首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
After ingestion of various amounts of either [3H]ecdysone or [3H]20-hydroxyecdysone (0.8 ng to 10 μg) by sixth instar larvae of the Egyptian cotton leafworm Spodoptera littoralis, apolar metabolites are rapidly detected in the gut and frass. Hydrolysis of the apolar products with Helix hydrolases releases solely [3H]ecdysone or [3H]20-hydroxyecdysone, respectively. This, coupled with the formation of chemical derivatives (acetonide and acetate) which cochromatograph with authentic reference compounds on hptlc and hplc demonstrates that these apolar metabolites consist of ecdysone or 20-hydroxyecdysone esterified at C-22 with common long-chain fatty acids. The major fatty acids have been identified by RP-hplc and their contribution to the mixture determined. In contrast, [3H]ecdysone injected into the haemolymph of S. littoralis is metabolized to yield 20-hydroxyecdysone, ecdysonoic acid, and 20-hydroxyecdysonoic acid. Thus, two different pathways exist for the metabolism of ecdysteroids in this species. In addition to an essentially polar pathway operating on injected and endogenous ecdysteroids, exogenous ecdysteroids entering the gut of S. littoralis are detoxified, yielding apolar ecdysteroid 22-fatty acyl esters which are rapidly excreted. The significance of these results in relation to the effects of ingested ecdysteroids on S. littoralis is discussed. Arch. Insect Biochem. Physiol. 34:329–346, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

2.
Metabolites of radioactive ecdysone or 20-hydroxyecdysone in larvae and pharate pupae of Sarcophaga peregrina were separated and identified by using thin-layer chromatography, high-performance liquid chromatography, and chemical methods. At the larval stage ecdysone was metabolized to biologically less active ecdysteroids predominantly through 20-hydroxyecydsone, at the pharate pupal stage, to other ecdysteroids which were tentatively identified as 26-hydroxyecdysone, 3-epi-26-hydroxyecdysone, and 3-epi-20,26-dihydroxyecdysone. Ecdysteroid acids were found in the polar metabolites during pharate pupal-pupal transformation, but scarcely detected in the larval metabolites. These acids were presumed to be ecdysonoic acid, 20-hydroxyecdysonoic acid, and their epimers. The conjugates of ecdysteroid that released the free ecdysteroids by enzymatic hydrolysis were produced more in larvae than in pupae, whereas the very polar ecdysteroids that were not affected by the enzyme were found more in pupae. Therefore, there are different metabolic pathways of ecdysone between these two successive developmental stages, and the alteration of the metabolic pathway may serve as one of the important factors in a regulatory mechanism of molting hormone activity which is responsible for normal development of this insect.  相似文献   

3.
The metabolism of [3H]-ecdysone has been investigated at times of low and high endogenous ecdysteroid tit re, in early and late fifth-instar Schistocerca gregaria larvae, respectively. Ecdysone-3-acetate, 20-hydroxyecdysone, and 20,26-dihydroxyecdysone were identified as metabolites in both the free form and as polar conjugates. Comparison of the intact polar conjugates of the ecdysteroid acetates on two HPLC systems with the corresponding authentic compounds indicated that they were 3-acetylecdysone-2-phosphate and 3-acetyl-20-hydroxyecdysone-2-phosphate. Other major polar metabolites were identified as ecdysonoic acid and 20-hydroxyecdysonoic acid. Ecdysone metabolism in fifth-instar S. gregaria is apparently an age-dependent process. Early in the instar, excretion of both free and conjugated ecdysteroids, as well as ecdysteroid 26-acids, occurs. At this stage the level of ecdysteroid acetates in the conjugated (phosphate) form is high, in contrast to the free ecdysteroids, where ecdysone predominates. When the endogenous hormone titre is high, the formation of ecdysteroid acetates is less, the major excreted matabolites at that stage being conjugated 20-hydroxyecdysone together with ecdysteroid-26-acids, but little free ecdysteroids. Acetylation of ecdysone occurs primarily in the gastric caecae. Ecdysone-3-acetate (mainly as polar conjugate) is also a major product of ingested ecdysone in early fifth-instar Locusta migratoria.  相似文献   

4.
The egg-larval parasitoid Chelonus sp. induces the precocious onset of metamorphosis in the 4th (penultimate) stadium of its host Trichoplusia ni, emerges from the prepupa, and then feeds on it. Qualitative and quantitative changes in ecdysteroids and juvenile hormone were measured. Hemolymph of 3rd-to 4th-instar host larvae and the parasitoids they contained, as well as nonparasitized and parasitized eggs, were analyzed. In the host hemolymph a broad peak of ecdysteroids during molting into the 4th stadium and a continuous increase from day 2 (onset of precocious wandering) until day 4 (emergence of parasitoid) were observed; 20-hydroxyecdysone and 20,26-dihydroxyecdysone were predominant. The juvenile hormone titer fluctuated in the 3rd and early 4th stadium and fell to undetectable levels shortly before the precocious onset of wandering. The parasitoid's ecdysteroids started to increase on the molt to the 2nd instar (= early 4th instar of the host) and thereafter fluctuated on a high level, 20-hydroxyecdysone, 20,26-dihydroxy-ecdysone, and ecdysone being predominant. The juvenile hormone titer was high in late 1st-instar parasitoids, decreased to low levels at ecdysis into the 2nd instar, and increased again to high levels in the 2nd-instar larvae at the time when their shape changed from flat to cylindrical. After ecdysis to the 3rd instar the juvenile hormone titer fell. A comparison revealed that both ecdysteroids and juvenile hormone fluctuate independently in parasitoid and host at most stages, suggesting that the parasitoid produces its own hormones. The first data on ecdysteroids and juvenile hormones in the egg stage of a parasitoid/host system are reported. At the stage of eye pigmentation parasitized eggs contained more immunoreactive midpolar ecdysteroids than non-parasitized ones. 20-Hydroxyecdysone and 20,26-dihydroxyecdysone were the predominant ecdysteroids in both nonparasitized and parasitized eggs, but the latter contained several additional ecdysteroids which were not seen in nonparasitized eggs. The titer of juvenile hormone was similar in both. Shortly before hatching the ecdysteroids were low in parasitized and nonparasitized eggs, but the content of juvenile hormone was much higher in the former. At this stage the majority of parasitoids have already eclosed and teratocytes are released. The results of HPLC analysis indicated the presence of juvenile hormone III together with juvenile hormones I and II in parasitized eggs, but only juvenile hormones I and II in nonparasitized eggs.  相似文献   

5.
Peaks of ecdysteroids were observed during the different phases of embryonic development of intact Carausius eggs or eggs precociously deprived of their exochorion and cultivated under paraffin oil. Several groups of ecdysteroids were separated and analyzed by thin-layer chromatography (TLC) and high performance liquid chromatography (HPLC) combined with radioimmunoassay. Ecdysteroids were similar in the two categories of eggs, including high-polarity products (essentially conjugates hydrolyzable by Helix pomatia digestive juice, or alkaline phosphatase), possible ecdysonoic acids (unhydrolyzable polar substances), free hormones, and nonpolar ecdysteroids. Four ecdysteroids were identified by co-elution during HPLC with reference compounds of 20,26-dihydroxyecdysone, 20-hydroxyecdysone, ecdysone, and 2-deoxy-20-hydroxyecdysone. Concentrations of these substances (free and conjugated forms) were studied during the different stages of embryonic development: 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone were the major free ecdysteroids. They showed parallel variations with large peaks at stages VI8 and VII6 whereas ecdysone titers were consistently low. Injected labelled ecdysone was converted efficiently into 20-hydroxyecdysone, and both compounds underwent 26-hydroxylation and/or conjugation to polar or apolar metabolites.  相似文献   

6.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   

7.
[14C]Cholesterol was injected into fifth-instar larvae of Manduca sexta, and the metabolites were isolated and identified from 8-day-old male and female pupae. A major portion of the metabolized cholesterol was esterified either with a sulfate group or with fatty acids. The predominant ecdysteroid metabolites were 20-hydroxyecdysone, 20,26-dihydroxyecdysone, 20-hydroxyecdysonoic acid, and 3-epi-20-hydroxyecdysonoic acid. Smaller amounts of ecdysteroids were identified as conjugates of 26-hydroxyecdysone, 3-epi-20-hydroxyecdysone, 20,26-dihydroxyecdysone, and its 3α-epimer. The metabolic profiles were similar for both male and female pupae. The two ecdysteroid acids were identified by nuclear magnetic resonance spectroscopy and chemical ionization mass spectrometry and by mass spectral analyses of their methyl esters. Detection of 3-epi-20-hydroxyecdysonoic acid as a major metabolite is significant, as its occurrence has been scarcely reported. 3-Epiecdysteroid acid formation is discussed as a possible ecdysteroid-inactivating pathway that may be operating specifically in lepidopterous insects or in particular developmental stages such as eggs or pupae.  相似文献   

8.
Testes from late last stage larvae of the tobacco budworm, Heliothis virescens, were incubated with [3H]ecdysone and [3H]cholesterol. [3H]Ecdysone was converted to six other major ecdysteroids, identified by cochromatography in reverse-phase high-pressure liquid chromatography (RPHPLC); four of them were verified by normal-phase HPLC. A highly polar fraction, moderately polar ecdysteroids (20,26-dihydroxyecdysone, 3-epi-20-hydroxyecdysone, and 20-hydroxyecdysone) and low-polarity ecdysteroids, including 2-deoxyecdysone, were detected after incubation with [3H]ecdysone. Compounds that reacted positively to antibodies to progesterone and testosterone were detected in the low-polarity fractions. Testes were incubated in fractions corresponding to each of the major ecdysteroid peaks derived from [3H]ecdysone metabolism. Although most of the radioactive ecdysteroid fractions were further metabolized to high- and low-polarity endpoints, 88% of the [3H]20-hydroxyecdysone peak apparently remained unmetabolized. 20-Hydroxyecdysone may be the primary ecdysteroid product of testes of H. virescens. [3H]Cholesterol was not metabolized to any appreciable extent.  相似文献   

9.
Although 5th (last) instar parasitized Manduca sexta larvae undergo developmental arrest and do not wander, they exhibit a small hemolymph ecdysteroid peak (300-400pg/&mgr;l) which begins one day prior to the parasitoid's molt to the 3rd (last) instar and concomitant emergence from the host. Ecdysteroids present in this peak were 20-hydroxyecdysone, 20,26-dihydroxyecdysone and one or more very polar ecdysteroids, as well as small amounts of 26-hydroxyecdysone and ecdysone. In parasitized day-1 and -2 5th instars ligated just behind the 1st abdominal proleg, hemolymph ecdysteroid levels increased in both anterior and posterior portions (100-500pg/&mgr;l), while in unparasitized larvae, hormone levels only increased in the anterior portion (100-350pg/&mgr;l). Thus, the ecdysteroid peak observed in host 5th instars was probably produced, at least in part, by the parasitoids. It may serve to promote Cotesia congregata's molt from the second to the third instar and/or to facilitate parasitoid emergence from the host. In parasitized day-1 and -2 5th instars ligated between the last thoracic and 1st abdominal segments, hemolymph ecdysteroid titers reached much higher levels (500-3500pg/&mgr;l) in the anterior portion (no parasitoids present) than in the posterior portion (150-450pg/&mgr;l). Therefore, it appears that the parasitoid's regulation of hemolymph ecdysteroid titers occurs at two levels. First, parasitization neutralizes the host's ability to maintain its normal hemolymph ecdysteroid levels. Second, in a separate action, the parasitoid manipulates the ecdysteroid-producing machinery so that hemolymph levels are maintained at the 200-400pg/&mgr;l characteristic of day 3-4 hosts. This is the first report of a parasitoid's ability to interfere with the normal inhibitory mechanisms which prevent prothoracic gland production of ecdysteroid at inappropriate periods of insect growth and development.  相似文献   

10.
A method was developed to determine in the same extract juvenile hormone and various types of ecdysteroids in precisely staged eggs and larvae of Trichoplusia ni. Ecdysteroids were tentatively identified on the basis of their retention time in ion suppression reversed-phase HPLC and their cross-reactivity with two relatively non-specific, complimentary antibodies, whereas juvenile hormone was identified using reversed-phase HPLC combined with Galleria bioassay. Freshly laid eggs contained low levels of immunoreactive ecdysteroids. Mid-polar ecdysteroids increased in the phase of segmentation (14-18 h) and 1st larval cuticle formation (36-44 h), when 20-hydroxyecdysone and 20,26-dihydroxyecdysone were found to be predominant. Only traces of ecdysone and 26-hydroxyecdysone were seen. Toward hatching ecdysteroids decreased and represented mainly compounds more polar than 20,26-dihydroxyecdysone. In larval development ecdysteroids were low at the beginning of the feeding phases, increased toward cessation of feeding, and reached highest levels 12-15 h before ecdysis. In feeding stages ecdysone and 20-hydroxyecdysone were predominant, whereas in molting stages they were seen together with 20,26-dihydroxyecdysone and 20-hydroxyecdysonoic acid. The juvenile hormone titer was very low in freshly laid eggs and was high (approximately 25 ng/g) in embryos at the stage of 1st larval cuticle formation and eye pigmentation. In eggs we tentatively identified juvenile hormones I and II, whereas in larval stages juvenile hormone II appeared to be the predominant or exclusive juvenile hormone. Its titer fluctuated rapidly and was high in early 1st-instar larvae and again before the molts into the 3rd, 4th, and 5th instar. Highest titers were reached concomitant with the peak in 20-hydroxyecdysone 12-15 h before ecdysis.  相似文献   

11.
The free ecdysteroid titre determined by radioimmunoassay in adult female Boophilus microplus showed a peak just prior to full engorgement and detachment of the ticks and decreased subsequently to a very low value. In contrast, the titre of polar ecdysteroid conjugates was very low. Ecdysone was the major ecdysteroid at peak titre and was accompanied by much lower levels of 20-hydroxyecdysone. In newly detached ticks, injected [3H]ecdysone was metabolized primarily (80%) into much less polar compounds, which could be resolved into at least three groups by reversed-phase h.p.l.c. These [3H] “apolar” metabolites were transferred to the newly laid eggs, where they accounted for the vast preponderance of ecdysteroids, the level of free hormone being low. Hydrolysis of the three groups of compounds with an esterase preparation from porcine liver yielding [3H]ecdysone, together with the release of [3H] ecdysteroid and fatty acids upon alkaline saponification of the compounds, suggests that they are of a fatty acyl ester nature. The chemical transformation of these “esters” into the corresponding acetonide derivatives indicates that the 2- and 3-hydroxyls of ecdysone remain unsubstituted in these compounds. Several tick tissues, including Malpighian tubules, ovaries, gut, and fat body, metabolized [3H]ecdysone in vitro forming the “apolar esters” as major products. The maternal ecdysteroid “esters” may function as storage forms of hormone (presumably hormonally inactive), which could be hydrolysed enzymically during embryogenesis releasing free ecdysteroids. Such enzymic hydrolysis of [3H]ecdysone “esters” by homogenates from developing eggs of B. microplus has been demonstrated.  相似文献   

12.
Insects convert ecdysone and 20-hydroxyecdysone into their corresponding 26-oic derivatives, named ecdysonoic acid and 20-hydroxyecdysonoic acid respectively. The conversion takes piace in several tissues and can either be the only pathway for converting ecdysone into highly polar ecdysteroids, or coexist with various conjugating mechanisms. 20-Hydroxyecdysonoic acid was isolated from Pieris brassicae pupae as its methyl ester derivative. Its chemical structure was identified by Cl/D mass spectrometry and compared with a synthetic compound (20-hydroxy-25-deoxyecdysonoic acid) chemically prepared by oxidation of inokosterone (20,26-dihydroxy-25-deoxyecdysone). Natural ecdysonoic acids appear to exist as a mixture of 25R and 25S isomers. The significance of this pathway is discussed in comparison with similar reactions occuring in the metabolism of steroid hormones in vertebrates.  相似文献   

13.
1. Ecdysteroids were detected in extracts of egg-producing adult Caenorhabditis elegans, in dauer larvae and in dietary bacteria. 2. Similar concentrations of free ecdysteroids were recorded in adults and larvae, although the two life cycle stages differed in their ratio of ecdysone: 20-hydroxyecdysone. 3. Patent adults metabolized [3H]ecdysone into apolar products and putative [3H]ecdysone 22-phosphate.  相似文献   

14.
Maturing eggs of the desert locust, Schistocerca gregaria, contain a variety of ecdysteroid (insect moulting hormone) conjugates and metabolites, four of which have been previously isolated from polar extracts and identified as ecdysonoic acid, 20-hydroxyecdysonoic acid, 3-acetylecdysone 2-phosphate and ecdysone 2-phosphate. In the present study we have isolated eight additional ecdysteroids from similar late-stage eggs by high-performance liquid chromatography. The 22-phosphate esters of ecdysone, 2-deoxyecdysone, 20-hydroxyecdysone and 2-deoxy-20-hydroxyecdysone, all of which were first identified as ecdysteroid components of newly-laid eggs of S. gregaria, were identified by co-chromatography with authentic compounds and by physicochemical techniques. The remaining compounds were identified as 3-acetyl-20-hydroxyecdysone 2-phosphate, 3-epi-2-deoxyecdysone 3-phosphate, 3-acetylecdysone 22-phosphate and 2-acetylecdysone 22-phosphate by fast atom bombardment mass spectrometry, p.m.r. spectroscopy and analysis of the steroid moieties after enzymic hydrolysis. The latter two compounds, after isolation, are susceptible to nonenzymic acetyl migration and deacetylation to give mixtures of ecdysone 22-phosphate and its 2- and 3-acetate derivatives. The possible role and significance of these ecdysteroid conjugates with respect to the control of hormone titres in insect eggs is discussed.  相似文献   

15.
The number ( \(\bar X\) =2.4) ofEucelatoria sp. maggots that completed development in 4th- or 5th-instar larvae of the tobacco budworm (TBW),Heliothis virescens (F.), was significantly greater (P<0.05) than the number ( \(\bar X\) =1.2) that completed development in 3rd-instar larvae. Maggot development time decreased with increasing number of maggots per host larva. It also decreased with advancing larval instars. The range was 6.9±1.1 days in early 3rd-instar TBW larvae and 5.0±0.8 days in early 5th-instar TBW larvae. Unparasitized 3rd- or 4th-instar TBW larvae consumed significantly more food than did similar aged larvae parasitized byEucelatoria sp., but larvae parasitized during the early 5th-instar consumed more food than did similar aged unparasitized larvae. Consumption by 4th- or 5th-instar larvae increased significantly as maggot densities increased from 1 to 3 per host larva, but decreased at a density of 4 or more maggots per host larva. Although body weight gain and consumption were both significantly reduced 48 and 120 h after parasitization of late 3rd-instar larvae (6 days old), the approximate digestibility (AD) value was significantly greater for parasitized than for unparasitized larvae. Unparasitized larvae were more efficient in converting digested food to body substance (ECD) than parasitized larvae, but the efficiency in conversion of ingested food to body substance (ECI) was similar for both parasitized and unparasitized larvae.  相似文献   

16.
The levels of both free and conjugated ecdysteroids, maternally labeled from [14C]cholesterol, of six different age groups of Manduca sexta eggs were quantitatively determined. Eggs 0–1-h old contain about 2.5 and 35 μ/g of the 2- and 26-phosphates of 26-hydroxyecdysone, respectively, and 1 μg/g of 26-hydroxyecdysone. During embryogenesis of 26-hydroxyedcdysone 26-phosphate is hydrolyzed to 26-hydroxyecdysone, which reaches a peak titer in 1–18-h-old eggs; the level of 26-hydroxyecdysone 2-phosphate remains rather constant. Additionally, other metabolic modifications such as hydroxylation, conjugation, epimerization, and oxidation are occurring; and as the level of the 26-hydroxyecdysone 26-phosphate decreases there is a progression of other ecdysteroids. C-20 hydroxylation first appears in 24–40-h-old eggs and reaches peak activity in 48–64-h-old eggs, where 20-hydroxyecdysone and 20, 26-dihydroxyecdysone are both present at peak titer but the latter is the major free ecdysteroid. Ecdysone is observed at measurable levels only in the three age groups of eggs between 1 and 64 h-old. C-3 epimerase activity also appears at 24–40 h and continually increases throughout embryogenesis to the point that 3-epi-26-hydroxyecdysone and 3-epi-20, 26-dihydroxyecdysone are the major free ecdysteroids in 96-h-old eggs. A new ecdysteroid conjugate, 26-hydroxyecdysone 22-glucoside, first appears at 24–40h and becomes the major conjugate in 72–80-h-old eggs; it represents an apparent end-product as its peak titer is reached and maintained throughout the final embryonic stages. 20-Hydroxyecdysonoic acid occurs in 48–64-h-old eggs, and along with 3-epi-20-hydroxyecdysonoic and ecdysonoic acids in 72–88-h-old eggs. 20-Hydroxyecdysonoic acid peaks during the latter time interval, and as its titer subsequently falls, there is a concurrent increase in the level of 3-epi-20-hydroxyecdysonoic which was identified as the second major component of the ecdysteroid conjugate fraction of 0–1-h-old larvae. Our results indicate that there is little or no biosynthesis of ecdysteroids during embryogenesis; that the materal ecdysteroid conjugate 26-hydroxyecdysone 26-phosphate serves as source for 26-hydroxyecdysone and the numerous metabolites; that 26-hydroxyecdysone and 20,26-dihydroxyecdysone may be the active hormones during embryonic development; and that glucosylation, epimerization, and formation of acids cosntitute inactivation processes. A scheme of the proposed pathways involved in the metabolism of 26–hydroxyecdysone 26-phosphate in the developing eggs of m. sexta is presented.  相似文献   

17.
Ecdysone metabolism in Pieris brassicae during the feeding last larval stage was investigated by using 3H-labeled ecdysteroid injections followed by high-performance liquid chromatographic (HPLC
  • 1 Abbreviations: 3DE = 3-dehydroecdysone; 3D20E = 3-dehydro-20-hydroxyecdysone; 2026E = 20,26-dihydroxyecdysone; E = ecdysone; Eoic = ecdysonoic acid; 2026E′ = 3-epi-20,26-dihydroxyecdysone; E′ = 3-epiecdysone; E′oic = 3-epiecdysonoic acid; E′8P = 3-epiecdysone 3-phosphate; 20E′ = 3-epi-20-hydroxyecdysone; 20E′3P = 3-epi-20-hydroxyecdysone 3-phosphate; FT = Fourier transform; HPLC = high-performance liquid chromatography; 20E = 20-hydroxyecdysone; 20Eoic = 20-hydroxyecdysonoic acid; NMR = nuclear magnetic resonance; NP-HPLC = normal phase HPLC; RP-HPLC = reverse phase HPLC; TFA = trifluoroacetic acid; Tris = tris(hydroxymethyl)-aminomethane.
  • ) analysis of metabolites. Metabolites were generally identified by comigration with available references in different HPLC systems. Analysis of compounds for which no reference was available required a large-scale preparation and purification for their identification by 1H nuclear magnetic resonance spectrometry. The metabolic reactions affect the ecdysone molecule at C-3, C-20, and C-26, leading to molecules which are modified at one, two, or three of these positions. At C-20, hydroxylation leads to 20-hydroxyecdysteroids. At C-26, hydroxylation leads to 26-hydroxyecdysteroids which can be further converted into 26-oic derivatives (ecdysonoic acids) by oxidation. At C-3, there are several possibilities: there may be oxidation into 3-dehydroecdysteroids, or epimerization possibly followed by phosphate conjugation. Thus, injected 20-hydroxyecdysone was converted principally into 20-hydroxyecdysonoic acid, 3-dehydro-20-hydroxyecdysone, and 3-epi-20-hydroxyecdysone 3-phosphate. Labelled ecdysone mainly gave the same metabolites doubled by a homologous series lacking the 20-hydroxyl group.  相似文献   

    18.
    Larvae of the tobacco budworm,Heliothis virescens, are resistant to high levels of ingested 20-hydroxyecdysone which could cause potential inhibition to the development of many other lepidopteran species. This resistance is attributed to the ability of the larvae to metabolize this molting hormone to its 22-acyl ester forms. When tobacco budworm larvae were fed large quantities of 20-hydroxyecdyone, the hormonal metabolites were found in gut and fat body tissues. When incubated with 20-hydroxyecdysone gut tissue converted 20-hydroxyecdysone into its 22-acyl ester metabolites. Lumen site of the midgut was found to be the major location of this bio-transformation. In contrast, fat body tissue failed to convert 20-hydroxyecdysone to 22-acyl ester metabolitesin vitro. After the oral injection of3H-ecdysone, the major metabolites formed were ecdysone 22-acyl esters whereas the majority of3H-ecdysone was transformed to polar metabolites after it was injected into the hemocoel of the larvae. Similar distributions of ecdysteroid 22-O-acyltransferase and alkaline phosphatase activity in subcellular fractions demonstrates the co-localization of these enzymes in plasma membrane of the gut epithelial cells. These results suggest that gut brush border membrane is the major site of ecdysteroid 22-acyl ester formation inH. virescens larvae.  相似文献   

    19.
    The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4-day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae-larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

    20.
    The effect of interspecific competition between the solitary endoparasitoid Glyptapanteles porthetriae Muesebeck (Hymenoptera: Braconidae) and the gregarious Glyptapanteles liparidis Bouché (Hymenoptera: Braconidae), was investigated in larvae of Lymantria dispar L. (Lepidoptera: Lymantriidae). Host larvae were parasitized by both wasp species simultaneously in premolt to the 2nd or the 3rd host instar or in an additional approach with a 4‐day delay in parasitization by the second wasp species. Host acceptance experiments revealed that both wasp species do not discriminate between unparasitized host larvae and larvae parasitized previously by the same or the other species. In more than 90% female wasps parasitized the larva they encountered first. During the period of endoparasitic development, larvae of the competing parasitoid species never attacked the egg stage of the other species. When host larvae were parasitized simultaneously by both wasp species, the rate of successful development of both species depended on the age of the host larva at the time of its parasitization; G. liparidis emerged successfully from 44% of host larvae parasitized during the premolt to 2nd instar, G. porthetriae from 28%, and in 20% of the hosts both parasitoid species were able to develop in one gypsy moth larva. However, when host larvae were parasitized simultaneously during premolt to the 3rd instar, G. liparidis was successful in 90% of the hosts, compared to 8% from which only G. porthetriae emerged. In the experiments with delayed oviposition, generally the species that oviposited first succeeded in completing its larval development. Larvae of the species ovipositing with four days delay were frequently attacked and killed by larvae of the first parasitizing species or suffered reduced growth. As the secondary parasitoid species, G. porthetriae‐larvae were never able to complete their development, whereas G. liparidis developed successfully in at least 12,5% of the multiparasitized host larvae. Thus, multiparasitism of gypsy moth larvae by both Glyptapanteles species corresponds to the contest type; however, G. porthetriae is only able to develop successfully as the primary parasitoid of young host larvae.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号