首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Spiders produce high performance fibers with diverse mechanical properties and biological functions. Molecular and biochemical studies of spider egg case silk have revealed that the main constituent of the large diameter fiber contains the fibroin TuSp1. Here we demonstrate by SDS-PAGE and protein silver staining the presence of a distinct approximately 300-kDa polypeptide that is found in solubilized egg case sacs. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called AcSp1-like and demonstrate that its protein product is assembled into the small diameter fibers of egg case sacs and wrapping silks from the black widow spider, Latrodectus hesperus. BLAST searches of the NCBInr protein data base using the amino acid sequence of AcSp1-like revealed similarity to AcSp1, an inferred protein proposed to be a component of wrapping silk. However, the AcSp1-like protein was found to display more nonuniformity in its internal iterated repeat modules than the putative AcSp1 fibroin. Real time quantitative PCR analysis demonstrates that the AcSp1-like gene displays an aciniform gland-restricted pattern of expression. The amino acid composition of the fibroins extracted from the luminal contents of the aciniform glands was remarkably similar to the predicted amino acid composition of the AcSp1-like protein, which supports the assertion that AcSp1-like protein represents the major constituent stored within the aciniform gland. Collectively, our findings provide the first direct molecular evidence for the involvement of the aciniform gland in the production of a common fibroin that is assembled into the small diameter threads of egg case and wrapping silk of cob weavers.  相似文献   

3.
Araneoid spiders use specialized abdominal glands to manufacture up to seven different protein-based silks/glues that have diverse physical properties. The fibroin sequences that encode egg case fibers (cover silk for the egg case sac) and the secondary structure of these threads have not been previously determined. In this study, MALDI tandem TOF mass spectrometry (MS/MS) and reverse genetics were used to isolate the first egg case fibroin, named tubuliform spidroin 1 (TuSp1), from the black widow spider, Latrodectus hesperus. Real-time quantitative PCR analysis demonstrates TuSp1 is selectively expressed in the tubuliform gland. Analysis of the amino acid composition of raw egg case silk closely aligns with the predicted amino acid composition from the primary sequence of TuSp1, which supports the assertion that TuSp1 represents a major component of egg case fibers. TuSp1 is composed of highly homogeneous repeats that are 184 amino acids in length. The long stretches of polyalanine and glycine-alanine subrepeats, which account for the crystalline regions of minor ampullate and major ampullate fibers, are very poorly represented in TuSp1. However, polyserine blocks and short polyalanine stretches were highly iterated within the primary sequence, and (13)C NMR spectroscopy demonstrated that the majority of alanine was found in a beta-sheet structure in post-spun egg case silk. The TuSp1 repeat unit does not display substantial sequence similarity to any previously described fibroin genes or proteins, suggesting that TuSp1 is a highly divergent member of the spider silk gene family.  相似文献   

4.
Spider dragline (major ampullate) silk outperforms virtually all other natural and manmade materials in terms of tensile strength and toughness. For this reason, the mass-production of artificial spider silks through transgenic technologies has been a major goal of biomimetics research. Although all known arthropod silk proteins are extremely large (>200 kiloDaltons), recombinant spider silks have been designed from short and incomplete cDNAs, the only available sequences. Here we describe the first full-length spider silk gene sequences and their flanking regions. These genes encode the MaSp1 and MaSp2 proteins that compose the black widow's high-performance dragline silk. Each gene includes a single enormous exon (>9000 base pairs) that translates into a highly repetitive polypeptide. Patterns of variation among sequence repeats at the amino acid and nucleotide levels indicate that the interaction of selection, intergenic recombination, and intragenic recombination governs the evolution of these highly unusual, modular proteins. Phylogenetic footprinting revealed putative regulatory elements in non-coding flanking sequences. Conservation of both upstream and downstream flanking sequences was especially striking between the two paralogous black widow major ampullate silk genes. Because these genes are co-expressed within the same silk gland, there may have been selection for similarity in regulatory regions. Our new data provide complete templates for synthesis of recombinant silk proteins that significantly improve the degree to which artificial silks mimic natural spider dragline fibers.  相似文献   

5.
Molecular and material properties of major ampullate silk were studied for the cobweb-building black widow spider Latrodectus hesperus. Material properties were measured by stretching the silk to breaking. The strength was 1.0 +/- 0.2 GPa, and the extensibility was 34 +/- 8%. The secondary structure of the major ampullate silk protein was studied using carbon-13 NMR spectroscopy. Alanine undergoes a transition from a coiled structure in pre-spun silk to a beta sheet structure in post-spun silk. We have also isolated two distinct cDNAs (both about 500 bp) which encode proteins similar to major ampullate spidroin 1 and 2 (MaSp1 and MaSp2). The MaSp1-like silk contains polyalanine runs of 5-10 residues as well as GA and GGX motifs. The MaSp2-like silk contains polyalanine runs of varying length as well as GPG(X)(n) motifs. L. hesperus major ampullate silk is more like major ampullate silk from other species than other L. hesperus silks.  相似文献   

6.
Adhesive spider glues are required to perform a variety of tasks, including web construction, prey capture, and locomotion. To date, little is known regarding the molecular and structural features of spider glue proteins, in particular bioadhesives that interconnect dragline or scaffolding silks during three-dimensional web construction. Here we use biochemical and structural approaches to identify and characterize two aggregate gland specific gene products, AgSF1 and AgSF2, and demonstrate that these proteins co-localize to the connection joints of both webs and wrapping silks spun from the black widow spider, Latrodectus hesperus. Protein architectures are markedly divergent between AgSF1 and AgSF2, as well as traditional spider silk fibroin family members, suggesting connection joints consist of a complex proteinaceous network. AgSF2 represents a nonglycosylated 40-kDa protein that has novel internal amino acid block repeats with the consensus sequence NVNVN embedded in a glycine-rich matrix. Analysis of the amino acid sequence of AgSF1 reveals pentameric QPGSG iterations that are similar to conserved modular elements within mammalian elastin, a rubber-like elastomeric protein that interfaces with collagen. Wet-spinning methodology using purified recombinant proteins show AgSF1 has the potential to self-assemble into fibers. X-ray fiber diffraction studies performed on these synthetic fibers reveal the presence of noncrystalline domains that resemble classical rubber networks. Collectively, these data support that the aggregate gland serves to extrude a protein mixture that contains substances that allow for the self-assembly of fiber-like structures that interface with dragline silks to mediate prey capture.  相似文献   

7.
8.
Spiders produce multiple types of silk that exhibit diverse mechanical properties and biological functions. Most molecular studies of spider silk have focused on fibroins from dragline silk and capture silk, two important silk types involved in the survival of the spider. In our studies we have focused on the characterization of egg case silk, a third silk fiber produced by the black widow spider, Latrodectus hesperus. Analysis of the physical structure of egg case silk using scanning electron microscopy demonstrates the presence of small and large diameter fibers. By using the strong protein denaturant 8 M guanidine hydrochloride to solubilize the fibers, we demonstrated by SDS-PAGE and protein silver staining that an abundant component of egg case silk is a 100-kDa protein doublet. Combining matrix-assisted laser desorption ionization tandem time-of-flight mass spectrometry and reverse genetics, we have isolated a novel gene called ecp-1, which encodes for one of the protein components of the 100-kDa species. BLAST searches of the NCBInr protein data base using the primary sequence of ECP-1 revealed similarity to fibroins from spiders and silkworms, which mapped to two distinct regions within the ECP-1. These regions contained the conserved repetitive fibroin motifs poly(Ala) and poly(Gly-Ala), but surprisingly, no larger ensemble repeats could be identified within the primary sequence of ECP-1. Consistent with silk gland-restricted patterns of expression for fibroins, ECP-1 was demonstrated to be predominantly produced in the tubuliform gland, with lower levels detected in the major and minor ampullate glands. ECP-1 monomeric units were also shown to assemble into higher aggregate structures through the formation of disulfide bonds via a unique cysteine-rich N-terminal region. Collectively, our findings provide new insight into the components of egg case silk and identify a new class of silk proteins with distinctive molecular features relative to traditional members of the spider silk gene family.  相似文献   

9.
10.
Spider dragline silk is renowned as one of the toughest materials of its kind. In nature, spider silks are spun out of aqueous solutions under environmental conditions. This is in contrast to production of most synthetic fibres, where hazardous solvents, high temperatures and pressure are used. In order to identify some of the chemical processes involved in spider silk spinning, we have produced a collection of cDNA sequences from specific regions of Nephila senegalensis major ampullate gland. We examined in detail the sequence and expression of a putative Nephila senegalensis peroxidase gene (NsPox) from our EST collection. NsPox encodes a protein with similarity to Drosophila melanogaster and Aedes aegypti peroxidases. Northern analysis and in situ localisation experiments revealed that NsPox is expressed in major and minor ampullate glands of the spider where the main components of the dragline silk are produced. We suggest that NsPox plays a role in dragline silk fibre formation and/or processing.  相似文献   

11.
12.
Spiders spin multiple types of silks that are renowned for their superb mechanical properties. Flagelliform silk, used in the capture spiral of an orb-web, is one of the few silks characterized by both cDNA and genomic DNA data. This fibroin is composed of repeating ensembles of three types of amino acid sequence motifs. The predominant subrepeat, GPGGX, likely forms a beta-turn, and tandem arrays of these turns are thought to create beta-spirals. These spring-like helices may be critical for the exceptional ability of capture silk to stretch and recoil. Each ensemble of motifs was found to correspond to a different exon within the flagelliform gene. The pattern of sequence similarity among exons indicates intragenic concerted evolution. Surprisingly, the introns between the iterated exons are also homogenized with each other. This unusual molecular architecture in the flagelliform silk gene has implications for the evolution and maintenance of spider silk proteins.  相似文献   

13.
The silks from the cob weaving spider, Latrodectus hesperus (black widow), have been examined with the goal of expanding our understanding of the relationship between the protein structure and mechanical performance of these unique biomaterials. The scaffolding, dragline and inner egg case silks each appear to be distinct fibers based on mole percent amino acid composition and polypeptide composition. Further, we find that the amino acid composition of dragline and egg case silk are similar to the analogous silks produced by orb weaving spiders, while scaffolding silk may represent a novel silk. The black widow silks are comprised of multiple high molecular weight polypeptides, however, the egg case and scaffolding silks also contain some smaller polypeptides.  相似文献   

14.
Modern spiders spin high-performance silk fibers with a broad range of biological functions, including locomotion, prey capture and protection of developing offspring 1,2. Spiders accomplish these tasks by spinning several distinct fiber types that have diverse mechanical properties. Such specialization of fiber types has occurred through the evolution of different silk-producing glands, which function as small biofactories. These biofactories manufacture and store large quantities of silk proteins for fiber production. Through a complex series of biochemical events, these silk proteins are converted from a liquid into a solid material upon extrusion.Mechanical studies have demonstrated that spider silks are stronger than high-tensile steel 3. Analyses to understand the relationship between the structure and function of spider silk threads have revealed that spider silk consists largely of proteins, or fibroins, that have block repeats within their protein sequences 4. Common molecular signatures that contribute to the incredible tensile strength and extensibility of spider silks are being unraveled through the analyses of translated silk cDNAs. Given the extraordinary material properties of spider silks, research labs across the globe are racing to understand and mimic the spinning process to produce synthetic silk fibers for commercial, military and industrial applications. One of the main challenges to spinning artificial spider silk in the research lab involves a complete understanding of the biochemical processes that occur during extrusion of the fibers from the silk-producing glands.Here we present a method for the isolation of the seven different silk-producing glands from the cobweaving black widow spider, which includes the major and minor ampullate glands [manufactures dragline and scaffolding silk] 5,6, tubuliform [synthesizes egg case silk] 7,8, flagelliform [unknown function in cob-weavers], aggregate [makes glue silk], aciniform [synthesizes prey wrapping and egg case threads] 9 and pyriform [produces attachment disc silk] 10. This approach is based upon anesthetizing the spider with carbon dioxide gas, subsequent separation of the cephalothorax from the abdomen, and microdissection of the abdomen to obtain the silk-producing glands. Following the separation of the different silk-producing glands, these tissues can be used to retrieve different macromolecules for distinct biochemical analyses, including quantitative real-time PCR, northern- and western blotting, mass spectrometry (MS or MS/MS) analyses to identify new silk protein sequences, search for proteins that participate in the silk assembly pathway, or use the intact tissue for cell culture or histological experiments.  相似文献   

15.
Spider silks have great potential as biomaterials with extraordinary properties. Here, we report the cloning and characterization of the major ampullate silk protein gene from the spider Araneus ventricosus. A cDNA encoding the partial major ampullate silk protein (AvMaSp) was cloned from A. ventricosus. An analysis of the cDNA sequence shows that AvMaSp consists of a 240 amino acid repetitive region and a 99 amino acid C-terminal non-repetitive domain. The peptide motifs that were found in the spider major ampullate silk proteins, (A)n, (GA)n, and (GGX)n, were conserved in the repetitive region of AvMaSp. Phylogenetic analysis further confirmed that AvMaSp belongs to the spider major ampullate spidroin family of proteins. The AvMaSp-R cDNA, which encodes the 240 amino acid repetitive domain, was expressed as a soluble 22 kDa polypeptide in baculovirus-infected insect cells. Recombinant AvMaSp-R was degraded abruptly by trypsin. However, AvMaSp-R was stable at 100 °C for at least 30 min. Additionally, the AvMaSp-R was stable at pH values from 2 to 12 for at least 1 h. Taken together, our findings describe the molecular structure and biochemical properties of the A. ventricosus major ampullate silk protein and demonstrate its potential as a biomaterial.  相似文献   

16.
17.
Spiders produce up to six different kinds of silk, each one for a specific biological function. Spider silks are also known for their unique mechanical properties. The possibility of producing new materials with similar properties motivated research on these silk proteins (spidroins). Using expression sequence tags, we identified four spidroins produced by major ampullate, minor ampullate, flagelliform and tubuliform silk glands from the Brazilian spider Nephilengys cruentata (Araneae: Nephilidae). The new protein sequences showed substantial similarity to other spidroins previously described, with high content of alanine and glycine due to the presence of the highly repetitive motifs (polyAla, (GA)n, (GGX)n, (GPGGX)n). Similarities among sequences were also observed between the different spidroins with the exception of tubuliform spidroin, which presents a unique complex amino acid sequence with high amounts of serine and low amounts of glycine.  相似文献   

18.
19.
Although phylogenetic studies have shown covariation between the properties of spider major ampullate (MA) silk and web building, both spider webs and silks are highly plastic so we cannot be sure whether these traits functionally covary or just vary across environments that the spiders occupy. As MaSp2‐like proteins provide MA silk with greater extensibility, their presence is considered necessary for spider webs to effectively capture prey. Wolf spiders (Lycosidae) are predominantly non‐web building, but a select few species build webs. We accordingly collected MA silk from two web‐building and six non‐web‐building species found in semirural ecosystems in Uruguay to test whether the presence of MaSp2‐like proteins (indicated by amino acid composition, silk mechanical properties and silk nanostructures) was associated with web building across the group. The web‐building and non‐web‐building species were from disparate subfamilies so we estimated a genetic phylogeny to perform appropriate comparisons. For all of the properties measured, we found differences between web‐building and non‐web‐building species. A phylogenetic regression model confirmed that web building and not phylogenetic inertia influences silk properties. Our study definitively showed an ecological influence over spider silk properties. We expect that the presence of the MaSp2‐like proteins and the subsequent nanostructures improves the mechanical performance of silks within the webs. Our study furthers our understanding of spider web and silk co‐evolution and the ecological implications of spider silk properties.  相似文献   

20.
Huang W  Lin Z  Sin YM  Li D  Gong Z  Yang D 《Biochimie》2006,88(7):849-858
Spider silks are renowned for their excellent mechanical properties. Although several spider fibroin genes, mainly from dragline and capture silks, have been identified, there are still many members in the spider fibroin gene family remain uncharacterized. In this study, a novel silk cDNA clone from the golden web spider Nephila antipodiana was isolated. It is serine rich and contains two almost identical fragments with one varied gap region and one conserved spider fibroin-like C-terminal domain. Both in situ hybridization and immunoblot analyses have shown that it is specifically expressed in the tubuliform gland. Thus, it likely encodes the silk fibroin from the tubuliform gland, which supplies the main component of the inner egg case. Unlike other silk proteins, the protein encoded by the novel cDNA in water solution exhibits the characteristic of an alpha-helical protein, which implies the distinct property of the egg case silk, though the fiber of tubuliform silk is mainly composed of beta-sheet structure. Its sequence information facilitates elucidation of the evolutionary history of the araneoid fibroin genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号