首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
2.
Eaf3 is a component of both NuA4 histone acetyltransferase and Rpd3S histone deacetylase complexes in Saccharomyces cerevisiae. It is involved in the regulation of the global pattern of histone acetylation that distinguishes promoters from coding regions. Eaf3 contains a chromo domain at the N terminus that can bind to methylated Lys-36 of histone H3 (H3K36). We report here the crystal structures of the Eaf3 chromo domain in two truncation forms. Unlike the typical HP1 and Polycomb chromo domains, which contain a large groove to bind the modified histone tail, the Eaf3 chromo domain assumes an autoinhibited chromo barrel domain similar to the human MRG15 chromo domain. Compared with other chromo domains, the Eaf3 chromo domain contains a unique 38-residue insertion that folds into two short beta-strands and a long flexible loop to flank the beta-barrel core. Both isothermal titration calorimetry and surface plasmon resonance studies indicate that the interaction between the Eaf3 chromo domain and the trimethylated H3K36 peptide is relatively weak, with a K(D) of approximately 10(-4) m. NMR titration studies demonstrate that the methylated H3K36 peptide is bound to the cleft formed by the C-terminal alpha-helix and the beta-barrel core. Site-directed mutagenesis study and in vitro binding assay results show that the conserved aromatic residues Tyr-23, Tyr-81, Trp-84, and Trp-88, which form a hydrophobic pocket at one end of the beta-barrel, are essential for the binding of the methylated H3K36. These results reveal the molecular mechanism of the recognition and binding of the methylated H3K36 by Eaf3 and provide new insights into the functional roles of the Eaf3 chromo domain.  相似文献   

3.
4.
5.
HP1 family proteins are adaptor molecules, containing two related chromo domains that are required for chromatin packaging and gene silencing. Here we present the structure of the chromo shadow domain from mouse HP1beta bound to a peptide containing a consensus PXVXL motif found in many HP1 binding partners. The shadow domain exhibits a novel mode of peptide recognition, where the peptide binds across the dimer interface, sandwiched in a beta-sheet between strands from each monomer. The structure allows us to predict which other shadow domains bind similar PXVXL motif-containing peptides and provides a framework for predicting the sequence specificity of the others. We show that targeting of HP1beta to heterochromatin requires shadow domain interactions with PXVXL-containing proteins in addition to chromo domain recognition of Lys-9-methylated histone H3. Interestingly, it also appears to require the simultaneous recognition of two Lys-9-methylated histone H3 molecules. This finding implies a further complexity to the histone code for regulation of chromatin structure and suggests how binding of HP1 family proteins may lead to its condensation.  相似文献   

6.
7.
8.
Beta-galactosidase (lacZ) from Escherichia coli is a 464 kDa homotetramer. Each subunit consists of five domains, the third being an alpha/beta barrel that contains most of the active site residues. A comparison is made between each of the domains and a large set of proteins representative of all structures from the protein data bank. Many structures include an alpha/beta barrel. Those that are most similar to the alpha/beta barrel of E. coli beta-galactosidase have similar catalytic residues and belong to the so-called "4/7 superfamily" of glycosyl hydrolases. The structure comparison suggests that beta-amylase should also be included in this family. Of three structure comparison methods tested, the "ProSup" procedure of Zu-Kang and Sippl and the "Superimpose" procedure of Diederichs were slightly superior in discriminating the members of this superfamily, although all procedures were very powerful in identifying related protein structures. Domains 1, 2, and 4 of E. coli beta-galactosidase have topologies related to "jelly-roll barrels" and "immunoglobulin constant" domains. This fold also occurs in the cellulose binding domains (CBDs) of a number of glycosyl hydrolases. The fold of domain 1 of E. coli beta-galactosidase is closely related to some CBDs, and the domain contributes to substrate binding, but in a manner unrelated to cellulose binding by the CBDs. This is typical of domains 1, 2, 4, and 5, which appear to have been recruited to play roles in beta-galactosidase that are unrelated to the functions that such domains provide in other contexts. It is proposed that beta-galactosidase arose from a prototypical single domain alpha/beta barrel with an extended active site cleft. The subsequent incorporation of elements from other domains could then have reduced the size of the active site from a cleft to a pocket to better hydrolyze the disaccharide lactose and, at the same time, to facilitate the production of inducer, allolactose.  相似文献   

9.
The Ras activator Son of Sevenless (Sos) contains a Cdc25 homology domain, responsible for nucleotide exchange, as well as Dbl/Pleckstrin homology (DH/PH) domains. We have determined the crystal structure of the N-terminal segment of human Sos1 (residues 1-191) and show that it contains two tandem histone folds. While the N-terminal domain is monomeric in solution, its structure is surprisingly similar to that of histone dimers, with both subunits of the histone "dimer" being part of the same peptide chain. One histone fold corresponds to the region of Sos that is clearly similar in sequence to histones (residues 91-191), whereas the other is formed by residues in Sos (1-90) that are unrelated in sequence to histones. Residues that form a contiguous patch on the surface of the histone domain of Sos are conserved from C. elegans to humans, suggesting a potential role for this domain in protein-protein interactions.  相似文献   

10.
Eissenberg JC 《Gene》2001,275(1):19-29
The chromo domain motif is found in proteins from fungi, protists, plants, fish, insects, amphibians, birds, and mammals. The chromo domain peptide fold may have its origins as a chromosomal protein in a common ancestor of archea and eukaryota, making it a particularly ancient protein structural module. Chromo domains have been found in single or multiple copies in proteins with diverse structures and activities, most or all of which are connected with chromosome structure/function. In this review, our current knowledge of chromo domain properties is summarized and a variety of contexts in which chromo domains participate in aspects of chromatin metabolism are discussed.  相似文献   

11.
RumA catalyzes transfer of a methyl group from S-adenosylmethionine (SAM) specifically to uridine 1939 of 23S ribosomal RNA in Escherichia coli to yield 5-methyluridine. We determined the crystal structure of RumA at 1.95 A resolution. The protein is organized into three structural domains: The N-terminal domain contains sequence homology to the conserved TRAM motif and displays a five-stranded beta barrel architecture characteristic of an oligosaccharide/oligonucleotide binding fold. The central domain contains a [Fe(4)S(4)] cluster coordinated by four conserved cysteine residues. The C-terminal domain displays the typical SAM-dependent methyltransferase fold. The catalytic nucleophile Cys389 lies in a motif different from that in DNA 5-methylcytosine methyltransferases. The electrostatic potential surface reveals a predominately positively charged area that covers the concave surface of the first two domains and suggests an RNA binding mode. The iron-sulfur cluster may be involved in the correct folding of the protein or may have a role in RNA binding.  相似文献   

12.
13.
14.
The heterochromatin protein 1 (HP1) family of proteins is involved in gene silencing via the formation of heterochromatic structures. They are composed of two related domains: an N-terminal chromo domain and a C-terminal shadow chromo domain. Present results suggest that chromo domains may function as protein interaction motifs, bringing together different proteins in multi-protein complexes and locating them in heterochromatin. We have previously determined the structure of the chromo domain from the mouse HP1beta protein, MOD1. We show here that, in contrast to the chromo domain, the shadow chromo domain is a homodimer. The intact HP1beta protein is also dimeric, where the interaction is mediated by the shadow chromo domain, with the chromo domains moving independently of each other at the end of flexible linkers. Mapping studies, with fragments of the CAF1 and TIF1beta proteins, show that an intact, dimeric, shadow chromo domain structure is required for complex formation.  相似文献   

15.
K E Prehoda  D J Lee  W A Lim 《Cell》1999,97(4):471-480
The Enabled/VASP homology 1 (EVH1; also called WH1) domain is an interaction module found in several proteins implicated in actin-based cell motility. EVH1 domains bind the consensus proline-rich motif FPPPP and are required for targeting the actin assembly machinery to sites of cytoskeletal remodeling. The crystal structure of the mammalian Enabled (Mena) EVH1 domain complexed with a peptide ligand reveals a mechanism of recognition distinct from that used by other proline-binding modules. The EVH1 domain fold is unexpectedly similar to that of the pleckstrin homology domain, a membrane localization module. This finding demonstrates the functional plasticity of the pleckstrin homology fold as a binding scaffold and suggests that membrane association may play an auxiliary role in EVH1 targeting.  相似文献   

16.
17.
Ubiquitin-specific protease 8 (USP8) hydrolyzes mono and polyubiquitylated targets such as epidermal growth factor receptors and is involved in clathrin-mediated internalization. In 1182 residues, USP8 contains multiple domains, including coiled-coil, rhodanese, and catalytic domains. We report the first high-resolution crystal structures of these domains and discuss their implications for USP8 function. The amino-terminal domain is a homodimer with a novel fold. It is composed of two five-helix bundles, where the first helices are swapped, and carboxyl-terminal helices are extended in an antiparallel fashion. The structure of the rhodanese domain, determined in complex with the E3 ligase NRDP1, reveals the canonical rhodanese fold but with a distorted primordial active site. The USP8 recognition domain of NRDP1 has a novel protein fold that interacts with a conserved peptide loop of the rhodanese domain. A consensus sequence of this loop is found in other NRDP1 targets, suggesting a common mode of interaction. The structure of the carboxyl-terminal catalytic domain of USP8 exhibits the conserved tripartite architecture but shows unique traits. Notably, the active site, including the ubiquitin binding pocket, is in a closed conformation, incompatible with substrate binding. The presence of a zinc ribbon subdomain near the ubiquitin binding site further suggests a polyubiquitin-specific binding site and a mechanism for substrate induced conformational changes.  相似文献   

18.
Lamers MH  Georgescu RE  Lee SG  O'Donnell M  Kuriyan J 《Cell》2006,126(5):881-892
Bacterial replicative DNA polymerases such as Polymerase III (Pol III) share no sequence similarity with other polymerases. The crystal structure, determined at 2.3 A resolution, of a large fragment of Pol III (residues 1-917), reveals a unique chain fold with localized similarity in the catalytic domain to DNA polymerase beta and related nucleotidyltransferases. The structure of Pol III is strikingly different from those of members of the canonical DNA polymerase families, which include eukaryotic replicative polymerases, suggesting that the DNA replication machinery in bacteria arose independently. A structural element near the active site in Pol III that is not present in nucleotidyltransferases but which resembles an element at the active sites of some canonical DNA polymerases suggests that, at a more distant level, all DNA polymerases may share a common ancestor. The structure also suggests a model for interaction of Pol III with the sliding clamp and DNA.  相似文献   

19.
Recent studies show that heterochromatin-associated protein-1 (HP1) recognizes a 'histone code' involving methylated Lys9 (methyl-K9) in histone H3. Using in situ immunofluorescence, we demonstrate that methyl-K9 H3 and HP1 co-localize to the heterochromatic regions of Drosophila polytene chromosomes. NMR spectra show that methyl-K9 binding of HP1 occurs via its chromo (chromosome organization modifier) domain. This interaction requires methyl-K9 to reside within the proper context of H3 sequence. NMR studies indicate that the methylated H3 tail binds in a groove of HP1 consisting of conserved residues. Using fluorescence anisotropy and isothermal titration calorimetry, we determined that this interaction occurs with a K(D) of approximately 100 microM, with the binding enthalpically driven. A V26M mutation in HP1, which disrupts its gene silencing function, severely destabilizes the H3-binding interface, and abolishes methyl-K9 H3 tail binding. Finally, we note that sequence diversity in chromo domains may lead to diverse functions in eukaryotic gene regulation. For example, the chromo domain of the yeast histone acetyltransferase Esa1 does not interact with methyl- K9 H3, but instead shows preference for unmodified H3 tail.  相似文献   

20.
The WW domain is known as one of the smallest protein modules with a triple-stranded beta-sheet fold. Here, we present the solution structure of the second WW domain from the mouse salvador homolog 1 protein. This WW domain forms a homodimer with a beta-clam-like motif, as evidenced by size exclusion chromatography, analytical ultracentrifugation and NMR spectroscopy. While typical WW domains are believed to function as monomeric modules that recognize proline-rich sequences, by using conserved aromatic and hydrophobic residues that are solvent-exposed on the surface of the beta-sheet, this WW domain buries these residues in the dimer interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号