首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several gram-negative human pathogens recognize members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family. Pathogenic Neisseriae employ distinct isoforms of the colony opacity-associated proteins (Opa(CEA) proteins) to bind to the amino-terminal domains of CEACAMs. Here we present a novel approach to rapidly determine the CEACAM-binding properties of single bacteria. Expression of the isolated amino-terminal domains of various CEACAMs in eukaryotic cells yields soluble probes that selectively recognize Opa(CEA)-expressing bacteria in a pull-down assay format. Furthermore, by expressing soluble CEACAMs as fusions to green-fluorescent protein (CEACAM-N-GFP), CEACAM-binding bacteria can be decorated with a fluorescent label and analysed by flow cytometry allowing the specific detection of receptor binding events on the level of single bacteria. Besides its potential for rapid and quantitative analysis of pathogen-receptor interactions, this novel approach allows the detection of receptor recognition in heterogeneous bacterial populations and might represent a valuable tool for profiling the host binding capabilities of various microorganisms.  相似文献   

2.
Haemophilus influenzae (Hi), a commensal of the human respiratory mucosa, is an important cause of localized and systemic infections. We show that distinct strains belonging to typable (THi) and non-typable (NTHi) H. influenzae target human carcinoembryonic antigens (the membrane associated CEA family of cell adhesion molecules, are now termed CEACAMs). All strains of H. influenzae biogroup aegyptius (Hi-aeg) and more than 70% of THi and NTHi strains tested specifically recognize CEACAMI-Fc soluble constructs. Furthermore, transfection of Chinese hamster ovary cells with human CEACAM1 cDNA alone was sufficient for promoting Hi interactions with the transfected cells. The majority of the Hi-aeg strains tested interacted with soluble constructs containing only the N-terminal domain. In contrast, several THi and NTHi strains reacted with soluble constructs only when additional extracellular A and B domains of the receptor were present. The use of monoclonal antibodies confirmed that THi and NTHi strains also interact primarily at the N-domain. We used site-directed mutants of CEACAM1 that contained substitutions at surface exposed amino acids and a molecular model of the N-domain to identify the residues involved in interactions with Hi ligands. The studies show that a common region exposed at the CFG face of the molecule is targeted by diverse Hi strains. However, mutation at distinct sites within this area affected the interactions of distinct strains signifying the potential for tissue tropism via this receptor. Analyses of the molecular basis of interaction with human cell lines and purified CEA show that Hi strains, especially those belonging to Hi-aeg, interact with multiple CEACAMs. Because Neisseria meningitidis (Nm) strains are also known to bind at the CFG face of the receptor, we used Nm and Hi strains in co-infection experiments and demonstrate competition between these mucosal pathogens in colonization of target cells via CEACAMs.  相似文献   

3.
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) are receptors for several Neisseria and Haemophilus spp. In this investigation, we demonstrate that a major outer membrane protein of Moraxella catarrhalis (Mx) strains, belonging to the ubiquitous surface protein (Usp) family, also interacts with the receptor. The interaction was demonstrated in Western blot overlay of SDS-PAGE-separated bacterial proteins using soluble receptor constructs as well as by co-precipitation experiments. The identity of the bacterial ligand was further ascertained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). It was shown to belong to the UspA1 subfamily. In general, antibodies raised against synthetic UspA1, but not UspA2, peptides bound to the Mx ligand. CEACAM1-Fc-binding property could be demonstrated in all the clinical isolates examined but varied between strains. A single colony derivative of an Mx isolate was also demonstrated to bind to transfected Chinese hamster ovary and some human respiratory epithelial cells in a CEACAM-dependent manner. Thus, we have identified the third respiratory pathogen with the capacity to target the CEACAM family of receptors. The Mx ligand is structurally unrelated to those of Neisseria and Haemophilus.  相似文献   

4.
Inflammatory bowel disease (IBD), encompassing Crohn’s disease (CD) and ulcerative colitis (UC), is a chronic intestinal inflammatory condition with increasing incidence worldwide and whose pathogenesis remains largely unknown. The collected evidence indicates that genetic, environmental and microbial factors and a dysregulated immune response are responsible for the disease. IBD has an early onset and long term sufferers present a higher risk of developing colitis associated cancer (CAC). The carcinoembryonic antigen-related adhesion molecules (CEACAM) are a subgroup of the CEA family, found in a range of different cell types and organs including epithelial cells in the intestine. They can act as intercellular adhesions molecules for e.g. bacteria and soluble antigens. CEACAMs are involved in a number of different processes including cell adhesion, proliferation, differentiation and tumour suppression. Some CEACAMs such as CEACAM1, CEACAM5 and CEACAM6 are highly associated with cancer and are even recognised as valid clinical markers for certain cancer forms. However, their role in IBD pathogenesis is less understood. The purpose of this review is to provide a comprehensive summary of published literature on CEACAMs and intestinal inflammation (IBD). The interactions between CEACAMs and bacteria adhesion in relation to IBD pathophysiology will be addressed and potential new therapeutic and diagnostic opportunities will be identified.  相似文献   

5.
The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.  相似文献   

6.
A common overlapping site on the N-terminal IgV-like domain of human carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) is targeted by several important human respiratory pathogens. These include Neisseria meningitidis (Nm) and Haemophilus influenzae (Hi) that can cause disseminated or persistent localized infections. To define the precise structural features that determine the binding of distinct pathogens with CEACAMs, we have undertaken molecular modelling and mutation of the receptor molecules at previously implicated key target residues required for bacterial binding. These include Ser-32, Tyr-34, Val-39, Gln-44 and Gln-89, in addition to Ile-91, the primary docking site for the pathogens. Most, but not all, of these residues located adjacent to each other in a previous N-domain model of human CEACAM1, which was based on REI, CD2 and CD4. In the current studies, we have refined this model based on the mouse CEACAM1 crystal structure, and observe that all of the above residues form an exposed continuous binding region on the N-domain. Examination of the model also suggested that substitution of two of these residues 34 and 89 could affect the accessibility of Ile-91 for ligand binding. By introducing selected mutations at the positions 91, 34 and 89, we confirmed the primary importance of Ile-91 in all bacterial binding to CEACAM1 despite the inter- and intraspecies structural differences between the bacterial CEACAM-binding ligands. The studies further indicated that the efficiency of binding was significantly enhanced for specific strains by mutations such as Y34F and Q89N, which also altered the hierarchy of Nm versus Hi strain binding. These studies imply that distinct polymorphisms in human epithelial CEACAMs have the potential to decrease or increase the risk of infection by the receptor-targeting pathogens.  相似文献   

7.
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.  相似文献   

8.
Moraxella catarrhalis is one of the major pathogens of respiratory and middle ear infections. Attachment of this bacterium to the surface of human pharyngeal epithelial cells is the first step in the pathogenesis of infections. This study revealed that sulfatide might act as a binding molecule for the attachment of M. catarrhalis to human pharyngeal epithelial cells. Furthermore, six different synthetic sulfatides were found to inhibit the attachment of M. catarrhalis significantly at an optimum concentration of 10 microg/ml. Synthetic sulfatides may have the potential to be used as a therapy to prevent M. catarrhalis infections.  相似文献   

9.
Mouse sera against outer membrane proteins from Moraxella catarrhalis, Neisseria meningitidis and Neisseria lactamica, and human sera from both healthy individuals and patients convalescing from meningococcal meningitis were used to identify cross-reactive antigens. Mouse anti-N. meningitidis and anti-N. lactamica sera recognized 77, 62 and 32 kDa outer membrane antigens in M. catarrhalis strains; on the contrary, the meningococcal porin PorB (38-42 kDa) was recognized by one of the two anti-M. catarrhalis sera. Human sera from both healthy individuals and patients convalescing from meningococcal meningitis also showed cross-reactive antibodies against these proteins. The existence of cross-reactive antigens in M. catarrhalis and N. meningitidis (as well as in N. lactamica) could favor the development of natural immunization against both pathogens.  相似文献   

10.
Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) belong to the immunoglobulin superfamily and contribute to cell-cell adhesion and signal modulation in various tissues. In humans, several CEACAMs are targeted by pathogenic bacteria. One peculiar member of this family, CEACAM3, is exclusively expressed by human granulocytes and functions as an opsonin-independent phagocytic receptor for CEACAM-binding bacteria. Here, we will discuss CEACAM3-dependent processes by summarizing recent insight into the phosphotyrosine-based signaling complex formed upon CEACAM3 engagement. Compared to different well-studied phagocytic receptors, such as Fcγ receptors and Dectin-1, CEACAM3 appears as an example of a hemITAM-containing innate immune receptor, which promotes rapid internalization and intracellular destruction of a diverse group of CEACAM-binding bacteria. The particular efficiency of CEACAM3 arises from the direct coupling of upstream activators and downstream effectors of the small GTPase Rac by the cytoplasmic domain of CEACAM3, which co-ordinates actin cytoskeleton re-arrangements and bactericidal effector mechanisms of granulocytes.  相似文献   

11.
The mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF2R) is involved in multiple physiological pathways including targeting of lysosomal enzymes, degradation of IGF2, and cicatrization through TGFbeta activation. To target potential therapeutics to this membrane receptor, four carboxylate analogues of mannose 6-phosphate (M6P) were synthesized. Three of them, two isosteric carboxylate analogues and a malonate derivative, showed a binding affinity for the M6P/IGF2R equivalent to or higher than that of M6P. Contrary to M6P, all these analogues were particularly stable in human serum. Moreover, these derivatives did not present any cytotoxic activity against two human cell lines. These analogues represent a new potential for the lysosomal targeting of enzyme replacement therapy in lysosomal diseases or to prevent the membrane-associated activities of the M6P/IGF2R.  相似文献   

12.
Abstract Moraxella catarrhalis is one of the major pathogens of respiratory infections and has the ability to attach to the pharyngeal cells via fimbriae. We characterized the epithelial cell receptor to which fimbriate M. catarrhalis binds. Neuraminidase pretreatment of pharyngeal epithelial cells resulted in a significant decrease of M. catarrhalis attachment, suggesting interaction with the sialic acid component. The attachment was not decreased in M. catarrhalis pretreated with 2 and 1 mg/ml of fucose, N -acetyl-neuraminic acid, N -acetyl-glucosamine, N -acetyl-galactosamine, acetyl-salicylic acid and colominic acid. However, M. catarrhalis treated with gangliosides M1, M2, D1a, D1b and T1a at a concentration of 2.5 μg/ml had significantly decreased the attachment compared to the control. In contrast treatment with gangliosides M3 and asialoganglioside M1 did not decrease the attachment of M. catarrhalis and thereby provided evidence for specificity of the inhibition. Concentration dependent effects of ganglioside M2 on the attachment were also observed. Other fimbriate isolates of M. catarrhalis showed decrease in attachment after treatment with ganglioside M2. However there was no effect on attachment when a nonfimbriate isolate was treated with ganglioside M2. This study indicates that the receptor of fimbriate M. catarrhalis on pharyngeal epithelial cells resides in the sequences of ganglioside M2.  相似文献   

13.
14.
Neisseria meningitidis (Nm) is a human specific opportunistic pathogen that occasionally penetrates mucosal barriers via the action of adhesins and invasins and evades host immune mechanisms during further dissemination via capsule expression. From in vitro studies, the primary adhesion of capsulate bacteria is believed to be mediated by polymeric pili, followed by invasion via outer membrane adhesins such as Opa proteins. As the latter requires the surface capsule to be down-modulated, invading bacteria would be serum sensitive and thus avirulent. However, there is recent evidence that capsulate bacteria may interact via Opa proteins when host cells express high levels of carcinoembryonic antigen-related cell adhesion molecules (CEACAMs), their target receptors. Such a situation may arise following increased circulation of inflammatory cytokines that upregulate certain adhesion molecules on host cells. In this study, using a tetracycline controlled expression system, we have developed cell lines with inducible CEACAM expression to mimic post-inflammation state of target tissues and analysed the interplay between the three surface components capsule, pili and Opa proteins in cellular interactions. With two distinct cell lines, not only the level but also the rate of adhesion of capsulate Opa-expressing Nm increased concurrently with CEACAM density. Moreover, when threshold levels of receptor were reached, cellular invasion ensued in an Opa-dependent manner. In studies with cell lines intrinsically expressing pilus receptors, notable synergism in cellular interactions between pili and Opa of several meningococcal strains was observed and was independent of capsule type. A number of internalized bacteria were shown to express capsule and when directly isolated from host cells, these bacteria were as serum resistant as the inoculated phenotype. Furthermore, we observed that agents that block Opa-CEACAM binding substantially reduced cellular invasion, while maintaining a low level of cellular adhesion. These studies highlight some of the factors that may determine increased host susceptibility to infection by serum resistant phenotypes; and demonstrate the potential of selective inhibition of key interactions in preventing target tissue penetration while maintaining a level of colonization.  相似文献   

15.
Acute otitis media (AOM) is one of the most common infectious diseases in children. Nontypeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis, Gram-negative bacteria, are considered major pathogens of AOM and respiratory tract infections. In this study, we used monophosphoryl lipid A (MPL) as a Toll-like receptor (TLR4) agonist to induce innate immune responses before challenge with NTHi and M.?catarrhalis to enhance bacterial clearance from the nasopharynx. Mice were intranasally administered 40, 10, or 1?μg of MPL and challenged with NTHi and M.?catarrhalis 12 and 24?h later. At 6 and 12?h after the bacterial challenge, the mice were killed and nasal washes were collected. The numbers of NTHi, M.?catarrhalis, and inflammatory cells were quantitated. Inoculation of MPL produced a significant reduction in the number of bacteria recovered from the nasopharynx at 6 and/or 12?h after the bacterial challenge, when compared with control mice. The effect was dose dependent. MPL inoculation also induced the early accumulation of neutrophils in the nasopharynx after exposure to bacteria. MPL is effective for eliciting clearance of both NTHi and M.?catarrhalis from the nasopharynx. These results indicate the possibility of a new strategy against Gram-negative bacterial infection that involves the stimulation of the innate immune system by TLR4 agonists such as MPL.  相似文献   

16.
Moraxella catarrhalis is an important pathogen in patients with chronic obstructive lung disease (COPD). While M. catarrhalis has been categorized as an extracellular bacterium so far, the potential to invade human respiratory epithelium has not yet been explored. Our results obtained by electron and confocal microscopy demonstrated a considerable potential of M. catarrhalis to invade bronchial epithelial (BEAS-2B) cells, type II pneumocytes (A549) and primary small airway epithelial cells (SAEC). Moraxella invasion was dependent on cellular microfilament as well as on bacterial viability, and characterized by macropinocytosis leading to the formation of lamellipodia and engulfment of the invading organism into macropinosomes, thus indicating a trigger-like uptake mechanism. In addition, the cells examined expressed TLR2 as well as NOD1, a recently found cytosolic protein implicated in the intracellular recognition of bacterial cell wall components. Importantly, inhibition of TLR2 or NOD1 expression by RNAi significantly reduced the M. catarrhalis-induced IL-8 secretion. The role of TLR2 and NOD1 was further confirmed by overexpression assays in HEK293 cells. Overall, M. catarrhalis may employ lung epithelial cell invasion to colonize and to infect the respiratory tract, nonetheless, the bacteria are recognized by cell surface TLR2 and the intracellular surveillance molecule NOD1.  相似文献   

17.
Several bacterial pathogens exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to promote attachment and uptake into eukaryotic host cells. The widely expressed isoform CEACAM1 is involved in cell–cell adhesion, regulation of cell proliferation, insulin homeostasis, and neo-angiogenesis, processes that depend on the cytoplasmic domain of CEACAM1. By analysing the molecular requirements for CEACAM1-mediated internalization of bacteria, we surprisingly find that the CEACAM1 cytoplasmic domain is completely obsolete for bacterial uptake. Accordingly, CEACAM1-4L as well as a CEACAM1 mutant with a complete deletion of the cytoplasmic domain (CEACAM1 ΔCT) promote equivalent internalization of several human pathogens. CEACAM1-4L- and CEACAM1 ΔCT-mediated uptake proceeds in the presence of inhibitors of actin microfilament dynamics, which is in contrast to CEACAM3-mediated internalization. Bacteria-engaged CEACAM1-4L and CEACAM1 ΔCT, but not CEACAM3, localize to a gangliosid GM1- and GPI-anchored protein-containing portion of the plasma membrane. In addition, interference with cholesterol-rich membrane microdomains severely blocks bacterial uptake via CEACAM1-4L and CEACAM1 ΔCT, but not CEACAM3. Similar to GPI-anchored CEACAM6, both CEACAM1-4L as well as CEACAM1 ΔCT partition into a low-density, Triton-insoluble membrane fraction upon receptor clustering, whereas CEACAM3 is not detected in this fraction. Bacterial uptake by truncated CEACAM1 or chimeric CEACAM1/CEACAM3 molecules reveals that the transmembrane domain of CEACAM1 is responsible for its association with membrane microdomains. Together, these data argue for a functional role of lipid rafts in CEACAM1-mediated endocytosis that is promoted by the transmembrane domain of the receptor and that might be relevant for CEACAM1 function in physiologic settings.  相似文献   

18.
Moraxella catarrhalis outer membrane proteins, CD and ubiquitous surface protein A (UspA), were used as carriers for M. catarrhalis detoxified lipooligosaccharide (dLOS)-based conjugates. Our study was designed to investigate the feasibility of CD and UspA as protein carriers for dLOS-based conjugates and their possible synergic effects on protection from both anti-LOS and anti-CD or anti-UspA antibody responses. Female Balb/c mice were immunized subcutaneously three times with dLOS-CD or dLOS-UspA conjugate in Ribi adjuvant. Antisera elicited by the conjugates showed high titers of specific anti-LOS antibodies with complement-dependent bactericidal activity towards M. catarrhalis strain 25238. In a mouse aerosol challenge model, mice immunized with both conjugates showed a significant enhancement of the clearance of strain 25238 from lungs as compared with the control mice. Although both conjugates elicited reduced (relative to unconjugated CD or UspA) but significant levels of anti-CD or UspA antibodies, they did not show synergetic effects with anti-LOS antibodies on the bactericidal activity or the pulmonary bacterial clearance. Nevertheless, CD and UspA are safe and effective new carriers for dLOS-based or other potential carbohydrate-based conjugate vaccines to help thymus-independent carbohydrate antigens for production of anti-carbohydrate antibodies against target pathogens.  相似文献   

19.
W Borth 《FASEB journal》1992,6(15):3345-3353
Alpha 2-macroglobulin (alpha 2M) and related proteins share the function of binding host or foreign peptides and particles, thereby serving as humoral defense barriers against pathogens in the plasma and tissues of vertebrates. In human alpha 2M, several reactive sites including high-affinity sites for zinc, transglutaminase cross-linking sites, and reactive sites derived from the activated thiol ester can mediate reversible or irreversible capture of proteins of diverse biological functions. Alpha 2M interacts and captures virtually any proteinase whether self or foreign, suggesting a function as a unique "panproteinase inhibitor." Activation of alpha 2M generates novel binding sites, which mediate complex formation with cytokines and other peptides. Direct evidence of physical association of cytokines with activated alpha 2M indicated its role as biological response modifier in cell cultures. A mechanism commonly referred to as "clearance of activated alpha 2M" involves Ca(2+)-dependent binding to a specific cell surface receptor, a member of the low-density lipoprotein receptor supergene family, that mediates cellular uptake by endocytosis and delivery to endosomes and lysosomes. The peptide binding function of alpha 2M, therefore, may also be viewed as a mechanism that allows targeting of biologically active peptides to different cell types expressing the alpha 2M receptor. Internalized complexes may be dispatched into different pathways of endocytic/lysosomal pathways in a cell type-specific manner. In addition, bioactive peptides bound to alpha 2M may dissociate in the process of intracellular ligand sorting, thereby modulating cell function, or remain bound and share the catabolic fate of alpha 2M. The diversified and probably programmed binding functions of alpha 2M indicate that in addition to its role in trapping proteinases, it has other biological activities that remain to be fully defined. That alpha 2M may function as a binding and carrier protein with targeting characteristics is predicted from 1) the known functions of alpha 2M, and 2) the similarity of the fate of alpha 2M with proteins whose significance in targeting and intracellular trafficking has been studied in more detail.  相似文献   

20.
Ornithine decarboxylase (ODC) is an enzyme that initiates polyamine synthesis in human. Polyamines play key roles in cell–cell adhesion, cell motility and cell cycle regulation. Higher synthesis of polyamines also occurs in rapidly proliferating cancer cells are mediated by ODC. As per earlier studies, di-flouro-methyl-orninthine (DFMO) is a proven efficient inhibitor ODC targeting the catalytic activity, however, its usage is limited due to side effects. Targeting ODC is considered as a potential therapeutic modality in the treatment of cancer. In this study, it is attempted to use DFMO scaffold to build a ligand-based pharmocophore query using MOE to screen similar active compounds from Universal Natural Products Database with better ADMET properties. The identified compounds were virtually screened against the active cavity of ODC using Glide. Further, potential natural hits targeting ODC were shortlisted based on Molecular Mechanics/Generalized-Born/Surface Area (MM-GBSA) score. Finally, molecular dynamics simulations were performed for the natural molecule hit and DFMO in complex with ODC using Desmond. Among the hits shortlisted, 2-amino-5, 9, 13, 17-tetramethyloctadeca-8, 16-diene-1, 3, 14-triol (UNPD208110) was found to be highly potential, as it showed a higher binding affinity in terms of interactions with key active cavity residues, and also showed better ADMET property, HUMO–LUMO gap energy and more stable complex formation with ODC compared to DFMO. Hence, the proposed molecule (UNPD208110) shall be favourably considered as a potential natural inhibitor targeting ODC-mediated disease conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号