首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
在福建省三明市陈大国有林场开展杉木幼苗土壤增温试验,采用内生长环法研究土壤增温(+5℃)对杉木幼苗细根比呼吸速率和非结构性碳的影响,分析杉木人工林对全球变暖的地下响应及其适应性.结果表明:增温第二年,土壤增温引起细根组织内非结构性碳水化合物(NSC)的较大变化,1月增温处理0~1 mm细根NSC和淀粉浓度下降,1~2 mm细根可溶性糖和NSC浓度下降;7月增温处理0~1 mm细根NSC、可溶性糖和淀粉浓度提高,使1~2mm细根淀粉浓度增加.增温第3年,土壤增温对细根NSC无显著影响.增温处理使0~1 mm细根比根呼吸速率在增温第二年7月增加,而在第三年7月下降;与0~1 mm细根相比,增温处理对1~2 mm细根比呼吸速率没有显著影响.细根呼吸对增温的响应与增温持续时间有关,随增温时间的延长,细根呼吸产生部分驯化,同时能够使细根NSC浓度保持稳定.  相似文献   

2.
Total 66 small (<50m(2)), 24 medium (101-200m(2)) and 36 large (201-500m(2)) canopy gaps at the three sites of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh) forests were established in southern Québec, Canada. Half of the gaps were covered by 8x8m(2) shading cloths to mimic a closed canopy. From these gaps, 46 understory yellow birch and 46 sugar maple saplings with different tree ages and sizes were sampled. Single- and multi-variable linear and nonlinear models of root biomass and traits (root surface area, volume, length and endings) were developed and examined. Lorentzian model as a multi-variable nonlinear model was firstly applied to the simulations using both base diameter and height, and performed the best fit to total root biomass in both species with the highest correlation coefficients (R(2)=0.96 and 0.98) and smallest root mean squared deviations (RMSD=7.85 and 7.02) among all the examined models. The model also accurately simulated small fine root (2.0mm in diameter), coarse fine root (>2.0-5.0mm) and coarse root (>5.0mm) biomass (R(2)=0.87-0.99; RMSD=2.24-6.41), and the root traits (R(2)=0.71-0.99; RMSD=0.19-19.38). The study showed yellow birch roots were longer, larger, had more endings (tips) and grew faster than sugar maple roots. The root traits were largely distributed to small fine roots, sharply decreased from small fine roots to coarse fine roots, the fewest in coarse roots except for root volume. When trees were large, coarse root biomass increased more rapidly than fine root biomass, but vise versa when the trees were small.  相似文献   

3.
细根在森林生态系统地下碳循环过程中具有核心地位.2007年11月-2009年11月,对华西雨屏区苦竹人工林进行了模拟氮沉降试验.氮沉降水平分别为对照(CK,0 g N·m-2·a-1)、低氮(5 g N·m-2·a-1)、中氮(15 g N·m-2·a-1)和高氮(30 g N·m-2·a-1)处理,研究氮沉降对苦竹人工林细根和土壤根际呼吸的影响.结果表明:不同处理氮沉降下,<1 mm和1~2 mm细根特性差异较大,与< 1 mm细根相比,1~2 mm细根的木质素、磷和镁含量更高,而纤维素、钙含量更低;氮沉降显著增加了<2 mm细根生物量,对照、低氮、中氮和高氮处理的细根生物量分别为(533±89)、(630±140)、(632±168)和(820±161) g·m-2,氮、钾、镁元素含量也明显增加;苦竹林各处理年均土壤呼吸速率分别为(5.85±0.43)、(6.48±0.71)、(6.84±0.57)和(7.62±0.55) t C·hm-2·a-1,氮沉降对土壤呼吸有明显的促进作用;苦竹林的年均土壤呼吸速率与<2 mm细根生物量和细根N含量呈极显著线性相关.氮沉降使细根生物量和代谢强度增加,并通过增加微生物活性促进了根际土壤呼吸.  相似文献   

4.
The spatial root distribution after two years of three energy crops was investigated, with the influence of two rates of dairy pond effluent application, applied every fortnight. The roots of Salix viminalis PN 386 and NZ 1295 and Eucalyptus nitens were studied using soil cores. It was found that spatial distribution was influenced by effluent rate, with greater quantities of both fine and coarse roots in the top soil horizons with the higher effluent rate of 300 m3 ha(-1) compared to 150 m3 ha(-1). The study has implications on the harvesting of such crops using heavy machinery which could cause root damage and lessen vigour in the second rotation.  相似文献   

5.
Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, indicating increased carbon allocation to belowground components. We then compared wood respiration to wood growth and rhizosphere respiration to fine root growth and found that forests with residence times <40 yrs had significantly lower maintenance respiration for both wood and fine roots than forests with residence times >40 yrs. A comparison of rhizosphere respiration to fine root growth showed that rhizosphere growth respiration was significantly greater at low fertility sites. Overall, we found that Amazonian forests produce biomass less efficiently in stands with residence times >40 yrs and in stands with lower fertility, but changes to long‐term mean annual temperatures do not impact CUE.  相似文献   

6.
Soil temperature and moisture influence soil respiration at a range of temporal and spatial scales. Although soil temperature and moisture may be seasonally correlated, intra and inter-annual variations in soil moisture do occur. There are few direct observations of the influence of local variation in species composition or other stand/site characteristics on seasonal and annual variations in soil moisture, and on cumulative annual soil carbon release. Soil climate and soil respiration from twelve sites in five different forest types were monitored over a 2-year period (1998–1999). Also measured were stand age, species composition, basal area, litter inputs, total above-ground wood production, leaf area index, forest floor mass, coarse and fine root mass, forest floor carbon and nitrogen concentration, root carbon and nitrogen concentration, soil carbon and nitrogen concentration, coarse fraction mass and volume, and soil texture. General soil respiration models were developed using soil temperature, daily soil moisture, and various site/soil characteristics. Of the site/soil characteristics, above-ground production, soil texture, roots + forest floor mass, roots + forest floor carbon:nitrogen, and soil carbon:nitrogen were significant predictors of soil respiration when used alone in respiration models; all of these site variables were weakly to moderately correlated with mean site soil moisture. Daily soil climate data were used to estimate the annual release of carbon (C) from soil respiration for the period 1998–1999. Mean annual soil temperature did not differ between the 2 years but mean annual soil moisture was approximately 9% lower in 1998 due to a summer drought. Soil C respired during 1998 ranged from 8.57 to 11.43 Mg C ha−1 yr−1 while the same sites released 10.13 and 13.57 Mg C ha−1 yr−1 in 1999; inter-annual differences of 15.41 and 15.73%, respectively. Among the 12 sites studied, we calculated that the depression of soil respiration linked to the drought caused annual differences of soil respiration from 11.00 to 15.78%. Annual estimates of respired soil C decreased with increasing site mean soil moisture. Similarly, the difference of respired carbon between the drought and the non-drought years generally decreased with increasing site mean soil moisture.  相似文献   

7.
模拟氮沉降对华西雨屏区慈竹林土壤呼吸的影响   总被引:9,自引:3,他引:6  
Li RH  Tu LH  Hu TX  Zhang J  Lu Y  Liu WT  Luo SH  Xiang YB 《应用生态学报》2010,21(7):1649-1655
2007年12月至2008年11月,在华西雨屏区采用0(对照)、50、150、300kg.hm-2.a-1施氮处理和红外CO2分析法,研究了模拟N沉降对慈竹林土壤呼吸特征的影响.结果表明:慈竹林土壤呼吸速率年内季节变化呈明显的单峰型曲线,7月末最高,为(3.36±0.20)μmol.m-2.s-1,2月末最低,为(0.33±0.07)μmol.m-2.s-1.土壤呼吸速率与土壤温度之间呈极显著指数相关(P0.001),10cm深的土壤温度解释了土壤呼吸速率季节变化的91.6%;而土壤含水量与土壤呼吸之间相关性不显著(R2=0.0758).2008年6—11月根呼吸对土壤总呼吸的贡献率在46%~59%.50、150和300kg.hm-2.a-1施氮处理的年CO2释放量分别比对照低23.6%、46.7%和50.5%.0、50、150和300kg.hm-2.a-1施氮处理的土壤呼吸速率Q10值分别为3.72、3.51、2.95和2.71.  相似文献   

8.
应用封闭式生长室系统,研究了CO2浓度升高对红桦(Betula albosinensis)幼苗的根/冠、粗根和细根的干质量、非结构性碳水化合物类含量、碳含量和碳/氮、氮和磷的含量及氮磷吸收量的影响。结果表明:CO2浓度升高使红桦幼苗粗根和细根的干质量增加,同时根/冠值显著升高,表明CO2浓度升高使红桦幼苗生物量向根系的分配增加;与对照相比,粗根的还原糖、蔗糖和总可溶性糖含量显著增加,而在细根中没有显著变化;粗根、细根的淀粉和总的非结构性碳水化合物含量显著增加;CO2浓度升高下粗根和细根的碳含量有升高的趋势但未达到显著水平,同时氮含量降低,碳/氮值升高;氮的吸收量在粗根和细根中均无显著变化。上述结果表明,CO2浓度升高下红桦幼苗根系氮含量下降是由非结构性碳水化合物(主要是淀粉)含量升高和(或)根系生物量增加产生的稀释效应引起的。  相似文献   

9.
黄土高原4种植被类型的细根生物量和年生产量   总被引:1,自引:0,他引:1  
邓强  李婷  袁志友  焦峰 《生态学杂志》2014,25(11):3091-3098
细根(≤2 mm)在陆地生态系统净初级生产力的分配中占有重要地位,在碳循环和水土保持方面具有重要意义. 本文采用土钻法和内生长法,以黄土高原刺槐人工林、落叶灌木、退耕草地和沙蒿群落4种主要植被类型为对象,研究0~40 cm土层细根生物量、垂直分布和细根年生产量. 结果表明: 细根生物量与纬度呈线性负相关. 4种植被类型0~40 cm土层细根生物量的大小顺序为落叶灌木(220 g·m-2)>刺槐人工林(163 g·m-2)≈退耕草地(162 g·m-2)>沙蒿群落(79 g·m-2). 退耕草地直径≤1 mm细根生物量占直径≤2 mm总细根生物量的74.1%,在4种植被类型中最高;4种植被类型细根生物量随着土层深度的增加而减少,最大值均出现在0~10 cm土层. 退耕草地0~10 cm土层细根生物量占0~40 cm土层总细根生物量的44.1%,显著高于其他3种植被类型;细根年生产量与纬度呈线性负相关. 4种植被类型0~40 cm土层细根年生产量大小顺序为退耕草地(315 g·m-2·a-1)>落叶灌木(249 g·m-2·a-1)>刺槐人工林(219 g·m-2·a-1)>沙蒿群落(115 g·m-2·a-1),其中退耕草地显著高于其他3种植被类型. 退耕草地0~10 cm土层细根生产量占0~40 cm土层总细根生产量的40.4%,在4种植被类型中最高. 退耕草地细根周转时间为0.51 a,低于其他3种植被类型.  相似文献   

10.
Seasonal variation and depthwise distribution of dry matter in roots of different diameter classes and their annual production were studied using sequential core sampling. The investigations were carried out in three stands of a subtropical humid forest of north-east India representing different stages of regrowth after tree cutting. The mean annual standing crop of fine (<2 mm in diameter) and coarse (2–15 mm diameter) roots increased gradually from 5.4 Mg ha-1 and 0.7 Mg ha-1 in 7-yr old regrowth to 9.4 Mg ha-1 and 2.8 Mg ha-1 in 16-yr old regrowth, respectively. The contribution of fine roots to the total root mass declined from 88% in 7-yr old regrowth to 77% in both 13 and 16-yr old regrowths, while that of coarse roots increased from 12 to 23%. A major portion of fine roots (59–62%) was present in 0–10 cm soil layer, but the coarse roots were concentrated in 10–20 cm soil depth (38–48%). In all the three stands, biomass of both fine and coarse roots followed a unimodal growth curve by showing a gradual increase from spring/pre-rainy season to autumn/post-rainy season. Biomass to necromass ratio increased from 2.5 in the 7-yr old to 3.2 in the 16-yr old stand. The annual fine root production increased from 5.9 Mg ha-1 to 7.7 Mg ha-1 and total root production from 7.6 Mg ha-1 to 14.7 Mg ha-1 from 7-yr to 16-yr old regrowth.  相似文献   

11.
川滇高山栎灌丛萌生过程中的营养元素供应动态   总被引:4,自引:0,他引:4       下载免费PDF全文
萌生更新是森林更新的重要方式, 是硬叶栎林受到干扰后植被恢复的主要机制。以位于青藏高原东南缘的川西折多山东坡川滇高山栎(Quercus aquifoliodes)灌丛为研究对象, 调查分析了砍伐后灌丛萌生过程中基株根系和萌株生物量动态、营养元素含量, 以及基株根系和土壤对萌株生长过程中的营养元素供应动态。结果表明, 川滇高山栎灌丛平均地上和地下生物量分别为(11.25 ± 0.92) t·hm-2和(34.85 ± 2.02) t·hm-2, 具有较大的根冠比(3.10:1); 萌生过程中, 萌株生物量呈线性增加趋势, 以灌丛活细根生物量变化为最大, 其次是活中根和活粗根, 树桩和根蔸生物量变化最小; 萌生过程中, 灌丛细根和中根N、P含量表现为先增加、后降低的变化趋势, 萌生初期树桩、粗根和根蔸中N和K的含量明显下降, 根蔸中Ca含量略有下降, 而P没有明显下降, 根系Mg含量变化幅度较大, 灌丛地下根系储存了较多的营养元素; 土壤、树桩、粗根和根蔸是川滇高山栎灌丛砍伐后0-120天萌生生长的主要营养来源, 砍伐后60天, 萌株生长所需的营养除K元素主要来源于根系外, 其余营养元素主要来源于土壤; 在砍伐后60-120天, 基株根系对萌株生长所需的N、K和Ca贡献较大, 而对P和Mg的贡献较小; 在砍伐后120-180天, 根系除K元素对萌生生长还保持较大的贡献外, 对其余营养元素的贡献均较小。高山栎林管理要注重加强地下根系的保护。  相似文献   

12.
Root respiration has important implications for understanding plant growth as well as terrestrial carbon flux with a changing climate. Although soil temperature and soil moisture often interact, rarely have these interactions on root respiration been studied. This report is on the individual and combined effects of soil moisture and temperature on respiratory responses of single branch roots of 1-year-old Concord grape (Vitis labruscana Bailey) vines grown in a greenhouse. Under moist soil conditions, root respiration increased exponentially to short-term (1 h) increases in temperature between 10 degrees C and 33 degrees C. Negligible increases in root respiration occurred between 33 degrees C and 38 degrees C. By contrast to a slowly decreasing Q10 from short-term temperature increases, when roots were exposed to constant temperatures for 3 d, the respiratory Q10 between 10 degrees C and 30 degrees C diminished steeply with an increase in temperature. Above 30 degrees C, respiration declined with an increase in temperature. Membrane leakage was 89-98% higher and nitrogen concentration was about 18% lower for roots exposed to 35 degrees C for 3 d than for those exposed to 25 degrees C and 15 degrees C. There was a strong interaction of respiration with a combination of elevated temperature and soil drying. At low soil temperatures (10 degrees C), respiration was little influenced by soil drying, while at moderate to high temperatures (20 degrees C and 30 degrees C), respiration exhibited rapid declines with decreases in soil moisture. Roots exposed to drying soil also exhibited increased membrane leakage and reduced N. These findings of acclimation of root respiration are important to modelling respiration under different moisture and temperature regimes.  相似文献   

13.
Tu LH  Dai HZ  Hu TX  Zhang J  Luo SH 《应用生态学报》2011,22(4):829-836
From January 2008 to February 2009, a field experiment was conducted in Rainy Area of West China to understand the effects of nitrogen (N) deposition on the soil respiration in a Bambusa pervariabilis x Dendrocala mopsi plantation. Four treatments were installed, i. e., no N added (control), 5 g N m(-2) a(-1) (low-N), 15 g N m(-2) a(-1) (medium-N), and 30 g N m(-2) a(-1) (high-N), and soil respiration rate was determined by infra-red CO2 analyzer. In the plantation, soil respiration rate had an obvious seasonal change, with the maximum in July and the minimum in January. In control plot, the annual cumulative soil respiration was (389 +/- 34) g m(-2) a(-1). Soil respiration rate had significant positive exponential relationships with soil temperature at 10 cm depth and air temperature, and significant positive linear relationships with soil microbial biomass carbon (MBC) and nitrogen (MBN). Simulated N deposition promoted soil respiration significantly, with significant differences between the low- and medium-N and the control but no significant difference between high-N and the control. In control plot, surface soil (0-20 cm) MBC and MBN were 0.460 and 0.020 mg g(-1), respectively. In N-added plots, both the MBC and the MBN had significant increase. The fine root density in surface soil was 388 g m(-2), which was less affected by simulated N deposition. The soil respiration Q10 value calculated from soil temperature at 10 cm depth and air temperature was 2.66 and 1.87, respectively, and short-term N deposition had lesser effects on the Q10 value. The variation of soil respiration in the plantation was mainly controlled by temperature and soil microbial biomass, and simulated N deposition could increase the CO2 emission via increasing soil microbial biomass.  相似文献   

14.
水曲柳根系生物量、比根长和根长密度的分布格局   总被引:42,自引:3,他引:39  
采用连续钻取土芯法在生长季内对东北林业大学帽儿山实验林场17年生水曲柳人工林根系取样,研究水曲柳不同直径根系现存生物量、比根长和根长密度及垂直分布状况.结果表明,水曲柳人工林根系总生物量为1 637.6 g·m-2,其中活根生物量占85%,死根占15%.在活根生物量当中,粗根(直径5~30 mm)占的比例最高(69.95%),其次为活细根(直径<1 mm,13.53%),小根(1~2 mm)和中等直径的根(2~5 mm)比例较小(分别为7.21%和9.31%).直径<1 mm活细根的比根长为32.20 m·g-1,直径5~30 mm粗根的比根长为0.08 m·g-1.单位面积上活根的总长度为6 602.54 m·m-2,其中直径<1 mm的细根占92.43%,其它直径等级则不到活根总长度的8%.直径<1 mm的细根生物量与根长密度具显著线性关系(R2=0.923),但与比根长无显著相关关系(R2=0.134).  相似文献   

15.
该文研究了黄土丘陵半干旱区密植枣( Ziziphus jujuba ‘Lizao’)林群体根系随树龄变化的空间分布特征。对1年生、4年生、8年生和11年生4种树龄的密植枣林采用剖面法, 获得0-1 m土壤剖面上直径>3 mm、1-3 mm及<1 mm的根系数量和空间位置信息。利用方差分析, 评价了山地密植枣林林分根系随树龄变化的水平和垂直分布特征。结果表明: 3种直径的根系数量均随着树龄的增长而增加, 直径< 1 mm的根系增长速度最快; 随着土层加深, 根系数量递减, 1年生枣林的根系主要聚集在0-40 cm土层中, 4年生及以上树龄的根系主要分布在0-60 cm土层中; 0-1 m土层内, 1年生枣林(株距1.2 m)及4年以上树龄(株距2 m), 同树龄枣林中直径<1 mm的根系水平分布无差异; 同一土层中(0-20 cm, 20-40 cm, 40-60 cm), 无论树龄大小及离树干的水平位置如何, 不同直径根系的数量都无差异。研究表明: 在有水肥管理措施的条件下, 枣林根系垂直方向形成浅层型的适应模式; 在密植环境下, 枣林细根形成根网型的适应模式。  相似文献   

16.
Supply-side controls on soil respiration among Oregon forests   总被引:3,自引:0,他引:3  
To test the hypothesis that variation in soil respiration is related to plant production across a diverse forested landscape, we compared annual soil respiration rates with net primary production and the subsequent allocation of carbon to various ecosystem pools, including leaves, fine roots, forests floor, and mineral soil for 36 independent plots arranged as three replicates of four age classes in three climatically distinct forest types. Across all plots, annual soil respiration was not correlated with aboveground net primary production (R2=0.06, P>0.1) but it was moderately correlated with belowground net primary production (R2=0.46, P<0.001). Despite the wide range in temperature and precipitation regimes experienced by these forests, all exhibited similar soil respiration per unit live fine root biomass, with about 5 g of carbon respired each year per 1 g of fine root carbon (R2=0.45, P<0.001). Annual soil respiration was only weakly correlated with dead carbon pools such as forest floor and mineral soil carbon (R2=0.14 and 0.12, respectively). Trends between soil respiration, production, and root mass among age classes within forest type were inconsistent and do not always reflect cross‐site trends. These results are consistent with a growing appreciation that soil respiration is strongly influenced by the supply of carbohydrates to roots and the rhizosphere, and that some regional patterns of soil respiration may depend more on belowground carbon allocation than the abiotic constraints imposed on subsequent metabolism.  相似文献   

17.
The effect of stand age on soil respiration and its components was studied in a first rotation Sitka spruce chronosequence composed of 10‐, 15‐, 31‐, and 47‐year‐old stands established on wet mineral gley in central Ireland. For each stand age, three forest stands with similar characteristics of soil type and site preparation were used. There were no significant differences in total soil respiration among sites of the same age, except for the case of a 15‐year‐old stand that had lower soil respiration rates due to its higher productivity. Soil respiration initially decreased with stand age, but levelled out in the older stands. The youngest stands had significantly higher respiration rates than more mature sites. Annual soil respiration rates were modelled by means of temperature‐derived functions. The average Q 10 value obtained treating all the stands together was 3.8. Annual soil respiration rates were 991, 686, 556, and 564 g C m?2 for the 10‐, 15‐, 31‐, and 47‐year‐old stands, respectively. We used the trenching approach to separate soil respiration components. Heterotrophic respiration paralleled soil organic carbon dynamics over the chronosequence, decreasing with stand age to slightly increase in the oldest stand as a result of accumulated aboveground litter and root inputs. Root respiration showed a decreasing trend with stand age, which was explained by a decrease in fine root biomass over the chronosequence, but not by nitrogen concentration of fine roots. The decrease in the relative contribution of autotrophic respiration to total soil CO2 efflux from 59.3% in the youngest stand to 49.7% in the oldest stand was explained by the higher activity of the root system in younger stands. Our results show that stand age should be considered if simple temperature‐based models to predict annual soil respiration in afforestation sites are to be used.  相似文献   

18.
万木林保护区柑橘和锥栗园土壤呼吸的比较   总被引:5,自引:0,他引:5  
采用Li-8100开路式土壤碳通量系统,对福建省万木林保护区内柑橘和锥栗两果园土壤呼吸进行1年的定位观测,分析了土壤水热因子及人为管理措施对土壤呼吸的影响.结果表明:柑橘和锥栗园样地土壤的呼吸速率月变化均呈单峰型曲线,峰值分别出现在7月(3.76 μmol·m-2·s-1)和8月(2.69 μmol·m-2·s-1);柑橘和锥栗园样地土壤呼吸速率的年均值分别为2.68和1.55 μmol·m-2·s-1,且柑橘园土壤呼吸速率极显著高于锥栗园;土壤温度是影响土壤呼吸的主要因素,可以解释土壤呼吸速率月动态变化的73%~86%;锥栗园土壤含水量与土壤呼吸速率呈显著正相关,但柑橘园两者关系不显著;指数方程计算的柑橘和锥栗园土壤呼吸的Q10值分别为1.58和1.75;柑橘和锥栗园土壤呼吸年通量值分别为10.01和5.77tC·hm-2 ·a-1.  相似文献   

19.
Autotrophic respiration may regulate how ecosystem productivity responds to changes in temperature, atmospheric [CO2] and N deposition. Estimates of autotrophic respiration are difficult for forest ecosystems, because of the large amount of biomass, different metabolic rates among tissues, and seasonal variation in respiration rates. We examined spatial and seasonal patterns in autotrophic respiration in a Pinus strobus ecosystem, and hypothesized that seasonal patterns in respiration rates at a common temperature would vary with [N] for fully expanded foliage and fine roots, with photosynthesis for foliage, and with growth for woody tissues (stems, branches, and coarse roots). We also hypothesized that differences in [N] would largely explain differences in maintenance or dormant‐season respiration among tissues. For April–November, mean respiration at 15 °C varied from 1.5 to 2.8 μmol kg?1 s?1 for fully expanded foliage, 1.7–3.0 for growing foliage, 0.8–1.6 for fine roots, 0.6–1.1 (sapwood) for stems, 0.5–1.8 (sapwood) for branches, and 0.2–1.5 (sapwood) for coarse roots. Growing season variation in respiration for foliage produced the prior year was strongly related to [N] (r2 = 0.94), but fine root respiration was not related to [N]. For current‐year needles, respiration did not covary with [N]. Night‐time foliar respiration did not vary in concert with previous‐day photosynthesis for either growing or fully expanded needles. Stem growth explained about one‐third of the seasonal variation in stem respiration (r2 = 0.38), and also variation among trees (r2 = 0.43). We did not determine the cause of seasonal variation in branch and coarse root respiration, but it is unlikely to be directly related to growth, as the pattern of respiration in coarse roots and branches was not synchronized with stem growth. Seasonal variations in temperature‐corrected respiration rates were not synchronized among tissues, except foliage and branches. Spatial variability in dormant‐season respiration rates was significantly related to tissue N content in foliage (r2 = 0.67), stems (r2 = 0.45), coarse roots (r2 = 0.36), and all tissues combined (r2 = 0.83), but not for fine roots and branches. Per unit N, rates for P. strobus varied from 0.22 to 3.4 μmol molN?1 s?1 at 15 °C, comparable to those found for other conifers. Accurate estimates of annual autotrophic respiration should reflect seasonal and spatial variation in respiration rates of individual tissues.  相似文献   

20.
The short-term effects of sodium azide (NaN(3)) on water flow in red-osier dogwood (Cornus stolonifera Michx.) seedlings were examined in excised roots at a constant pressure of 0.3 MPa. NaN(3) significantly decreased root water flow rates (Q(v)). It also induced a significant reduction in root respiration and reduced stomatal conductance to a greater extent in intact seedlings than in excised shoots. Apoplastic flow of water increased with the NaN(3)-induced decreases in Q(v). Mercuric chloride (HgCl(2)) was also used to characterize the water flow responses and respiration of dogwood roots. Similarly to NaN(3), 0.1 and 0.3 mM HgCl(2) decreased root respiration rates and Q(v). The lower, 0.05 mM HgCl(2) treatment, reduced Q(v), but had no significant effect on root oxygen uptake. The reduction of Q(v) in HgCl(2)-treated plants was only partly reversed by 50 mM mercaptoethanol. The mercurial inhibition of Q(v) suggested the presence of Hg-sensitive water channels in dogwood roots. The results indicate that root-absorbed NaN(3) metabolically inhibited water channel activities in roots and in shoots and resulted in stomatal closure. It is suggested that the inhibition of respiration that occurs in plants stressed with environmental factors such as flooding, cold soils, and drought may be responsible for the closure of water channels in root cells and inhibition of root water flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号