首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Inferring parameters related to the aggregation pattern of parasites and to their dispersal propensity are important for predicting their ecological consequences and evolutionary potential. Nonetheless, it is notoriously difficult to infer these parameters from wildlife parasites given the difficulty in tracking these organisms. Molecular‐based inferences constitute a promising approach that has yet rarely been applied in the wild. Here, we combined several population genetic analyses including sibship reconstruction to document the genetic structure, patterns of sibship aggregation, and the dispersal dynamics of a non‐native parasite of fish, the freshwater copepod ectoparasite Tracheliastes polycolpus. We collected parasites according to a hierarchical sampling design, with the sampling of all parasites from all host individuals captured in eight sites spread along an upstream–downstream river gradient. Individual multilocus genotypes were obtained from 14 microsatellite markers, and used to assign parasites to full‐sib families and to investigate the genetic structure of Tpolycolpus among both hosts and sampling sites. The distribution of full‐sibs obtained among the sampling sites was used to estimate individual dispersal distances within families. Our results showed that Tpolycolpus sibs tend to be aggregated within sites but not within host individuals. We detected important upstream‐to‐downstream dispersal events of Tpolycolpus between sites (modal distance: 25.4 km; 95% CI [22.9, 27.7]), becoming scarcer as the geographic distance from their family core location increases. Such a dispersal pattern likely contributes to the strong isolation‐by‐distance observed at the river scale. We also detected some downstream‐to‐upstream dispersal events (modal distance: 2.6 km; 95% CI [2.2–23.3]) that likely result from movements of infected hosts. Within each site, the dispersal of free‐living infective larvae among hosts likely contributes to increasing genetic diversity on hosts, possibly fostering the evolutionary potential of T. polycolpus.  相似文献   

2.
In a conservation and sustainable management perspective, we identify the ecological, climatic, and demographic factors responsible for the genetic diversity patterns of the European silver fir (Abies alba Mill.) at its southwestern range margin (Pyrenees Mountains, France, Europe). We sampled 45 populations throughout the French Pyrenees and eight neighboring reference populations in the Massif Central, Alps, and Corsica. We genotyped 1,620 individuals at three chloroplast and ten nuclear microsatellite loci. We analyzed within‐ and among‐population genetic diversity using phylogeographic reconstructions, tests of isolation‐by‐distance, Bayesian population structure inference, modeling of demographic scenarios, and regression analyses of genetic variables with current and past environmental variables. Genetic diversity decreased from east to west suggesting isolation‐by‐distance from the Alps to the Pyrenees and from the Eastern to the Western Pyrenees. We identified two Pyrenean lineages that diverged from a third Alpine–Corsica–Massif Central lineage 0.8 to 1.1 M years ago and subsequently formed a secondary contact zone in the Central Pyrenees. Population sizes underwent contrasted changes, with a contraction in the west and an expansion in the east. Glacial climate affected the genetic composition of the populations, with the western genetic cluster only observed in locations corresponding to the coldest past climate and highest elevations. The eastern cluster was observed over a larger range of temperatures and elevations. All demographic events shaping the current spatial structure of genetic diversity took place during the Mid‐Pleistocene Transition, long before the onset of the Holocene. The Western Pyrenees lineage may require additional conservation efforts, whereas the eastern lineage is well protected in in situ gene conservation units. Due to past climate oscillations and the likely emergence of independent refugia, east–west oriented mountain ranges may be important reservoir of genetic diversity in a context of past and ongoing climate change in Europe.  相似文献   

3.
Pulping and papermaking generate large amounts of waste in the form of lignosulfonates which have limited valorized applications so far. Herein, we report a novel lignosulfonate‐based nanofiltration membrane, prepared by using polyethylenimine (PEI) and sodium lignosulfonate (SL) via a layer‐by‐layer (LbL) self‐assembly. As a low‐cost and renewable natural polyelectrolyte, SL is selected to replace the synthetic polyelectrolyte commonly used in the conventional LbL fabrication for composite membranes. The prepared LbL (PEI/SL)7 membranes were crosslinked by glutaraldehyde (GA) to obtain (PEI/SL)7‐GA membranes with compact selective layer. We characterized (PEI/SL)7 and (PEI/SL)7‐GA membranes to study the chemical compositions, morphologies, and surface hydrophilicity. To improve the nanofiltration performances of the (PEI/SL)7‐GA membranes for water desalination, we investigated the effects of the crosslinking time, GA concentration and the NaCl supporting electrolyte on membrane structure and performance. The optimized (PEI/SL)7‐GA membrane exhibited a permeating flux up to 39.6 L/(m2·h) and a rejection of 91.7% for the MgSO4 aqueous solution 2.0 g/L concentration, showing its promising potential for water desalination. This study provides a new approach to applying the underdeveloped lignin‐based biomass as green membrane materials for water treatment.  相似文献   

4.
This paper presents a microfluidic device capable of performing genetic analysis on dung samples to identify White Rhinoceros (Ceratotherium simum). The development of a microfluidic device, which can be used in the field, offers a portable and cost‐effective solution for DNA analysis and species identification to aid conservation efforts. Optimization of the DNA extraction processes produced equivalent yields compared to conventional kit‐based methods within just 5 minutes. The use of a color‐changing loop‐mediated isothermal amplification reaction for simultaneous detection of the cytochrome B sequence of C. simum enabled positive results to be obtained within as little as 30 minutes. Field testing was performed at Knowsley Safari to demonstrate real‐world applicability of the microfluidic device for testing of biological samples.  相似文献   

5.
For nearly all organisms, dispersal is a fundamental life‐history trait that can shape their ecology and evolution. Variation in dispersal capabilities within a species exists and can influence population genetic structure and ecological interactions. In fungus‐gardening (attine) ants, co‐dispersal of ants and mutualistic fungi is crucial to the success of this obligate symbiosis. Female‐biased dispersal (and gene flow) may be favored in attines because virgin queens carry the responsibility of dispersing the fungi, but a paucity of research has made this conclusion difficult. Here, we investigate dispersal of the fungus‐gardening ant Trachymyrmex septentrionalis using a combination of maternally (mitochondrial DNA) and biparentally inherited (microsatellites) markers. We found three distinct, spatially isolated mitochondrial DNA haplotypes; two were found in the Florida panhandle and the other in the Florida peninsula. In contrast, biparental markers illustrated significant gene flow across this region and minimal spatial structure. The differential patterns uncovered from mitochondrial DNA and microsatellite markers suggest that most long‐distance ant dispersal is male‐biased and that females (and concomitantly the fungus) have more limited dispersal capabilities. Consequently, the limited female dispersal is likely an important bottleneck for the fungal symbiont. This bottleneck could slow fungal genetic diversification, which has significant implications for both ant hosts and fungal symbionts regarding population genetics, species distributions, adaptive responses to environmental change, and coevolutionary patterns.  相似文献   

6.
Monoclonal anti‐SARS‐CoV‐2 immunoglobulins represent a treatment option for COVID‐19. However, their production in mammalian cells is not scalable to meet the global demand. Single‐domain (VHH) antibodies (also called nanobodies) provide an alternative suitable for microbial production. Using alpaca immune libraries against the receptor‐binding domain (RBD) of the SARS‐CoV‐2 Spike protein, we isolated 45 infection‐blocking VHH antibodies. These include nanobodies that can withstand 95°C. The most effective VHH antibody neutralizes SARS‐CoV‐2 at 17–50 pM concentration (0.2–0.7 µg per liter), binds the open and closed states of the Spike, and shows a tight RBD interaction in the X‐ray and cryo‐EM structures. The best VHH trimers neutralize even at 40 ng per liter. We constructed nanobody tandems and identified nanobody monomers that tolerate the K417N/T, E484K, N501Y, and L452R immune‐escape mutations found in the Alpha, Beta, Gamma, Epsilon, Iota, and Delta/Kappa lineages. We also demonstrate neutralization of the Beta strain at low‐picomolar VHH concentrations. We further discovered VHH antibodies that enforce native folding of the RBD in the E. coli cytosol, where its folding normally fails. Such “fold‐promoting” nanobodies may allow for simplified production of vaccines and their adaptation to viral escape‐mutations.  相似文献   

7.
The incidence of syphilis caused by Treponema pallidum subsp pallidum (T pallidum) infection is accompanied by inflammatory injuries of vascular endothelial cells. Studies have revealed that T pallidum infection could induce inflammasome activation and pyroptosis in macrophages. MicroRNA‐223‐3p (miR‐223‐3p) was reported to be a negative regulator in inflammatory diseases. The present study aimed to explore whether miR‐223‐3p regulates T pallidum‐induced inflammasome activation and pyroptosis in vascular endothelial cells, and determine the mechanisms which underlie this process. MiR‐223‐3p levels in syphilis and control samples were determined. The biological function of miR‐223‐3p in the NLRP3 inflammasome and pyroptosis was evaluated in T pallidum‐infected human umbilical vein endothelial cells (HUVECs). We observed a dramatic decrease in miR‐223‐3p levels in syphilis patients (n = 20) when compared to healthy controls (n = 20). Moreover, miR‐223‐3p showed a notable inhibitory effect on recombinant Tp17 (rTP17)‐induced caspase‐1 activation, resulting in decrease in IL‐1β production and pyroptosis, which was accompanied by the release of lactate dehydrogenase (LDH) in HUVECs. Additionally, the dual‐luciferase assay confirmed that NLRP3 is a direct target of miR‐223‐3p. Moreover, NLRP3 overexpression or knockdown largely blocked the effects of miR‐223‐3p on T pallidum‐induced inflammasome activation and pyroptosis in HUVECs. Most importantly, a notable negative correlation was observed between miR‐223‐3p and NLRP3, caspase‐1, and IL‐1β, respectively, in the serum of syphilis patients and healthy controls. Taken together, our results reveal that miR‐223‐3p targets NLRP3 to suppress inflammasome activation and pyroptosis in T pallidum‐infected endothelial cells, implying that miR‐223‐3p could be a potential target for syphilis patients.  相似文献   

8.
Human‐mediated habitat fragmentation in freshwater ecosystems can negatively impact genetic diversity, demography, and life history of native biota, while disrupting the behavior of species that are dependent on spatial connectivity to complete their life cycles. In the Alouette River system (British Columbia, Canada), dam construction in 1928 impacted passage of anadromous sockeye salmon (Oncorhynchus nerka), with the last records of migrants occurring in the 1930s. Since that time, O. nerka persisted as a resident population in Alouette Reservoir until experimental water releases beginning in 2005 created conditions for migration; two years later, returning migrants were observed for the first time in ~70 years, raising important basic and applied questions regarding life‐history variation and population structure in this system. Here, we investigated the genetic distinctiveness and population history of Alouette Reservoir O. nerka using genome‐wide SNP data (n = 7,709 loci) collected for resident and migrant individuals, as well as for neighboring anadromous sockeye salmon and resident kokanee populations within the Fraser River drainage (n = 312 individuals). Bayesian clustering and principal components analyses based on neutral loci revealed five distinct clusters, largely associated with geography, and clearly demonstrated that Alouette Reservoir resident and migrant individuals are genetically distinct from other O. nerka populations in the Fraser River drainage. At a finer level, there was no clear evidence for differentiation between Alouette Reservoir residents and migrants; although we detected eight high‐confidence outlier loci, they all mapped to sex chromosomes suggesting that differences were likely due to uneven sex ratios rather than life history. Taken together, these data suggest that contemporary Alouette Reservoir O. nerka represents a landlocked sockeye salmon population, constituting the first reported instance of deep‐water spawning behavior associated with this life‐history form. This finding punctuates the need for reassessment of conservation status and supports ongoing fisheries management activities in Alouette Reservoir.  相似文献   

9.
Hunting wild African harlequin quails (Coturnix delegorguei delegorguei) using traditional methods in Western Kenya has been ongoing for generations, yet their genetic diversity and evolutionary history are largely unknown. In this study, the genetic variation and demographic history of wild African harlequin quails were assessed using a 347bp mitochondrial DNA (mtDNA) control region fragment and 119,339 single nucleotide polymorphisms (SNPs) from genotyping‐by‐sequencing (GBS) data. Genetic diversity analyses revealed that the genetic variation in wild African harlequin quails was predominantly among individuals than populations. Demographic analyses indicated a signal of rapid demographic expansion, and the estimated time since population expansion was found to be 150,000–350,000 years ago, corresponding to around the Pliocene–Pleistocene boundary. A gradual decline in their effective population size was also observed, which raised concerns about their conservation status. These results provide the first account of the genetic diversity of wild African harlequin quails of Siaya, thereby creating a helpful foundation in their biodiversity conservation.  相似文献   

10.
This study aimed to explore the function of IFN‐γ+IL‐17+Th17 cells on fibrosis in systemic scleroderma (SSc). Blood and skin samples were collected from 20 SSc cases and 10 healthy individuals. The percentage of IFN‐γ+IL‐17+Th17 cells was detected using flow cytometry. The in vitro induction of IFN‐γ+IL‐17+Th17 cells was performed adopting PHA and rIL‐12. Gene expression was detected via quantitative real‐time polymerase chain reaction (qRT‐PCR), whereas western blot analysis was adopted for protein analysis. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with SSc stages (P = .031), disease duration (P = .016), activity (P = .025) and skin scores (P < .001). In vitro, IFN‐γ+IL‐17+Th17 cells could promote the expressions of α‐SMA and COL1A1, revealing increased fibroblasts’ proliferation and enhanced collagen‐secreting capacity. In addition, IL‐21 expression was significantly increased in co‐culture medium of IFN‐γ+IL‐17+Th17 cells and fibroblasts (P < .001). IL‐21 neutralizer treatment resulted in the down‐regulation of α‐SMA and COL1A1. IL‐21 was confirmed as an effector of IFN‐γ+IL‐17+Th17 cells in fibrosis process. The distribution of IFN‐γ+IL‐17+Th17 cells was significantly increased in SSc cases and positively correlated with disease activity. IFN‐γ+IL‐17+Th17 cells could promote fibroblast proliferation and enhance collagen‐secreting ability via producing IL‐21, thus contributing to fibrosis in SSc.  相似文献   

11.
The ecotype population of goats (Capra hircus) was created by long‐term artificial selection and natural adaptation. Mile red‐bone goat is an indigenous breed with visible red bones, and its special bone structure has received extensive attention. This study aimed to identify genetic variants and candidate genes associated with specific bone phenotypes using next‐generation sequencing technology (NGS). The results revealed that 31,828,206 single nucleotide polymorphisms (SNPs) were obtained from 72 goats (20 Mile red‐bone goats and 52 common goats) by NGS. A total of 100 candidate genes were identified on the basis top 1% window interaction from nucleotide diversity (π), π ratio (π A/π B), and pairwise fixation index (F ST). Exactly 77 known signaling pathways were enriched. Specifically, three coding genes (NMNAT2, LOC102172983, and PNLIP) were annotated in the vitamin metabolism signaling pathways, and NCF2 was annotated to the osteoclast (OC) differentiation pathway. Furthermore, 5862 reliable copy number variations (CNVs) were obtained, and 14 and 24 genes were annotated with the top 1‰ CNV based on F ST (>0.490) and V ST (>0.527), respectively. Several pathways related to bone development and metabolism of exogenous substances in vivo, including calcium signaling pathway, OC differentiation, and glycerophospholipid metabolism, were annotated. Specifically, six genes from 19 candidate CNVs, which were obtained by interaction of the top 1‰ CNVs with F ST and V ST, were annotated to mucin‐type O‐glycan biosynthesis and metabolic pathways. Briefly, the results implied that pseudopurpurin and specific genetic variants work together to contribute to the red‐bone color and specific bone structure of Mile red‐bone goat. This study is helpful to understanding the genetic basis of the unique bone phenotype of Mile red‐bone goats.  相似文献   

12.
Ecological, environmental, and geographic factors all influence genetic structure. Species with broad distributions are ideal systems because they cover a range of ecological and environmental conditions allowing us to test which components predict genetic structure. This study presents a novel, broad geographic approach using molecular markers, morphology, and habitat modeling to investigate rangewide and local barriers causing contemporary genetic differentiation within the geographical range of three white‐crowned sparrow (Zonotrichia leucophrys) subspecies: Z. l. gambelii, Z. l. oriantha, and Z. l. pugetensis. Three types of genetic markers showed geographic distance between sampling sites, elevation, and ecosystem type are key factors contributing to population genetic structure. Microsatellite markers revealed white‐crowned sparrows do not group by subspecies, but instead indicated four groupings at a rangewide scale and two groupings based on coniferous and deciduous ecosystems at a local scale. Our analyses of morphological variation also revealed habitat differences; sparrows from deciduous ecosystems are larger than individuals from coniferous ecosystems based on principal component analyses. Habitat modeling showed isolation by distance was prevalent in describing genetic structure, but isolation by resistance also had a small but significant influence. Not only do these findings have implications concerning the accuracy of subspecies delineations, they also highlight the critical role of local factors such as habitat in shaping contemporary population genetic structure of species with high dispersal ability.  相似文献   

13.
The marsh fritillary (Euphydryas aurinia) is a critically endangered butterfly species in Denmark known to be particularly vulnerable to habitat fragmentation due to its poor dispersal capacity. We identified and genotyped 318 novel SNP loci across 273 individuals obtained from 10 small and fragmented populations in Denmark using a genotyping‐by‐sequencing (GBS) approach to investigate its population genetic structure. Our results showed clear genetic substructuring and highly significant population differentiation based on genetic divergence (F ST) among the 10 populations. The populations clustered in three overall clusters, and due to further substructuring among these, it was possible to clearly distinguish six clusters in total. We found highly significant deviations from Hardy–Weinberg equilibrium due to heterozygote deficiency within every population investigated, which indicates substructuring and/or inbreeding (due to mating among closely related individuals). The stringent filtering procedure that we have applied to our genotype quality could have overestimated the heterozygote deficiency and the degree of substructuring of our clusters but is allowing relative comparisons of the genetic parameters among clusters. Genetic divergence increased significantly with geographic distance, suggesting limited gene flow at spatial scales comparable to the dispersal distance of individual butterflies and strong isolation by distance. Altogether, our results clearly indicate that the marsh fritillary populations are genetically isolated. Further, our results highlight that the relevant spatial scale for conservation of rare, low mobile species may be smaller than previously anticipated.  相似文献   

14.
Birds are known to act as potential vectors for the exogenous dispersal of bryophyte diaspores. Given the totipotency of vegetative tissue of many bryophytes, birds could also contribute to endozoochorous bryophyte dispersal. Research has shown that fecal samples of the upland goose (Chloephaga picta) and white‐bellied seedsnipe (Attagis malouinus) contain bryophyte fragments. Although few fragments from bird feces have been known to regenerate, the evidence for the viability of diaspores following passage through the bird intestinal tract remains ambiguous. We evaluated the role of endozoochory in these same herbivorous and sympatric bird species in sub‐Antarctic Chile. We hypothesized that fragments of bryophyte gametophytes retrieved from their feces are viable and capable of regenerating new plant tissue. Eleven feces disk samples containing undetermined moss fragments from C. picta (N = 6) and A. malouinus (N = 5) and six moss fragment samples from wild‐collected mosses (Conostomum tetragonum, Syntrichia robusta, and Polytrichum strictum) were grown ex situ in peat soil and in vitro using a agar Gamborg medium. After 91 days, 20% of fragments from A. malouinus feces, 50% of fragments from C. picta feces, and 67% of propagules from wild mosses produced new growth. The fact that moss diaspores remained viable and can regenerate under experimental conditions following the passage through the intestinal tracts of these robust fliers and altitudinal and latitudinal migrants suggests that sub‐Antarctic birds might play a role in bryophyte dispersal. This relationship may have important implications in the way bryophytes disperse and colonize habitats facing climate change.  相似文献   

15.
Melanoma is one of the most aggressive and life‐threatening skin cancers, and in this research, we aimed to explore the functional role of circular RNA VANGL1 (circVANGL1) in melanoma progression. The expression levels of circVANGL1 were observed to be significantly increased in clinical melanoma tissues and cell lines. Moreover, circVANGL1 knockdown suppressed, while circVANGL1 overexpression promoted the proliferation, migration and invasion abilities of melanoma cells. Further investigations confirmed the direct binding relation between circVANGL1 and miR‐150‐5p in melanoma, and restoration of miR‐150‐5p blocked the effects of circVANGL1 overexpression in melanoma cells. We further found that circVANGL1 was up‐regulated by TGF‐β treatment, and the enhanced EMT of TGF‐β‐treated melanoma cells was blocked by circVANGL1 knockdown. In conclusion, these results indicated that circVANGL1 might serve as a promising therapeutic target for melanoma.  相似文献   

16.
Treatment of multiple malignant solid tumours with programmed death (PD)‐1/PD ligand (PD‐L) 1 inhibitors has been reported. However, the efficacy and immune adverse effects of combination therapies are controversial. This meta‐analysis was performed with PubMed, Web of Science, Medline, EMBASE and Cochrane Library from their inception until January 2020. Random‐effect model was adopted because of relatively high heterogeneity. We also calculated hazard ratio (HR) of progression‐free survival (PFS), overall survival (OS) and risk ratio (RR) of adverse events (AEs), the incidence of grade 3‐5 AEs by tumour subgroup, therapeutic schedules and therapy lines. Nineteen articles were selected using the search strategy for meta‐analysis. Combined PD‐1/PD‐L1 inhibitors prolonged OS and PFS (HR 0.72, P < 0.001) and (HR 0.66, P < 0.001). In addition, incidence of all‐grade and grade 3‐5 AEs was not significant in the two subgroup analyses (HR 1.01, P = 0.31) and (HR 1.10, P = 0.07), respectively. Our meta‐analysis indicated that combination therapy with PD‐1/PD‐L1 inhibitors had greater clinical benefits and adverse events were not increased significantly.  相似文献   

17.
ObjectivesIdiopathic pulmonary fibrosis (IPF) is marked by the excessive accumulation of extracellular matrix, which participates in a variety of chronic diseases or injuries and seriously threatens human health. Due to the side effects of clinical drugs, there is still a need to develop novel and less toxic drugs to treat pulmonary fibrosis.Materials and MethodsSKLB‐YTH‐60 was developed through computer‐aided drug design, de novo synthesis and high‐throughput screening. We employed the bleomycin (BLM)‐induced lung fibrosis animal models and used TGF‐β1 to induce the epithelial‐mesenchymal transition (EMT) of A549 cells in vitro. Meanwhile, the protein expression of collagen I and the α‐smooth muscle actin (α‐SMA), E‐cadherin, p‐FGFR1, p‐PLCγ, p‐Smad2/3 and p‐Erk1/2 was detected by western blot.ResultsYTH‐60 has obvious anti‐proliferative activity on fibroblasts and A549 cells. Moreover, YTH‐60 could impair the EMT of A549 cells and suppressed fibrosis by inhibiting FGFR and TGF‐β/Smad‐dependent pathways. Intraperitoneal administration of preventive YTH‐60 could significantly reduce the degree of fibrosis in mice and regulate the imbalance of the immune microenvironment. In addition, we observed that therapeutic YTH‐60 treatment attenuated fibrotic changes in mice during the period of fibrosis. Importantly, YTH‐60 has shown an acceptable oral bioavailability (F = 17.86%) and appropriate eliminated half‐life time (T 1/2 = 8.03 hours).ConclusionsTaken together, these preclinical evaluations suggested that YTH‐60 could be a promising drug candidate for treating IPF.  相似文献   

18.
SARS‐CoV‐2 is responsible for a disruptive worldwide viral pandemic, and renders a severe respiratory disease known as COVID‐19. Spike protein of SARS‐CoV‐2 mediates viral entry into host cells by binding ACE2 through the receptor‐binding domain (RBD). RBD is an important target for development of virus inhibitors, neutralizing antibodies, and vaccines. RBD expressed in mammalian cells suffers from low expression yield and high cost. E. coli is a popular host for protein expression, which has the advantage of easy scalability with low cost. However, RBD expressed by E. coli (RBD‐1) lacks the glycosylation, and its antigenic epitopes may not be sufficiently exposed. In the present study, RBD‐1 was expressed by E. coli and purified by a Ni Sepharose Fast Flow column. RBD‐1 was structurally characterized and compared with RBD expressed by the HEK293 cells (RBD‐2). The secondary structure and tertiary structure of RBD‐1 were largely maintained without glycosylation. In particular, the major β‐sheet content of RBD‐1 was almost unaltered. RBD‐1 could strongly bind ACE2 with a dissociation constant (KD) of 2.98 × 10–8 M. Thus, RBD‐1 was expected to apply in the vaccine development, screening drugs and virus test kit.  相似文献   

19.
While the bone morphogenetic protein‐7 (BMP‐7) is a well‐known therapeutic growth factor reverting many fibrotic diseases, including peritoneal fibrosis by peritoneal dialysis (PD), soluble growth factors are largely limited in clinical applications owing to their short half‐life in clinical settings. Recently, we developed a novel drug delivery model using protein transduction domains (PTD) overcoming limitation of soluble recombinant proteins, including bone morphogenetic protein‐7 (BMP‐7). This study aims at evaluating the therapeutic effects of PTD‐BMP‐7 consisted of PTD and full‐length BMP‐7 on epithelial‐mesenchymal transition (EMT)‐related fibrosis. Human peritoneal mesothelial cells (HPMCs) were then treated with TGF‐β1 or TGF‐β1 + PTD‐BMP‐7. Peritoneal dialysis (PD) catheters were inserted into Sprague‐Dawley rats, and these rats were infused intra‐peritoneally with saline, peritoneal dialysis fluid (PDF) or PDF + PTD‐BMP‐7. In vitro, TGF‐β1 treatment significantly increased fibronectin, type I collagen, α‐SMA and Snail expression, while reducing E‐cadherin expression in HPMCs (P < .001). PTD‐BMP‐7 treatment ameliorated TGF‐β1‐induced fibronectin, type I collagen, α‐SMA and Snail expression, and restored E‐cadherin expression in HPMCs (P < .001). In vivo, the expressions of EMT‐related molecules and the thickness of the sub‐mesothelial layer were significantly increased in the peritoneum of rats treated with PDF, and these changes were significantly abrogated by the intra‐peritoneal administration of PTD‐BMP‐7. PTD‐BMP‐7 treatment significantly inhibited the progression of established PD fibrosis. These findings suggest that PTD‐BMP‐7, as a prodrug of BMP‐7, can be an effective therapeutic agent for peritoneal fibrosis in PD patients.  相似文献   

20.
Buccinum undatum is a subtidal gastropod that exhibits clear spatial variation in several phenotypic shell traits (color, shape, and thickness) across its North Atlantic distribution. Studies of spatial phenotypic variation exist for the species; however, population genetic studies have thus far relied on a limited set of mitochondrial and microsatellite markers. Here, we greatly expand on previous work by characterizing population genetic structure in B. undatum across the North Atlantic from SNP variation obtained by RAD sequencing. There was a high degree of genetic differentiation between Canadian and European populations (Iceland, Faroe Islands, and England) consistent with the divergence of populations in allopatry (F ST > 0.57 for all pairwise comparisons). In addition, B. undatum populations within Iceland, the Faroe Islands, and England are typified by weak but significant genetic structuring following an isolation‐by‐distance model. Finally, we established a significant correlation between genetic structuring in Iceland and two phenotypic traits: shell shape and color frequency. The works detailed here enhance our understanding of genetic structuring in B. undatum and establish the species as an intriguing model for future genome‐wide association studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号