaturing analytical gel filtration revealed an apparent Mr of 132,000, suggesting noncovalent association as a tetramer. Studies with peptide p-nitroanilides indicated pronounced substrate preferences, with P1 arginine preferred to lysine. Benzoyl-L-Lys-Gly-Arg-p-nitroanilide was the best of the substrates screened. Inhibition by diisopropyl fluorophosphate and tosyllysine chloromethyl ketone indicated that the enzyme is a serine protease. Like the tryptases of human mast cells, mastocytoma tryptic protease was inhibited by NaCl, resistant to inactivation by alpha 1-proteinase inhibitor and plasma, and stabilized by heparin. Comparison of the N-terminal 24 residues of mastocytoma tryptase revealed 80% identity with the more limited sequence reported for human lung tryptase, and surprisingly, closer homology to serine proteases of digestion and clotting than to other leukocyte granule proteases sequenced to date, including mast cell chymase. The N-terminal isoleucine is the homolog of trypsinogen Ile-16 which becomes the new N-terminus upon cleavage of the activation peptide. Thus, the tryptase N-terminus is related to the catalytic domain of activated serine proteases, and lacks the N-terminal regulatory domains found in most clotting and complement serine proteases. These findings provide further evidence that tryptases are unique serine proteases and that they may be less closely related in evolution and function than are other leukocyte granule proteases described to date.  相似文献   

20.
To investigate the degree of similarity between picornavirus proteases, we cloned the genomic cDNAs of an enterovirus, echovirus 9 (strain Barty), and two rhinoviruses, serotypes 1A and 14LP, and determined the nucleotide sequence of the region which, by analogy to poliovirus, encodes the protease. The nucleotide sequence of the region encoding the genome-linked protein VPg, immediately adjacent to the protease, was also determined. Comparison of nucleotide and deduced amino acid sequences with other available picornavirus sequences showed remarkable homology in proteases and among VPgs. Three highly conserved peptide regions were identified in the protease; one of these is specific for human picornaviruses and has no obvious counterpart in encephalomyocarditis virus, foot-and-mouth disease virus, or cowpea mosaic virus proteases. Within the other two peptide regions two conserved amino acids, Cys 147 and His 161, could be the reactive residues of the active site. We used a statistical method to predict certain features of the secondary structures, such as alpha helices, beta sheets, and turns, and found many of these conformations to be conserved. The hydropathy profiles of the compared proteases were also strikingly similar. Thus, the proteases of human picornaviruses very probably have a similar three-dimensional structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号