首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Metabolites of radioactive ecdysone or 20-hydroxyecdysone in larvae and pharate pupae of Sarcophaga peregrina were separated and identified by using thin-layer chromatography, high-performance liquid chromatography, and chemical methods. At the larval stage ecdysone was metabolized to biologically less active ecdysteroids predominantly through 20-hydroxyecydsone, at the pharate pupal stage, to other ecdysteroids which were tentatively identified as 26-hydroxyecdysone, 3-epi-26-hydroxyecdysone, and 3-epi-20,26-dihydroxyecdysone. Ecdysteroid acids were found in the polar metabolites during pharate pupal-pupal transformation, but scarcely detected in the larval metabolites. These acids were presumed to be ecdysonoic acid, 20-hydroxyecdysonoic acid, and their epimers. The conjugates of ecdysteroid that released the free ecdysteroids by enzymatic hydrolysis were produced more in larvae than in pupae, whereas the very polar ecdysteroids that were not affected by the enzyme were found more in pupae. Therefore, there are different metabolic pathways of ecdysone between these two successive developmental stages, and the alteration of the metabolic pathway may serve as one of the important factors in a regulatory mechanism of molting hormone activity which is responsible for normal development of this insect.  相似文献   

2.
Ecdysone metabolism in Pieris brassicae during the feeding last larval stage was investigated by using 3H-labeled ecdysteroid injections followed by high-performance liquid chromatographic (HPLC
  • 1 Abbreviations: 3DE = 3-dehydroecdysone; 3D20E = 3-dehydro-20-hydroxyecdysone; 2026E = 20,26-dihydroxyecdysone; E = ecdysone; Eoic = ecdysonoic acid; 2026E′ = 3-epi-20,26-dihydroxyecdysone; E′ = 3-epiecdysone; E′oic = 3-epiecdysonoic acid; E′8P = 3-epiecdysone 3-phosphate; 20E′ = 3-epi-20-hydroxyecdysone; 20E′3P = 3-epi-20-hydroxyecdysone 3-phosphate; FT = Fourier transform; HPLC = high-performance liquid chromatography; 20E = 20-hydroxyecdysone; 20Eoic = 20-hydroxyecdysonoic acid; NMR = nuclear magnetic resonance; NP-HPLC = normal phase HPLC; RP-HPLC = reverse phase HPLC; TFA = trifluoroacetic acid; Tris = tris(hydroxymethyl)-aminomethane.
  • ) analysis of metabolites. Metabolites were generally identified by comigration with available references in different HPLC systems. Analysis of compounds for which no reference was available required a large-scale preparation and purification for their identification by 1H nuclear magnetic resonance spectrometry. The metabolic reactions affect the ecdysone molecule at C-3, C-20, and C-26, leading to molecules which are modified at one, two, or three of these positions. At C-20, hydroxylation leads to 20-hydroxyecdysteroids. At C-26, hydroxylation leads to 26-hydroxyecdysteroids which can be further converted into 26-oic derivatives (ecdysonoic acids) by oxidation. At C-3, there are several possibilities: there may be oxidation into 3-dehydroecdysteroids, or epimerization possibly followed by phosphate conjugation. Thus, injected 20-hydroxyecdysone was converted principally into 20-hydroxyecdysonoic acid, 3-dehydro-20-hydroxyecdysone, and 3-epi-20-hydroxyecdysone 3-phosphate. Labelled ecdysone mainly gave the same metabolites doubled by a homologous series lacking the 20-hydroxyl group.  相似文献   

    3.
    After ingestion of various amounts of either [3H]ecdysone or [3H]20-hydroxyecdysone (0.8 ng to 10 μg) by sixth instar larvae of the Egyptian cotton leafworm Spodoptera littoralis, apolar metabolites are rapidly detected in the gut and frass. Hydrolysis of the apolar products with Helix hydrolases releases solely [3H]ecdysone or [3H]20-hydroxyecdysone, respectively. This, coupled with the formation of chemical derivatives (acetonide and acetate) which cochromatograph with authentic reference compounds on hptlc and hplc demonstrates that these apolar metabolites consist of ecdysone or 20-hydroxyecdysone esterified at C-22 with common long-chain fatty acids. The major fatty acids have been identified by RP-hplc and their contribution to the mixture determined. In contrast, [3H]ecdysone injected into the haemolymph of S. littoralis is metabolized to yield 20-hydroxyecdysone, ecdysonoic acid, and 20-hydroxyecdysonoic acid. Thus, two different pathways exist for the metabolism of ecdysteroids in this species. In addition to an essentially polar pathway operating on injected and endogenous ecdysteroids, exogenous ecdysteroids entering the gut of S. littoralis are detoxified, yielding apolar ecdysteroid 22-fatty acyl esters which are rapidly excreted. The significance of these results in relation to the effects of ingested ecdysteroids on S. littoralis is discussed. Arch. Insect Biochem. Physiol. 34:329–346, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    4.
    Summary

    The metabolism of [3H]ecdysone was examined in 3 species of annelids: the bloodworm, Tubifex vulgaris (a freshwater oligochaete), the earthworm, Lumbricus terrestris (a terrestrial oligochaete) and the ragworm, Nereis divtrsicolor (a marine polychaete). One of these species, N. diversicolor, metabolised injected [3H]ecdysone into compounds which co-chromatographed on both reversed-phase and adsorption HPLC with authentic 20-hydroxyecdysone, 26-hydroxyecdysone and 20,26-dihydroxyecdysone, thus demonstrating the occurrence of 20-hydroxylation and 26-hydroxylation capability in the Annelida. Furthermore, [3H]ecdysonoic acid was also formed and excreted by N. diversicolor, suggesting that 26-oic acid formation is involved in ecdysteroid inactivation in this species. Other, as yet unidentified, radioactive metabolites were also excreted by N. diversicolor. Several metabolites of [3H]ecdysone were also detected in the other 2 species examined, T. vulgaris and L. terrestris.  相似文献   

    5.
    The metabolism of [3H]-ecdysone has been investigated at times of low and high endogenous ecdysteroid tit re, in early and late fifth-instar Schistocerca gregaria larvae, respectively. Ecdysone-3-acetate, 20-hydroxyecdysone, and 20,26-dihydroxyecdysone were identified as metabolites in both the free form and as polar conjugates. Comparison of the intact polar conjugates of the ecdysteroid acetates on two HPLC systems with the corresponding authentic compounds indicated that they were 3-acetylecdysone-2-phosphate and 3-acetyl-20-hydroxyecdysone-2-phosphate. Other major polar metabolites were identified as ecdysonoic acid and 20-hydroxyecdysonoic acid. Ecdysone metabolism in fifth-instar S. gregaria is apparently an age-dependent process. Early in the instar, excretion of both free and conjugated ecdysteroids, as well as ecdysteroid 26-acids, occurs. At this stage the level of ecdysteroid acetates in the conjugated (phosphate) form is high, in contrast to the free ecdysteroids, where ecdysone predominates. When the endogenous hormone titre is high, the formation of ecdysteroid acetates is less, the major excreted matabolites at that stage being conjugated 20-hydroxyecdysone together with ecdysteroid-26-acids, but little free ecdysteroids. Acetylation of ecdysone occurs primarily in the gastric caecae. Ecdysone-3-acetate (mainly as polar conjugate) is also a major product of ingested ecdysone in early fifth-instar Locusta migratoria.  相似文献   

    6.
    Ecdysonoic acid and 20-hydroxyecdysonoic acid have been purified from developing eggs of the desert locust, Schistocerca gregaria, by high performance liquid chromatography (h.p.l.c.), and their structures were determined by p.m.r. spectroscopy and fast atom bombardment mass spectrometry of the free and methyl ester derivatives. 20-Hydroxyecdysonoic acid was also characterized from Spodoptera littoralis pupae. The occurrence of both 20-hydroxyecdysonoic acid and ecdysonoic acid in Sp. littoralis pupae was also established by h.p.l.c. comparison of the 3H-labelled acids formed from [3H]ecdysone and of their methyl esters with the corresponding substances from Sch. gregaria. The significance of ecdysteroid acids as products of ecdysteroid inactivation is discussed.  相似文献   

    7.
    F Lachaise  R Lafont 《Steroids》1984,43(3):243-259
    Ponasterone A (25-deoxy-20-hydroxyecdysone) and 20-hydroxyecdysone were the major ecdysteroids detected in crab hemolymph, although some ecdysone was also present. The metabolism of ponasterone A was examined in intermolt and premolt crabs either by injecting the radiolabeled hormone or by incubating tissues in its presence. Metabolites were extracted from the surrounding seawater and from tissues and separated by high-performance liquid chromatography. Ponasterone A metabolism proceeds through (1) C-25 and C-26 hydroxylation, followed by formation of inactivation products via oxidation of the terminal alcoholic group to a carboxylic residue, (2) conjugation, (3) "binding" to very polar compounds and (4) side-chain scission. The conversion of ponasterone A into 20-hydroxyecdysone, inokosterone (25-deoxy-20, 26-dihydroxyecdysone), 20, 26-dihydroxyecdysone and ecdysonoic acids, as well as the formation of conjugates and of very polar compounds, occurs in various tissues. These metabolites were excreted by both intermolt and premolt crabs.  相似文献   

    8.
    Peaks of ecdysteroids were observed during the different phases of embryonic development of intact Carausius eggs or eggs precociously deprived of their exochorion and cultivated under paraffin oil. Several groups of ecdysteroids were separated and analyzed by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) combined with radioimmunoassay. Ecdysteroids were similar in the two categories of eggs, including high-polarity products (essentially conjugates hydrolyzable by Helix pomatia digestive juice, or alkaline phosphatase), possible ecdysonoic acids (unhydrolyzable polar substances), free hormones, and nonpolar ecdysteroids. Four ecdysteroids were identified by co-elution during HPLC with reference compounds of 20,26-dihydroxyecdysone, 20-hydroxyecdysone, ecdysone, and 2-deoxy-20-hydroxyecdysone. Concentrations of these substances (free and conjugated forms) were studied during the different stages of embryonic development: 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone were the major free ecdysteroids. They showed parallel variations with large peaks at stages VI8 and VII6 whereas ecdysone titers were consistently low. Injected labelled ecdysone was converted efficiently into 20-hydroxyecdysone, and both compounds underwent 26-hydroxylation and/or conjugation to polar or apolar metabolites.  相似文献   

    9.
    Maturing eggs of the desert locust, Schistocerca gregaria, contain a variety of ecdysteroid (insect moulting hormone) conjugates and metabolites, four of which have been previously isolated from polar extracts and identified as ecdysonoic acid, 20-hydroxyecdysonoic acid, 3-acetylecdysone 2-phosphate and ecdysone 2-phosphate. In the present study we have isolated eight additional ecdysteroids from similar late-stage eggs by high-performance liquid chromatography. The 22-phosphate esters of ecdysone, 2-deoxyecdysone, 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone, all of which were first identified as ecdysteroid components of newly-laid eggs of S. gregaria, were identified by co-chromatography with authentic compounds and by physicochemical techniques. The remaining compounds were identified as 3-acetyl-20-hydroxyecdysone 2-phosphate, 3-epi-2-deoxyecdysone 3-phosphate, 3-acetylecdysone 22-phosphate and 2-acetylecdysone 22-phosphate by fast atom bombardment mass spectrometry, p.m.r. spectroscopy and analysis of the steroid moieties after enzymic hydrolysis. The latter two compounds, after isolation, are susceptible to nonenzymic acetyl migration and deacetylation to give mixtures of ecdysone 22-phosphate and its 2- and 3-acetate derivatives. The possible role and significance of these ecdysteroid conjugates with respect to the control of hormone titres in insect eggs is discussed.  相似文献   

    10.
    Ecdysone 20-hydroxylase activity has been detected in pupal wing discs of Pieris brassicae. This activity is due to an enzyme system located in microsomal fractions. Its apparent Km is 58 nM for ecdysone. The enzyme is inhibited by the reaction product 20-hydroxyecdysone with an apparent Ki of 2.6 μM. Its activity varied during pupal-adult development with a maximum on day 4, when ecdysone levels are the highest in the animal. Although low, the peak activity is sufficient to assure 25% of the conversion of endogenous ecdysone into 20-hydroxyecdysone in pupae. Ecdysone and 20-hydroxyecdysone levels were measured in hemolymph and whole animals; ecdysone appears to be mainly located in hemolymph, whereas 20-hydroxyecdysone seems to be equally distributed between hemolymph and tissues. All these findings are discussed in relation to the roles of ecdysone and 20-hydroxyecdysone during pupal-adult development.  相似文献   

    11.
    In unparasitized 4th and 5th-instar larvae of Trichoplusia ni and in 4th-instar larvae parasitized by Chelonus sp. 20-hydroxyecdysone, 20,26-dihydroxyec-dysone, and 20-hydroxyecdysonoic acid were the predominant metabolites formed 2 h after injection of [3H]ecdysone. Other unidentified metabolites were seen, but none seemed to be specific for either parasitized or unparasitized larvae. The major difference between parasitized and unparasitized larvae was seen with respect to the quantity of apolar (unidentified) and polar metabolites (20-hydroxyecdysonoic acid and unidentified ones), which were produced to a greater extent in parasitized larvae. Ecdysone was rapidly converted into 20-hydroxyecdysone and the other polar metabolites in all stages investigated, and the parasitoid seemed not to affect the conversion of ecdysone into 20-hydroxyecdysone. When analyzing the fate of [3H]ecdysone in host and parasite separately, at a stage when the parasite drinks hemolymph of its host, we observed that 10–20% of the radioactivity was recovered from the parasitoid. Analysis of the parasitoid's ecdysteroids revealed that ecdysone and 20-hydroxyecdysone represented only a small proportion of the recovered labeled ecdysteroids, the majority being apolar and polar metabolites. Our data suggest that the parasitoid takes up ecdysteroids from its host, converts them, and to some extent releases apolar metabolites into the host.  相似文献   

    12.
    Summary From adults ofPycnogonum litorale (Ström) eight ecdysteroids were isolated by HPLC and identified by mass spectrometry and NMR. One of the compounds is 20-hydroxyecdysone, two further ecdysteroids show no OH-group at C-22 (22-deoxy-20,26-dihydroxyecdysone, 22-deoxy-20-hydroxyecdysone=taxisterone). The five other compounds are esters of ecdysteroids with acetic acid (25R and 25S isomers of 20,26-dihydroxyecdysone 22-acetate, 20-hydroxyecdysone 22-acetate) or with glycolic acid (20-hydroxyecdysone 22-glycolate, ecydsone 22-glycolate). The latter are new among zoo- and phytoecdysteroids. No significant amounts of ecdysone could be detected. The origin of the ecdysteroids inPycnogonum litorale and their biological activity are discussed.Abbreviations RP-HPLC Reversed-phase high performance liquid chromatography - NP normal phase - RIA radioimmunoassay - NMR nuclear magnetic resonance - FT Fourier transform - CI/D chemical ionization/desorption - TFA trifluoroacetic acid - E ecdysone - 20E 20-hydroxyecdysone - 2026E 20 26-dihydroxyecdysone  相似文献   

    13.
    The distribution and biosynthesis of ecdysone and 20-hydroxyecdysone (20-OH-ecdysone) was followed in sugar- and blood-fed female Aedes aegypti. In both sugar- and early blood-fed animals most of the ecdysteroid determined by radioimmunoassay was found outside the ovary. Twenty-four to 40 h after blood feeding, however, ecdysteroid was distributed between ovary and carcass in the ratio of 1:1.5. Ecdysteroid titer reached a plateau between 18 to 40 h after the blood meal and decreased thereafter. Analysis of the ecdysteroid titer using thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) revealed that both 20-OH-ecdysone and ecdysone were synthesized after the blood meal. The ratio of 20-OH-ecdysone to ecdysone remained essentially constant and fluctuated in parallel throughout egg development. Chromatography of the early ecdysteroid peak (8 h after feeding) using TLC and HPLC indicated that although it cross-reacted with ecdysteroid antibodies, it did not have the same elution times as ecdysone and 20-OH-ecdysone and is, therefore, probably a precursor of these ecdysteroids. Injections of egg development neurosecretory hormone (EDNH) preparation purified to near homogeneity, into ligated abdomens, induced ecdysteroid synthesis only if the abdomens were first treated with methoprene (12.5 pg). Methoprene at this concentration did not stimulate ecdysteroid synthesis in these abdomens. When blood-fed females were treated with [4-14C] cholesterol and analyzed using TLC and HPLC procedures, both [14C]labeled ecdysone and [14C]labeled 20-OH-ecdysone were synthesized in the ratio of 1:1.5. This report is the first to show that both ecdysone and 20-OH-ecdysone are synthesized in vivo in female A. aegypti.  相似文献   

    14.
    The influence of dietary allelochemical on ecdysone 20-monooxygenase activity was studied in the fall armyworm, Spodoptera frugiperda (J.E. Smith). Feeding the indoles (indole-3-carbinol, indole-3-acetonitrile), flavonoids (flavone, β-naphthoflavone), monoterpenes (menthol, menthone, peppermint oil), and a coumarin (xanthotoxin) to the larvae stimulated midgut microsomal ecdysone 20-monooxygenase activity from 28 to 200% as compared with the controls. β-Naphthoflavone was the most potent inducer among those tested. Phenobarbital, a well-known cytochrome P450 inducer, also caused a 2-fold increase in the microsomal ecdysone 20-monooxygenase activity. Ecdysone 20-monooxygenase activity was 2.7-fold higher in the microsomal fraction than in the mitochondrial fraction isolated from larval midguts. Microsomal ecdysone 20-monooxygenase activity was highest in the fat body, followed by the midgut and Malpighian tubules. Tissue localization and enzyme inducibility were different between ecdysone 20-monooxygenase and xenobiotic-metabolizing cytochrome P450 monooxygenases, including aldrin epoxidase, biphenyl hydroxylase, methoxyresorufin O-demethylase, 7-ethoxycoumarin O-deethylase, p-chloro-N-methylaniline N-demethylase, and phorate sulfoxidase in fall armyworm larvae. © 1995 Wiley-Liss, Inc.  相似文献   

    15.
    《Insect Biochemistry》1991,21(6):607-613
    Characterization of the acetyltransferase (acetyl-CoA: ecdysone 3-acetyltransferase) which catalyzes the conversion of ecdysone into ecdysone 3-acetate was carried out in gastric caecae of day 7 last instar larvae of Schistocerca gregaria. This enzyme is one of the enzymic systems involved in the inactivation of ecdysteroids. The acetyltransferase exhibited a microsomal subcellular localization, an apparent Km for ecdysone of 71 μM, a maximal specific activity of 7.2 nmol/min/mg of protein and was inhibited competitively in the presence of 20-hydroxyecdysone with Ki = 68.8 μM. The enzyme required acetyl-CoA as co-substrate for its activity, the apparent Km for acetyl-CoA being 47.2 μM. Acetic acid could not replace acetyl-CoA as the co-substrate, indicating that the enzyme is an acetyl-CoA: ecdysone acetyltransferase and not a hydrolase. Similarly, esterification of ecdysone was not observed when long-chain fatty acyl-CoA derivatives were substituted as co-substrates. The reaction was linear for 20 min and with protein concentration up to 0.8 mg/ml.The formation of 20-hydroxyecdysone 3-acetate has been demonstrated in the same microsomal fraction and required also acetyl-CoA as co-substrate. The apparent Km of the acetyltransferase for 20-hydroxyecdysone was 53.5 μM, revealing that the enzyme had a somewhat stronger affinity for 20-hydroxyecdysone than for ecdysone.  相似文献   

    16.
    The cytochrome P-450-dependent 20-monooxygenation of ecdysone is catalyzed both by mitochondria and microsomes isolated from Musca domestica (L.) larvae; however, about 50% of the activity is associated with mitochondria, and 37% is associated with microsomes. Pretreatment of larvae with ecdysone results in an increase in Vmax and a decrease in Km values in mitochondria but not in microsomes. Phenobarbital, a known cytochrome P-450 inducer, increases the cytochrome P-450 levels in microsomes without affecting the 20-monooxygenase activity, but both the cytochrome P-450 levels and monooxygenase activity are depressed in mitochondria from phenobarbital-pretreated larvae. The ecdysone 20-monooxygenase activity is equally distributed between mitochondria and microsomes in adult insects. Pretreatment of the insects with ecdysone does not significantly modify the 20-monooxygenase activity of either mitochondrial or microsomal fractions, but the cytochrome P-450 levels are reduced in mitochondria. Phenobarbital also depresses the mitochondrial cytochrome P-450 levels while markedly increasing the microsomal cytochrome P-450 levels. However, no significant changes in ecdysone 20-monooxygenase activity are produced by phenobarbital pretreatment. The effects of ecdysone on adult cytochrome P-450 are mostly evidenced in mitochondria isolated from females, whereas in males the changes are not statistically significant. It is concluded that the mitochondrial ecdysone 20-monooxygenase is under regulatory control by ecdysone in the larval stage, which suggests that only the mitochondrial activity has a physiological role during insect development in M. domestica. In adults, both the mitochondrial and microsomal ecdysone 20-monooxygenase activities are not responsive to ecdysone, which, coupled to their high Km values, indicates that the reaction may not be of physiological importance in adult insects and that the mitochondrial cytochrome P-450 species being depressed by ecdysone in females are possibly not involved in ecdysone metabolism.  相似文献   

    17.
    The dual localization of ecdysone 20-monooxygenase in mitochondria and microsomes of Manduca sexta larval midgut was investigated. Cosubstrate requirements and response to osmolarity of the microsomal ecdysone 20-monooxygenase system were found to be different from those previously reported for the mitochondrial enzyme system. The microsomal monooxygenase utilized NADPH and, less efficiently, NADH as cosubstrates. NADPH and NADH effects were neither additive nor synergistic. NADPH yielded identical activities in isotonic and hypotonic incubations. Mitochondria and microsomes showed no synergistic interaction for ecdysone 20-hydroxylation. After washing of the mitochondria, a large proportion of their ecdysone 20-monooxygenase activity was lost. The extent of the loss was inversely correlated to the concentration of mitochondria in the incubation mixture. The addition of bovine serum albumin to the incubations (2 mg/ml) largely restored the original activities. The microsomal contamination in mitochondrial pellets after each of three successive washings was determined by measuring the activity of a microsomal marker enzyme, NADPH-cytochrome c reductase. At each step of the purification, the ecdysone 20-monooxgenase activity of the mitochondrial preparations far exceeded the activity attributable to the microsomal contamination. These results confirm the existence of two independent ecdysone 20-monooxygenase systems in the midgut of M. sexta larvae.  相似文献   

    18.
    The free ecdysteroid titre determined by radioimmunoassay in adult female Boophilus microplus showed a peak just prior to full engorgement and detachment of the ticks and decreased subsequently to a very low value. In contrast, the titre of polar ecdysteroid conjugates was very low. Ecdysone was the major ecdysteroid at peak titre and was accompanied by much lower levels of 20-hydroxyecdysone. In newly detached ticks, injected [3H]ecdysone was metabolized primarily (80%) into much less polar compounds, which could be resolved into at least three groups by reversed-phase h.p.l.c. These [3H] “apolar” metabolites were transferred to the newly laid eggs, where they accounted for the vast preponderance of ecdysteroids, the level of free hormone being low. Hydrolysis of the three groups of compounds with an esterase preparation from porcine liver yielding [3H]ecdysone, together with the release of [3H] ecdysteroid and fatty acids upon alkaline saponification of the compounds, suggests that they are of a fatty acyl ester nature. The chemical transformation of these “esters” into the corresponding acetonide derivatives indicates that the 2- and 3-hydroxyls of ecdysone remain unsubstituted in these compounds. Several tick tissues, including Malpighian tubules, ovaries, gut, and fat body, metabolized [3H]ecdysone in vitro forming the “apolar esters” as major products. The maternal ecdysteroid “esters” may function as storage forms of hormone (presumably hormonally inactive), which could be hydrolysed enzymically during embryogenesis releasing free ecdysteroids. Such enzymic hydrolysis of [3H]ecdysone “esters” by homogenates from developing eggs of B. microplus has been demonstrated.  相似文献   

    19.
    Summary Ecdysone 20-monooxygenase, the enzyme system which converts ecdysone into 20-hydroxyecdysone, was characterized in the midgut of 4-day-old female adult Gryllus bimaculatus using an in vitro radioassay. Differential centrifugation and sucrose gradient centrifugation revealed that ecdysone 20-monooxygenase activity is associated with the microsomal fractions. The 20-monooxygenase was found to be most active in potassium phosphate buffer, pH 7.8, at an osmolarity of 100 mOsm and at 39 °C assay temperature. The conversion of ecdysone into 20-hydroxyecdysone was linear over an incubation period of 12 min and with respect to a protein concentration of 3 mg·ml–1. K+ and Na+ (10–3–10–1 M), Ca2+ (2.3 mM), and EDTA (1–5 mM) did not affect monooxygenase activity, whereas Mg2+ (2.3–10 mM) slightly inhibited enzyme activity. The enzyme complex has an apparent Km for ecdysone of 3.7·10–7 M and is competitively inhibited by its product, 20-hydroxyecdysone, with an apparent Ki of 4·10–6 M. The cytochrome P-450 nature of the steroid hydroxylase was shown by its obligate requirement for NADPH and its inhibition by carbon monoxide, metyrapone, and p-chloromercuribenzoate, but not by cyanide. The insect systemic growth disruptor, azadirachtin, was found to inhibit ecdysone 20-monooxygenase activity with a I50 of 8·10–4 M. From the CO-difference spectrum, a cytochrome P-450 content of 285 pmol·mg protein–1 was calculated for midgut microsomes of 4-day-old females.Abbreviations GO carbon monoxide - EDTA ethylenediamine tetraacetic acid - HPLC high performance liquid chromatography - I 50 concentration for 50% inhibition - KCN potassium cyanide - K 1 inhibition constant - K m Michaelis-Menten constant - MOPS 3-morpholinopropanesulfonic acid - NADH/NAD + nicotinamide adenine dinucleotide reduced/oxidized - NADPH/NADP + nicotinamide adenine dinucleotide phosphate reduced/oxidized - Na 2 S 2 O 4 sodium dithionite - SEM Standard error of mean - TLC thin-layer chromatography - TRIS 2-amino 2-hydroxymethyl-1,3-propanediol (trishydroxymethyl aminomethane) - V max maximal reaction velocity  相似文献   

    20.
    The effects of increased levels of dopamine (feeding flies with dopamine precursor, l-dihydroxyphenylalanine) and octopamine (feeding flies with octopamine) on ecdysone 20-monooxygenase activity in young (2 days old) wild type females (the strain wt) of Drosophila virilis have been studied. l-dihydroxyphenylalanine and octopamine feeding increases ecdysone 20-monooxygenase activity by a factor of 1.6 and 1.7, respectively. Ecdysone 20-monooxygenase activity in the young (1 day old) octopamineless females of the strain Tβh nM18 , in females of the strain P845 (precursor of Tβh nM18 strain) and in wild type females (Canton S) of Drosophila melanogaster have been measured. The absence of octopamine leads to a considerable decrease in the enzyme activity. We have also studied the effects of juvenile hormone application on ecdysone 20-monooxygenase activity in 2-day-old wt females of D. virilis and demonstrated that an increase in juvenile hormone titre leads to an increase in the enzyme activity. We discuss the supposition that ecdysone 20-monooxygenase occupies a key position in the regulation of 20-hydroxyecdysone titre under the conditions that lead to changes in juvenile hormone titre and biogenic amine levels.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号