首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
The phenotypic space encompasses the assemblage of trait combinations yielding well‐suited integrated phenotypes. At the population level, understanding the phenotypic space structure requires the quantification of among‐ and within‐population variations in traits and the correlation pattern among them. Here, we studied the phenotypic space of the annual plant Diplotaxis acris occurring in hyperarid deserts. Given the advance of warming and aridity in vast regions occupied by drylands, D. acris can indicate the successful evolutionary trajectory that many other annual plant species may follow in expanding drylands. To this end, we conducted a greenhouse experiment with 176 D. acris individuals from five Saudi populations to quantify the genetic component of variation in architectural and life history traits. We found low among‐population divergence but high among‐individual variation in all traits. In addition, all traits showed a high degree of genetic determination in our study experimental conditions. We did not find significant effects of recruitment and fecundity on fitness. Finally, all architectural traits exhibited a strong correlation pattern among them, whereas for life history traits, only higher seed germination implied earlier flowering. Seed weight appeared to be an important trait in D. acris as individuals with heavier seeds tended to advance flowering and have a more vigorous branching pattern, which led to higher fecundity. Population divergence in D. acris might be constrained by the severity of the hyperarid environment, but populations maintain high among‐individual genetic variation in all traits. Furthermore, D. acris showed phenotypic integration for architectural traits and, to a lesser extent, for life history traits. Overall, we hypothesize that D. acris may be fine‐tuned to its demanding extreme environments. Evolutionary speaking, annual plants facing increasing warming, aridity, and environmental seasonality might modify their phenotypic spaces toward new phenotypic configurations strongly dominated by correlated architectural traits enhancing fecundity and seed‐related traits advancing flowering time.  相似文献   

2.
Aim To analyse the phylogeographical history of intertidal tardigrades in the North Atlantic in order to improve our understanding of geographical differentiation in microscopic organisms, and to understand the potential importance of the Mid‐Atlantic Islands as stepping stones between the American and European coasts of the Atlantic Ocean. Location Twenty‐four localities from the Mid‐Atlantic Islands (Greenland, Iceland and the Faroe Islands) and both sides of the North Atlantic Ocean. Methods A mitochondrial marker (cytochrome c oxidase subunit I) was sequenced from individual tardigrades belonging to the genus Echiniscoides. The existence of cryptic species was detected using generalized mixed Yule coalescence analysis; lineage ages were estimated with relaxed clock methods; and the degree of geographical differentiation was analysed with samova analyses, haplotype networks and Mantel tests. Results Echiniscoides hoepneri, previously known only from Greenland, was recovered throughout the Mid‐Atlantic Islands. The Faroe Islands population was isolated from Greenland and Iceland, but overall genetic variation was low. The morphospecies Echiniscoides sigismundi had high genetic variation and consisted of at least two cryptic species. A northern and a southern species were both recovered on both sides of the Atlantic, but only the northern species was found on the Mid‐Atlantic Islands. The northern species showed signs of long‐term isolation between the Western and Eastern Atlantic, despite the potential of the Mid‐Atlantic islands to act as stepping‐stones. There was no sign of long‐term isolation in the southern species. The Mid‐Atlantic individuals of the northern species were of Eastern Atlantic origin, but Greenland and Iceland showed signs of long‐term isolation. The genetic pattern found in the southern species is not clearly geographical, and can probably be best explained by secondary contact between former isolated populations. Main conclusions North Atlantic intertidal tardigrades from the genus Echiniscoides showed strong geographical differentiation, and the Mid‐Atlantic Islands seemed unimportant as stepping stones across the Atlantic. The geographical variation of the northern species of E. sigismundi suggests post‐glacial recolonization from several refugia.  相似文献   

3.
4.
Population connectivity resulting from larval dispersal is essential for the maintenance or recovery of populations in marine ecosystems, including coral reefs. Studies of species diversity and genetic connectivity within species are essential for the conservation of corals and coral reef ecosystems. We analyzed mitochondrial DNA sequence types and microsatellite genotypes of the broadcast‐spawning coral, Galaxea fascicularis, from four regions in the subtropical Nansei Islands in the northwestern Pacific Ocean. Two types (soft and hard types) of nematocyst morphology are known in G. fascicularis and are significantly correlated with the length of a mitochondrial DNA noncoding sequence (soft type: mt‐L; hard type: mt‐S type). Using microsatellites, significant genetic differentiation was detected between the mitochondrial DNA sequence types in all regions. We also found a third genetic cluster (mt‐L+), and this unexpected type may be a cryptic species of Galaxea. High clonal diversity was detected in both mt‐L and mt‐S types. Significant genetic differentiation, which was found among regions within a given type (F ST = 0.009–0.024, all Ps ≤ 0.005 in mt‐L; 0.009–0.032, all Ps ≤ 0.01 in mt‐S), may result from the shorter larval development than in other broadcast‐spawning corals, such as the genus Acropora. Nevertheless, intraspecific genetic diversity and connectivity have been maintained, and with both sexual and asexual reproduction, this species appears to have a potential for the recovery of populations after disturbance.  相似文献   

5.
The two North Atlantic eel species, the European eel (Anguilla anguilla) and the American eel (Anguilla rostrata), spawn in partial sympatry in the Sargasso Sea, providing ample opportunity to interbreed. In this study, we used a RAD (Restriction site Associated DNA) sequencing approach to identify species-specific diagnostic single-nucleotide polymorphisms (SNPs) and design a low-density array that combined with screening of a diagnostic mitochondrial DNA marker. Eels from Iceland (N=159) and from the neighboring Faroe Islands (N=29) were genotyped, along with 94 larvae (49 European and 45 American eel) collected in the Sargasso Sea. Our SNP survey showed that the majority of Icelandic eels are pure European eels but there is also an important contribution of individuals of admixed ancestry (10.7%). Although most of the hybrids were identified as F1 hybrids from European eel female × American eel male crosses, backcrosses were also detected, including a first-generation backcross (F1 hybrid × pure European eel) and three individuals identified as second-generation backcrosses originating from American eel × F1 hybrid backcrosses interbreeding with pure European eels. In comparison, no hybrids were observed in the Faroe Islands, the closest bodies of land to Iceland. It is possible that hybrids show an intermediate migratory behaviour between the two parental species that ultimately brings hybrid larvae to the shores of Iceland, situated roughly halfway between the Sargasso Sea and Europe. Only two hybrids were observed among Sargasso Sea larvae, both backcrosses, but no F1 hybrids, that points to temporal variation in the occurrence of hybridization.  相似文献   

6.
In the Atacama Desert from northern Chile (19–24°S), Prosopis (Leguminosae) individuals are restricted to oases that are unevenly distributed and isolated from each other by large stretches of barren landscape constituting an interesting study model as the degree of connectivity between natural populations depends on their dispersal capacity and the barriers imposed by the landscape. Our goal was to assess the genetic diversity and the degree of differentiation among groups of Prosopis individuals of different species from Section Algarobia and putative hybrids (hereafter populations) co‐occurring in these isolated oases from the Atacama Desert and determine whether genetic patterns are associated with dispersal barriers. Thirteen populations were sampled from oases located on three hydrographic basins (Pampa del Tamarugal, Rio Loa, and Salar de Atacama; northern, central, and southern basins, respectively). Individuals genotyped by eight SSRs show high levels of genetic diversity (H O = 0.61, A r = 3.5) and low but significant genetic differentiation among populations (F ST = 0.128, F ST‐ENA = 0.129, D JOST = 0.238). The AMOVA indicates that most of the variation occurs within individuals (79%) and from the variance among individuals (21%); almost, the same variation can be found between basins and between populations within basins. Differentiation and structure results were not associated with the basins, retrieving up to four genetic clusters and certain admixture in the central populations. Pairwise differentiation comparisons among populations showed inconsistencies considering their distribution throughout the basins. Genetic and geographic distances were significantly correlated at global and within the basins considered (p < .02), but low correlation indices were obtained (r < .37). These results are discussed in relation to the fragmented landscape, considering both natural and non‐natural (humans) dispersal agents that may be moving Prosopis in the Atacama Desert.  相似文献   

7.
Foliose species of the Bangiales (Porphyra sensu lato) have a long history of study in the N Atlantic, but there are still regions, especially in the northern parts of the N Atlantic that need more attention. A molecular study using rbcL and cox1 sequences was undertaken to assess the diversity of foliose Bangiales species in Iceland and the Faroe Islands. Herbarium collections from the intertidal and subtidal of Iceland (summer and winter) and the Faroe Islands (all seasons) revealed a total of 13 species (11 common to both areas), which were referred to four of the genera recognized in a recent two-gene global phylogeny. Boreophyllum birdiae, Porphyra dioica, P. linearis, P. purpurea, P. umbilicalis, Pyropialeucosticta’ A, Pyropia njordii Mols-Mortensen, J. Brodie & Neefus, sp. nov., Wildemania amplissima and W. miniata were common to both areas, while Pyropia thulaea and Wildemania abyssicola (Kjellman) A. Mols-Mortensen & J. Brodie, comb. nov. (=Porphyra abyssicola Kjellman) were reported from Iceland but not from the Faroe Islands; Porphyra sp. FO and Pyropia elongata were reported from the Faroe Islands but not from Iceland. Boreophyllum birdiae is reported for the first time for Iceland and Porphyra sp. FO is reported for the first time for the Faroe Islands. Pyropia njordii is described from the Faroe Islands and is also recorded for Iceland, Greenland, New England, USA and Nova Scotia, Canada. A total of 25 foliose Bangiales species are now reported from the N Atlantic and these results demonstrate the importance of investigating as many areas as possible to reach a more complete understanding of species diversity and distribution.  相似文献   

8.
Why invasive species can rapidly adapt to novel environments is a puzzling question known as the genetic paradox of invasive species. This paradox is explainable in terms of transposable elements (TEs) activity, which are theorized to be powerful mutational forces to create genetic variation. Mikania micrantha, a noxious invasive weed, in this sense provides an excellent opportunity to test the explanation. The genetic and epigenetic variation of 21 invasive populations of M. micrantha in southern China have been examined by using transposon display (TD) and transposon methylation display (TMD) techniques to survey 12 TE superfamilies. Our results showed that M. micrantha populations maintained an almost equally high level of TE‐based genetic and epigenetic variation and they have been differentiated into subpopulations genetically and epigenetically. A similar positive spatial genetic and epigenetic structure pattern was observed within 300 m. Six and seven TE superfamilies presented significant genetic and epigenetic isolation by distance (IBD) pattern. In total, 59 genetic and 86 epigenetic adaptive TE loci were identified. Of them, 51 genetic and 44 epigenetic loci were found to correlate with 25 environmental variables (including precipitation, temperature, vegetation coverage, and soil metals). Twenty‐five transposon‐inserted genes were sequenced and homology‐based annotated, which are found to be involved in a variety of molecular and cellular functions. Our research consolidates the importance of TE‐associated genetic and epigenetic variation in the rapid adaptation and invasion of M. micrantha.  相似文献   

9.
Yam is an important edible tuber and root plant worldwide; China as one of the native places of yams has many diverse local resources. The goal of this study was to clarify the genetic diversity of the commonly cultivated yam landraces and the genetic relationship between the main yam species in China. In this study, 26 phenotypic traits of 112 yam accessions from 21 provinces in China were evaluated, and 24 simple sequence repeat (SSR) and 29 sequence‐related amplified polymorphism (SRAP) markers were used for the genetic diversity analysis. Phenotypic traits revealed that Dioscorea opposita had the highest genetic diversity, followed by D. alata, D. persimilis, D. fordii, and D. esculenta. Among the 26 phenotypic traits, the Shannon diversity indexes of leaf shape, petiole color, and stem color were high, and the range in the variation of tuber‐related traits in the underground part was higher than that in the aboveground part. All accessions were divided into six groups by phenotypic trait clustering, which was also supported by principal component analysis (PCA). Molecular marker analysis showed that SSR and SRAP markers had good amplification effects and could effectively and accurately evaluate the genetic variation of yam. The unweighted pair‐group method with arithmetic means analysis based on SSR‐SRAP marker data showed that the 112 accessions were also divided into six groups, similar to the phenotypic trait results. The results of PCA and population structure analysis based on SSR‐SRAP data also produced similar results. In addition, the analysis of the origin and genetic relationship of yam indicated that the species D. opposita may have originated from China. These results demonstrate the genetic diversity and distinctness among the widely cultivated species of Chinese yam and provide a theoretical reference for the classification, breeding, germplasm innovation, utilization, and variety protection of Chinese yam resources.  相似文献   

10.
The Small East African (SEA) goat are widely distributed in different agro‐ecological zones of Tanzania. We report the genetic diversity, maternal origin, and phylogenetic relationship among the 12 Tanzanian indigenous goat populations, namely Fipa, Songwe, Tanga, Pwani, Iringa, Newala, Lindi, Gogo, Pare, Maasai, Sukuma, and Ujiji, based on the mitochondrial DNA (mtDNA) D‐loop. High haplotype (H d = 0.9619–0.9945) and nucleotide (π = 0.0120–0.0162) diversities were observed from a total of 389 haplotypes. The majority of the haplotypes (n = 334) belonged to Haplogroup A which was consistent with the global scenario on the genetic pattern of maternal origin of all goat breeds in the world. Haplogroup G comprised of 45 haplotypes drawn from all populations except the Ujiji goat population while Haplogroup B with 10 haplotypes was dominated by Ujiji goats (41%). Tanzanian goats shared four haplotypes with the Kenyan goats and two with goats from South Africa, Namibia, and Mozambique. There was no sharing of haplotypes observed between individuals from Tanzanian goat populations with individuals from North or West Africa. The indigenous goats in Tanzania have high genetic diversity defined by 389 haplotypes and multiple maternal origins of haplogroup A, B, and G. There is a lot of intermixing and high genetic variation within populations which represent an abundant resource for selective breeding in the different agro‐ecological regions of the country.  相似文献   

11.
Genetic structuring of wild populations is dependent on environmental, ecological, and life‐history factors. The specific role environmental context plays in genetic structuring is important to conservation practitioners working with rare species across areas with varying degrees of fragmentation. We investigated fine‐scale genetic patterns of the federally threatened Eastern Massasauga Rattlesnake (Sistrurus catenatus) on a relatively undisturbed island in northern Michigan, USA. This species often persists in habitat islands throughout much of its distribution due to extensive habitat loss and distance‐limited dispersal. We found that the entire island population exhibited weak genetic structuring with spatially segregated variation in effective migration and genetic diversity. The low level of genetic structuring contrasts with previous studies in the southern part of the species’ range at comparable fine scales (~7 km), in which much higher levels of structuring were documented. The island population''s genetic structuring more closely resembles that of populations from Ontario, Canada, that occupy similarly intact habitats. Intrapopulation variation in effective migration and genetic diversity likely corresponds to the presence of large inland lakes acting as barriers and more human activity in the southern portion of the island. The observed genetic structuring in this intact landscape suggests that the Eastern Massasauga is capable of sufficient interpatch movements to reduce overall genetic structuring and colonize new habitats. Landscape mosaics with multiple habitat patches and localized barriers (e.g., large water bodies or roads) will promote gene flow and natural colonization for this declining species.  相似文献   

12.
Understanding the forces that drive genotypic and phenotypic change in wild populations is a central goal of evolutionary biology. We examined exome variation in populations of deer mice from two of the California Channel Islands: Peromyscus maniculatus elusus from Santa Barbara Island and P. m. santacruzae from Santa Cruz Island exhibit significant differences in olfactory predator recognition, activity timing, aggressive behavior, morphology, prevalence of Sin Nombre virus, and population densities. We characterized variation in protein‐coding regions using exome capture and sequencing of 25 mice from Santa Barbara Island and 22 mice from Santa Cruz Island. We identified and examined 386,256 SNPs using three complementary methods (BayeScan, pcadapt, and LFMM). We found strong differences in molecular variation between the two populations and 710 outlier SNPs in protein‐coding genes that were detected by all three methods. We identified 35 candidate genes from this outlier set that were related to differences in phenotypes between island populations. Enrichment analyses demonstrated that patterns of molecular variation were associated with biological processes related to response to chemical stimuli and regulation of immune processes. Candidate genes associated with olfaction (Gfy, Tlr2, Vmn13r2, numerous olfactory receptor genes), circadian activity (Cry1), anxiety (Brca1), immunity (Cd28, Eif2ak4, Il12a, Syne1), aggression (Cyp19a, Lama2), and body size (Bc16, Syne1) exhibited non‐synonymous mutations predicted to have moderate to large effects. Variation in olfaction‐related genes, including a stop codon in the Santa Barbara Island population, suggests loss of predator‐recognition traits at the molecular level, consistent with a lack of behavioral aversion to fox feces. These findings also suggest that divergent pathogen prevalence and population density may have influenced adaptive immunity and behavioral phenotypes, such as reduced aggression. Overall, our study indicates that ecological differences between islands are associated with signatures of selection in protein‐coding genes underlying phenotypes that promote success in those environments.  相似文献   

13.
During ongoing DNA barcode (COI‐5P) surveys of the macroalgal flora along the northwest Atlantic coast, we discovered a population of Ceramium secundatum in Narragansett Bay, Rhode Island, USA. This species is regarded as common and widespread in the northeast Atlantic, ranging from Norway to Morocco, but until now has not been reported from the western Atlantic. Several lines of evidence suggest that C. secundatum may be introduced to Narragansett Bay: (1) despite extensive collecting, specimens have only been obtained from a limited geographic range in the northwest Atlantic; (2) three other nonindigenous seaweed species are reportedly introduced in this region, which is thought to be a consequence of shipping; and (3) this species is introduced to South Africa and New Zealand. To investigate this suspected introduction, we applied population genetic analyses (using the cox2‐3 spacer) to compare the Narragansett Bay C. secundatum population to native populations in the Republic of Ireland and the United Kingdom. Collectively, analyses of biogeographical and molecular data indicate that C. secundatum is likely introduced to Narragansett Bay. The implications of this discovery are discussed.  相似文献   

14.
Many Northeast (NE) Pacific fishes and invertebrates survived Pleistocene glaciations in northern refugia, but the extent that kelps survived in northern areas is uncertain. Here, we test the hypothesis that populations of sugar kelp (Saccharina latissima) persisted in the Gulf of Alaska during ice‐age maxima when the western margin of the Cordilleran ice sheet covered coastal areas around the NE Pacific Ocean. We estimated genetic diversities within and phylogeographical relationships among 14 populations along 2,800 km in the NE Pacific and Bering Sea with partial sequences of mitochondrial DNA 5′‐cytochrome oxidase subunit I (COI, bp = 624, n = 543), chloroplast DNA ribulose‐1,5‐bisphosphate carboxylase large subunit‐3′ (rbcL, bp = 735, n = 514), and 11 microsatellite loci. Concatenated sequences of rbcL and COI showed moderate levels of within‐population genetic diversity (mean h = 0.200) but substantial differences among populations (ΦST = 0.834, p < .0001). Microsatellites showed moderate levels of heterozygosity within populations (mean H E = 0.391). Kelps in the same organellar lineage tended to cluster together, regardless of geographic origins, as indicated in a principal coordinate analysis (PCoA) of microsatellite genotypes. The PCoA also showed evidence of nuclear hybridizations between co‐occurring organellar lineages. Individual admixture plots with population clusters of K = 2, 6, and 9 showed increasing complexity with considerable historical admixture between some clusters. A time‐calibrated phylogeny placed divergences between rbcL‐COI lineages at 1.4 million years at most. The time frames of mutation in the rbcL‐COI lineages and microsatellite population clusters differed among locations. The existence of ancient lineages in the Gulf of Alaska, moderate levels of genetic diversity, and the absence of departures from neutrality are consistent with northern refugia during multiple Croll‐Milankovitch climate cycles in the Pleistocene Epoch.  相似文献   

15.
The contribution of phenotypically plastic traits to evolution depends on the degree of environmental influence on the target of selection (the phenotype) as well as the underlying genetic structure of the trait and plastic response. Likewise, maternal effects can help or hinder evolution through affects to the response to selection. The sacoglossan sea slug Alderia willowi exhibits intraspecific variation for developmental mode (= poecilogony) that is environmentally modulated with populations producing more yolk‐feeding (lecithotrophic) larvae during the summer, and more planktonic‐feeding (planktotrophic) larvae in the winter. I found significant family‐level variation in the reaction norms between 17 maternal families of A. willowi when reared in a split‐brood design in low (16 ppt) versus high (32 ppt) salinity, conditions which mimic seasonal variation in salinity of natural populations. I documented a significant response to selection for lecithotrophic larvae in high and low salinity. The slope of the reaction norm was maintained following one generation of selection for lecithotrophy. When the maternal environment was controlled in the laboratory, I found significant maternal effects, which reduced the response to selection. These results suggest there is standing genetic variation for egg‐mass type in A. willowi, but the ability of selection to act on that variation may depend on the environment in which the phenotype is expressed in preceding generations.  相似文献   

16.
To predict how widely distributed species will perform under future climate change, it is crucial to understand and reveal their underlying phylogenetics. However, detailed information about plant adaptation and its genetic basis and history remains scarce and especially widely distributed species receive little attention despite their putatively high adaptability.To examine the adaptation potential of a widely distributed species, we sampled the model plant Silene vulgaris across Europe. In a greenhouse experiment, we exposed the offspring of these populations to a climate change scenario for central Europe and revealed the population structure through whole‐genome sequencing. Plants were grown under two temperatures (18°C and 21°C) and three precipitation regimes (65, 75, and 90 mm) to measure their response in biomass and fecundity‐related traits. To reveal the population genetic structure, ddRAD sequencing was employed for a whole‐genome approach. We found three major genetic clusters in S. vulgaris from Europe: one cluster comprising Southern European populations, one cluster of Western European populations, and another cluster containing central European populations. Population genetic diversity decreased with increasing latitude, and a Mantel test revealed significant correlations between F ST and geographic distances as well as between genetic and environmental distances. Our trait analysis showed that the genetic clusters significantly differed in biomass‐related traits and in the days to flowering. However, half of the traits showed parallel response patterns to the experimental climate change scenario. Due to the differentiated but parallel response patterns, we assume that phenotypic plasticity plays an important role for the adaptation of the widely distributed species S. vulgaris and its intraspecific genetic lineages.  相似文献   

17.
Human‐mediated habitat fragmentation in freshwater ecosystems can negatively impact genetic diversity, demography, and life history of native biota, while disrupting the behavior of species that are dependent on spatial connectivity to complete their life cycles. In the Alouette River system (British Columbia, Canada), dam construction in 1928 impacted passage of anadromous sockeye salmon (Oncorhynchus nerka), with the last records of migrants occurring in the 1930s. Since that time, O. nerka persisted as a resident population in Alouette Reservoir until experimental water releases beginning in 2005 created conditions for migration; two years later, returning migrants were observed for the first time in ~70 years, raising important basic and applied questions regarding life‐history variation and population structure in this system. Here, we investigated the genetic distinctiveness and population history of Alouette Reservoir O. nerka using genome‐wide SNP data (n = 7,709 loci) collected for resident and migrant individuals, as well as for neighboring anadromous sockeye salmon and resident kokanee populations within the Fraser River drainage (n = 312 individuals). Bayesian clustering and principal components analyses based on neutral loci revealed five distinct clusters, largely associated with geography, and clearly demonstrated that Alouette Reservoir resident and migrant individuals are genetically distinct from other O. nerka populations in the Fraser River drainage. At a finer level, there was no clear evidence for differentiation between Alouette Reservoir residents and migrants; although we detected eight high‐confidence outlier loci, they all mapped to sex chromosomes suggesting that differences were likely due to uneven sex ratios rather than life history. Taken together, these data suggest that contemporary Alouette Reservoir O. nerka represents a landlocked sockeye salmon population, constituting the first reported instance of deep‐water spawning behavior associated with this life‐history form. This finding punctuates the need for reassessment of conservation status and supports ongoing fisheries management activities in Alouette Reservoir.  相似文献   

18.
Climate warming alters plant composition and population dynamics of arctic ecosystems. In particular, an increase in relative abundance and cover of deciduous shrub species (shrubification) has been recorded. We inferred genetic variation of common shrub species (Alnus alnobetula, Betula nana, Salix sp.) through time. Chloroplast genomes were assembled from modern plants (n = 15) from the Siberian forest‐tundra ecotone. Sedimentary ancient DNA (sedaDNA; n = 4) was retrieved from a lake on the southern Taymyr Peninsula and analyzed by metagenomics shotgun sequencing and a hybridization capture approach. For A. alnobetula, analyses of modern DNA showed low intraspecies genetic variability and a clear geographical structure in haplotype distribution. In contrast, B. nana showed high intraspecies genetic diversity and weak geographical structure. Analyses of sedaDNA revealed a decreasing relative abundance of Alnus since 5,400 cal yr BP, whereas Betula and Salix increased. A comparison between genetic variations identified in modern DNA and sedaDNA showed that Alnus variants were maintained over the last 6,700 years in the Taymyr region. In accordance with modern individuals, the variants retrieved from Betula and Salix sedaDNA showed higher genetic diversity. The success of the hybridization capture in retrieving diverged sequences demonstrates the high potential for future studies of plant biodiversity as well as specific genetic variation on ancient DNA from lake sediments. Overall, our results suggest that shrubification has species‐specific trajectories. The low genetic diversity in Aalnobetula suggests a local population recruitment and growth response of the already present communities, whereas the higher genetic variability and lack of geographical structure in B. nana may indicate a recruitment from different populations due to more efficient seed dispersal, increasing the genetic connectivity over long distances.  相似文献   

19.
Body pigmentation is an evolutionarily diversified and ecologically relevant trait with substantial variation within and between species, and important roles in animal survival and reproduction. Insect pigmentation, in particular, provides some of the most compelling examples of adaptive evolution, including its ecological significance and genetic bases. Pigmentation includes multiple aspects of color and color pattern that may vary more or less independently, and can be under different selective pressures. We decompose Drosophila thorax and abdominal pigmentation, a valuable eco‐evo‐devo model, into distinct measurable traits related to color and color pattern. We investigate intra‐ and interspecific variation for those traits and assess its different sources. For each body part, we measured overall darkness, as well as four other pigmentation properties distinguishing between background color and color of the darker pattern elements that decorate each body part. By focusing on two standard D. melanogaster laboratory populations, we show that pigmentation components vary and covary in distinct manners depending on sex, genetic background, and temperature during development. Studying three natural populations of D. melanogaster along a latitudinal cline and five other Drosophila species, we then show that evolution of lighter or darker bodies can be achieved by changing distinct component traits. Our results paint a much more complex picture of body pigmentation variation than previous studies could uncover, including patterns of sexual dimorphism, thermal plasticity, and interspecific diversity. These findings underscore the value of detailed quantitative phenotyping and analysis of different sources of variation for a better understanding of phenotypic variation and diversification, and the ecological pressures and genetic mechanisms underlying them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号