首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
孙笑非  黄星  陈博  李顺鹏  何健 《微生物学报》2008,48(11):1493-1498
乙酰乳酸合酶(也称乙酰羟酸合酶acetohydroxyacid synthase,AHAS)是植物、真菌和细菌细胞内支链氨基酸Val、Leu、Ile生物合成过程中关键酶,是乙酰乳酸合酶抑制剂类除草剂如磺酰脲类、咪唑啉酮类、嘧啶水杨酸和磺酰氨类的作用靶标.[目的]获得抗甲磺隆的乙酰乳酸合酶基因,构建其表达载体,并分析基因中的位点突变与乙酰乳酸合酶对磺酰脲类除草剂抗性产生原因.[方法]从长期使用甲磺隆的土壤中分离到l株抗甲磺隆的菌株Lm10,利用PCR技术从Lm10总DNA中克隆到乙酰乳酸合酶的大小亚基基因ilvIH,对ilvIH氨基酸序列进行比对分析.分别将ilvI和ilvH分别连接到表达载体pET29a( )多克隆位点,转化大肠杆菌(Escherichia coli)获得转化子BL21(pET-I)和BL21(pET-H),并诱导表达.[结果]菌株Lm10鉴定为假单孢菌(Pseudomonas sp.),对甲磺隆的最高耐受浓度达到14000 μmol/L,且对各种乙酰乳酸合酶抑制剂类除草剂具有交叉抗性.Lm10与甲磺隆敏感菌株KT2440的小亚基氨基酸序列完全相同,而大亚基有6个氨基酸位点发生变异.转化子在IPTG诱导下,乙酰乳酸合酶的大小亚基的蛋白成功表达,粗酶液酶活试验结果表明Lm10的ilvI基因表达的乙酰乳酸合酶大亚基对甲磺隆有很强的抗性.[结论]发现菌株Lm10的乙酰乳酸合酶大亚基对甲磺隆有很强的抗性,抗甲磺隆菌株Lm10与敏感菌株KT2440的ilvI有6个氨基酸位点差异,这些位点突变可能是乙酰乳酸合酶对甲磺隆抗性产生的原因.  相似文献   

2.
咪唑啉酮类除草剂是一类广谱高效除草剂,其作用靶标是乙酰乳酸合成酶(ALS,acetolactate synthase)。培育抗咪唑啉酮类除草剂水稻品种是防治直播稻田杂草危害的有效途径之一。本研究通过喷施咪唑啉酮类除草剂,从30570份水稻种质资源中,获得1份抗咪唑啉酮类除草剂的水稻新种质,该材料抗性性状稳定、抗性效应明显,序列分析表明其ALS基因编码区第1880位的G/A突变导致第627位氨基酸由丝氨酸改变为天冬酰胺,从而产生抗性。本研究发现的抗除草剂新材料,为选育抗除草剂水稻新品种奠定了种质基础。  相似文献   

3.
谢宇峰  秦利军 《广西植物》2022,42(9):1551-1560
为进一步优化烟草(Nicotiana tabacum)品种‘K326’的种质,该研究采用寡聚核苷酸介导的基因突变(oligonucleotide-mediated mutagenesis,OMM)技术,利用植物中支链氨基酸合成途径中第一个关键酶——乙酰乳酸合成酶(acetolactate synthase,ALS)突变后烟草对氯磺隆除草剂不敏感且产生抗性的特征,以及NCBI报道的ALS基因序列同源克隆了烟草品种‘K326’中的ALS基因,并根据ALS基因序列设计用于定点突变的RNA/DNA嵌合体,导入烟草品种‘K326’创制对氯磺隆除草剂具有抗性的烟草新种质。结果表明:(1)烟草品种‘K326’具有2条ALS基因,即ALS SuRA和ALS SuRB,大小分别为2004 bp和2010 bp。(2)根据2个基因的保守位点ALS SuRA 588脯氨酸位点和ALS SuRB 1719色氨酸位点设计用于ALS基因核苷酸第588位点的Chl-588嵌合体和第1719位点的Chl-1719嵌合体。(3)利用基因枪成功将这2个片段导入烟草愈伤组织,愈伤组织依次经抗性芽分化和生根,共获得氯磺隆抗性植株22株。(4)抗性植株ALS酶活性测定显示,8株抗性植株具有较强的活性,进一步对抗性植株中跨突变位点保守扩增、测序,最终确定有2株(f11和b18)分别在588、1719位点产生定点突变。综上认为,该研究在获得烟草品种‘K326’抗氯磺隆新种质同时,也为培育抗性烟草新种质提供了理想的亲本材料。  相似文献   

4.
5-烯醇式丙酮酰莽草酸-3-磷酸合酶(5-Enolpyruvylshikimate-3-phosphate synthase,EPSP合酶)是莽草酸途径中的第六位酶,参与合成芳香族氨基酸以及部分次生代谢的产物,同时EPSP合酶不仅是除草剂草甘膦、抗菌素、抗寄生虫药物的作用靶酶,而且也是促进生物体内莽草酸积累的重要调控位点。近年来,随着分子生物学技术的快速发展和对EPSP合酶的深入研究,EPSP合酶基因在耐草甘膦转基因作物、医药卫生等方面被广泛应用。对EPSP合酶的研究进展进行综述及展望。  相似文献   

5.
乙酰乳酸合成酶(ALS)是支链氨基酸、缬氨酸、亮氨酸和异亮氨酸生物合成途径中的关键酶,也是多种除草剂的靶点。为了研究als基因不同突变位点组合后其抗除草剂抗性的变化,并整合和增强植株对不同类型除草剂的抗性,本研究对已知抗性位点进行组合并进行了拟南芥转基因分析。我们通过重叠延伸PCR技术体外突变扩增四个已知位点突变的P197S/R199A/W574S/S653F拟南芥Atals,克隆到pCAMBIA1 300-GFP载体上,从而构建了四个位点突变的m4Atals-GFP融合蛋白过表达载体。然后用农杆菌介导法转化野生型拟南芥Col-0,获得转基因株系。采用潮霉素抗性筛选鉴定阳性转基因植株,并利用荧光体式显微镜观察过表达植株以及在蛋白水平检测GFP-m4Atals融合蛋白表达情况。对纯合转基因株系进行除草剂抗性分析。分析表明转基因拟南芥具有磺酰脲和咪唑啉酮两种除草剂的整合抗性。此研究有助于系统地分析als基因不同突变位点对抑制剂的抗性,有效避免和应对自然界als单一位点突变的杂草的困扰。  相似文献   

6.
孟山都公司(圣路易斯,密苏里)的Robert Fraley和Dilip Shah对参加1985年11月2日在佐治亚州萨凡纳召开的首届植物分子生物学国际会议的代表说,碧冬茄和烟草植物经遗传操作可抗草甘膦(该公司研制的“Roundup”除草剂中的一种活性组分)。该公司小组成功地将一种用于EPSP合酶(5-enol pyruvyl shikimate-3-phosphate synthase)生产的经修饰的植物基因插入到植物细胞染色体中,能使EPSP大量产生,从而对草甘膦具有抗性。EPSP是杂草中一种受草甘膦抑制的酶,这种酶与3种氨基酸的产生有关,这3种氨基酸对  相似文献   

7.
封面故事     
<正>生物体内存在着复杂的一氧化氮合酶(nitric oxide synthase,NOS)活性调节机制以精确调控一氧化氮的生成。在神经系统中,一氧化氮主要由神经型一氧化氮合酶(neuronal nitric oxide synthase,nNOS)催化生成  相似文献   

8.
植物中存在芪类次生代谢产物(stilbenes)作为一种重要的植保素,不仅能够使植物体本身的抗逆性提高,在人类健康医疗领域也有很好的应用前景.由于其合成途径具有专一性,需要芪合酶(Stilbene synthase,STS)的存在,近年来芪合酶基因工程日益引起人们的研究和重视.介绍了芪合酶基因的结构功能及其诱导表达的调控机理,并对其转基因工程的研究进展进行了综述,以期为进一步开展芪类次生代谢物在作物品质改良及人类健康营养中的应用提供参考.  相似文献   

9.
蔗糖向淀粉的转化是决定小麦籽粒产量的重要因素.田间条件下研究了两个小麦(Triticum aestivum L.)品种"鲁麦22"和"鲁麦14"籽粒淀粉合成相关酶:蔗糖合酶(sucrose synthase,SS)、腺苷二磷酸葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,ADPGPPase)、可溶性淀粉合酶(soluble starch synthase,SSS)、束缚态淀粉合酶(starch granule-bound synthase,GBSS)的活性以及籽粒ATP含量的日变化.结果表明,上述酶活性呈现明显的昼夜变化特征,酶活性一般在白天较低,而在夜间呈现较高活性,而籽粒ATP含量趋势相反.相关分析表明,白天较低的酶活性可能与气温超过其适宜温度有关.对籽粒淀粉合成相关酶活性日变化的可能因子进行了讨论.  相似文献   

10.
研究三七细胞中共超表达法呢基焦磷酸合酶(farnesyl pyrophasphate synthase,FPS)基因、鲨烯合酶(squalene synthase,SS)基因对三七细胞皂苷合成的影响.利用农杆菌EHA105将pCAMBIA1300S-FPS超表达载体转入已超表达SS的三七细胞内,双抗生素培养及基因组PC...  相似文献   

11.
李磊  胡海燕  田菲菲 《微生物学通报》2023,50(12):5588-5603
二苯醚类除草剂是一类广谱、高效、高选择性的除草剂,广泛应用于大豆、花生等农田一年生和多年生阔叶杂草的防除。由于该类除草剂不易降解,多年连续使用会导致其在土壤环境中的大量积累。本文概述了二苯醚类除草剂的基本结构及其对生物的影响,总结了降解二苯醚类除草剂的微生物种类、降解途径和降解过程中关键酶及其基因,分析了影响微生物降解二苯醚类除草剂的因素,对二苯醚类除草剂微生物降解未来的研究方向进行了展望,为深入研究二苯醚类除草剂的生物降解提供参考。  相似文献   

12.
农作物抗除草剂遗传工程研究进展   总被引:2,自引:0,他引:2  
控制杂草提高农作物产量是农业生产中共同面临的问题,发展抗除草剂农作物将是最经济最方便控制杂草的技术。由于对除草剂的作用模式和除草剂代谢途径的了解,弄清了除草剂的关键靶酶及其基因,因此分离除草剂靶酶基因,克隆能解毒除草剂的酶基因,通过转化技术可获得抗除草剂农作物,大量的抗除草剂转基因农作物大田试验表明,将最有希望在2000年进入市场。  相似文献   

13.
磺酰脲类除草剂残留的微生物降解研究进展   总被引:2,自引:0,他引:2  
磺酰脲类除草剂是一类高效、低毒和高选择性的除草剂, 此类除草剂能有效地防除阔叶杂草, 其中有些品种对禾本科杂草也有抑制作用。由于该类除草剂易残留药害及容易对地表水造成污染, 因而其在环境中的持久性和环境安全性备受人们关注。本文综述了磺酰脲类除草剂的应用概况及其作用机理、降解磺酰脲类除草剂的常见微生物种类及影响微生物降解效率的因素, 最后展望了微生物修复技术与抗除草剂的转基因作物是解决除草剂残留药害的最佳途径。  相似文献   

14.
取代脲类除草剂主要用来防除一年生禾本科杂草和阔叶杂草,自20世纪中期推入市场以来,在世界范围内被广泛使用,已成为重要的除草剂之一。随着取代脲类除草剂的持续施用,其在环境中的残留严重超标,危害日益凸显。因此,取代脲类除草剂在环境中的吸附、迁移和降解等行为备受关注。研究表明细菌降解N,N-二甲基取代脲类除草剂主要是通过连续脱甲基作用后断脲桥降解,而降解N-甲氧基-N-甲基取代脲类除草剂是通过脲桥的直接断裂。真菌降解取代脲类除草剂的途径则较为复杂,尚需进一步阐明。本文综述了近年来分离筛选的取代脲类除草剂降解菌株及其降解途径的最新研究进展,为取代脲类除草剂污染环境的生物修复研究提供参考。  相似文献   

15.
农作物抗除草剂遗传工程研究进展   总被引:29,自引:0,他引:29  
控制杂草提高农作物产量是农业生产中共同面临的问题,发展抗除草剂农作物将是最经济最方便控制杂草的技术。由于对除草剂的作用模式和除草剂代谢途径的了解,弄清了除草剂的关键靶酶及其基因,因此分离除草剂靶酶基因,克隆能解毒除草剂的酶基因,通过转化技术可获得抗除草剂农作物,大量的抗除草剂转基因农作物大田试验表明,将最有希望在2000年进入市场。  相似文献   

16.
乙酰辅酶A羧化酶是一个生物素羧化酶,它所催化的反应是脂肪酸生物合成中的第一个植物叶绿体中的乙酰辅酶A羧化酶是两类禾本科除草剂的靶蛋白.从抗除草剂拿捕净和感拿捕净的谷子(SetariaitalicaBeauv.)中克隆了两个乙酰辅酶A羧化酶的全长cDNA,分别命名为foxACC-R和foxACC-S,它们推导的蛋白质均编码2 321个氨基酸,然而在第1 780个氨基酸处,foxACC-R编码亮氨酸,而foxACC-S编码异亮氨酸.采用生物信息学方法,我们推断这个cDNA编码的是叶绿体中的乙酰辅酶A羧化酶,并预测了它的功能域和保守区.通过这两个cDNA编码的氨基酸序列与其他乙酰辅酶A羧化酶的序列比较得出结论,亮氨酸/异亮氨酸位点可能是APPs和CHDs两类除草剂作用的关键位点.Southern杂交分析的结果显示,该基因在谷子基因组中只有一个拷贝.  相似文献   

17.
苄嘧磺隆是应用最为广泛的磺酰脲类除草剂品种之一,主要用于防除水稻田阔叶类杂草。本文采用盆栽法对苄嘧磺隆作研究测定,其结果苄嘧磺隆对供试植物稗草有一定抑制作用,对供试植物反枝苋具有良好的抑制活性。当前,农作物的杂草治理仍然以使用除草剂为主。21世纪对除草剂的要求是高活性、高选择性和环境友好,这就对除草剂的应用和发展提出了很高的要求。除草剂生物测定法作为开发新的除草剂、筛选除草剂新品种的重要手段已得到广泛的应用。  相似文献   

18.
乙酰乳酸合成酶基因的克隆与高效表达   总被引:1,自引:0,他引:1  
【目的】乙酰乳酸合成酶(ALS)是异丁醇生物合成中的关键酶,实现ALS的高效表达对调控异丁醇代谢途径有重要意义。【方法】根据GenBank中ALS的基因序列(alsS)设计引物,以枯草芽孢杆菌168基因组DNA为模板通过PCR扩增技术得到目标酶基因,目的片段全长为1 713 bp。将alsS连接到pET-30a(+)上,得到重组质粒pET-30a(+)-alsS,并在Escherichia coli BL2l(DE3)中实现表达。【结果】对表达条件进行了优化,获得最佳表达条件为:诱导温度30°C,诱导起始菌体OD600为0.6 0.8,诱导剂IPTG浓度为1 mmol/L,诱导时间为6 h。表达的乙酰乳酸合成酶大部分以可溶性形式存在于菌体内,优化后酶活可达到24.4 U/mL,比优化前提高了7.13倍。经HisTrapTMFF亲和层析后获得电泳纯的ALS,比活为95.2 U/mg。【结论】ALS的有效表达为在大肠杆菌体内构建异丁醇代谢途径打下了基础。  相似文献   

19.
赤霉素(gibberellins,GA)是植物激素之一,调控植物生长和发育.植物体中赤霉素合成量直接影响植物的形态和生物量.在赤霉素合成途径中,柯巴基焦磷酸合酶基因(copalyl diphosphate synthase,CPS)是第一个合酶基因,该基因突变会严重影响赤霉素合成量.本研究通过对根和下胚轴缩短、晚花、丛...  相似文献   

20.
纳他霉素(natamycin)是一种高效、广谱、安全的抗真菌剂,广泛应用于食品防腐与医药领域。纳他霉素可由多种链霉菌发酵产生。它是以乙酰辅酶A、丙二酰辅酶A及甲基丙二酰辅酶A为前体经Ⅰ型聚酮合酶(polyketide synthase,PKS)催化合成的多烯大环内酯类化合物。本研究以纳他霉素产生菌——褐黄孢链霉菌为研究材料,分别对不同前体分子供给途径中的关键酶进行过表达,并确定影响纳他霉素产量的关键前体供给途径。研究结果发现:通过过表达乙酰辅酶A合成酶(acetyl-CoA synthase,ACS)加强乙酰辅酶A合成途径,以及通过过表达甲基丙二酰辅酶A变位酶(methylmalonyl-CoA mutase,MCM)加强甲基丙二酰辅酶A合成途径,重组菌株纳他霉素产量分别比野生型菌株提高了44.19%和20.51%。共过表达ACS和MCM,重组菌株纳他霉素产量获得进一步提升(达1123.34mg/L),比野生型菌株提高了66.29%。上述发现为通过前体代谢工程的策略构建纳他霉素工业高产菌株提供了参考,也为其他聚酮类天然产物高产工程菌株的构建提供了借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号