首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Leucine Rich Repeat Kinase 2 (LRRK2) is a 2527 amino acid member of the ROCO family of proteins, possessing a complex, multidomain structure including a GTPase domain (termed ROC, for Ras of Complex proteins) and a kinase domain1. The discovery in 2004 of mutations in LRRK2 that cause Parkinson''s disease (PD) resulted in LRRK2 being the focus of a huge volume of research into its normal function and how the protein goes awry in the disease state2,3. Initial investigations into the function of LRRK2 focused on its enzymatic activities4-6. Although a clear picture has yet to emerge of a consistent alteration in these due to mutations, data from a number of groups has highlighted the importance of the kinase activity of LRRK2 in cell death linked to mutations7,8. Recent publications have reported inhibitors targeting the kinase activity of LRRK2, providing a key experimental tool9-11. In light of these data, it is likely that the enzymatic properties of LRRK2 afford us an important window into the biology of this protein, although whether they are potential drug targets for Parkinson''s is open to debate.A number of different approaches have been used to assay the kinase activity of LRRK2. Initially, assays were carried out using epitope tagged protein overexpressed in mammalian cell lines and immunoprecipitated, with the assays carried out using this protein immobilised on agarose beads4,5,7. Subsequently, purified recombinant fragments of LRRK2 in solution have also been used, for example a GST tagged fragment purified from insect cells containing residues 970 to 2527 of LRRK212. Recently, Daniëls et al. reported the isolation of full length LRRK2 in solution from human embryonic kidney cells, however this protein is not widely available13. In contrast, the GST fusion truncated form of LRRK2 is commercially available (from Invitrogen, see table 1 for details), and provides a convenient tool for demonstrating an assay for LRRK2 kinase activity. Several different outputs for LRRK2 kinase activity have been reported. Autophosphorylation of LRRK2 itself, phosphorylation of Myelin Basic Protein (MBP) as a generic kinase substrate and phosphorylation of an artificial substrate - dubbed LRRKtide, based upon phosphorylation of threonine 558 in Moesin - have all been used, as have a series of putative physiological substrates including α-synuclein, Moesin and 4-EBP14-17. The status of these proteins as substrates for LRRK2 remains unclear, and as such the protocol described below will focus on using MBP as a generic substrate, noting the utility of this system to assay LRRK2 kinase activity directed against a range of potential substrates.  相似文献   

2.
Mutations in LRRK2, a large multi-domain protein kinase, create risk factors for Parkinson’s Disease (PD). LRRK2 has seven well-folded domains that include three N-terminal scaffold domains (NtDs) and four C-terminal domains (CtDs). In full-length inactive LRRK2 there is an additional well-folded motif, the LRR-ROC Linker, that lies between the NtDs and the CtDs. This motif, which is stabilized by hydrophobic residues in the LRR and ROC/COR-A domains, is anchored to the C-Lobe of the kinase domain. The LRR-ROC Linker becomes disordered when the NtDs are unleashed from the CtDs following activation by Rab29 or by various PD mutations. A key residue within the LRR-ROC Linker, W1295, sterically blocks access of substrate proteins. The W1295A mutant blocks cis-autophosphorylation of S1292 and reduces phosphorylation of heterologous Rab substrates. GaMD simulations show that the LRR-Linker motif, P + 1 loop and the inhibitory helix in the DYGψ motif are very stable. Finally, in full-length inactive LRRK2 ATP is bound to the kinase domain and GDP:Mg to the GTPase/ROC domain. The fundamentally different mechanisms for binding nucleotide (G-Loop vs P-Loop) are captured by these GaMD simulations. In this model, where ATP binds with low affinity (μM range) to N-Lobe capping residues, the known auto-phosphorylation sites are located in the space that is sampled by the flexible phosphates thus providing a potential mechanism for cis-autophosphorylation.  相似文献   

3.
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are a common genetic cause of Parkinson disease, but the mechanisms whereby LRRK2 is regulated are unknown. Phosphorylation of LRRK2 at Ser910/Ser935 mediates interaction with 14-3-3. Pharmacological inhibition of its kinase activity abolishes Ser910/Ser935 phosphorylation and 14-3-3 binding, and this effect is also mimicked by pathogenic mutations. However, physiological situations where dephosphorylation occurs have not been defined. Here, we show that arsenite or H2O2-induced stresses promote loss of Ser910/Ser935 phosphorylation, which is reversed by phosphatase inhibition. Arsenite-induced dephosphorylation is accompanied by loss of 14-3-3 binding and is observed in wild type, G2019S, and kinase-dead D2017A LRRK2. Arsenite stress stimulates LRRK2 self-association and association with protein phosphatase 1α, decreases kinase activity and GTP binding in vitro, and induces translocation of LRRK2 to centrosomes. Our data indicate that signaling events induced by arsenite and oxidative stress may regulate LRRK2 function.  相似文献   

4.
Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult.  相似文献   

5.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of Parkinson's disease (PD). LRRK2 contains a Ras of complex proteins (ROC) domain that may acts as a GTPase to regulate its protein kinase activity. Here, we performed 10 ns molecular dynamics simulations on LRRK2 Apo, complex with GDP and mutations (R1441C, R1441G and R1441H). Our results strongly suggest that the formations of helix in L1 and its pliable plays a major role in the LRRK2 functions.  相似文献   

6.
7.
LRRK2 mutations are a frequent cause of familial Parkinson disease (PD) and are also found in a number of sporadic PD cases. PD-linked G2019S and I2020T mutations in the kinase domain of LRRK2 result in elevated kinase activity, which is required for the toxicity of these pathogenic variants in cell and animal models of PD. We recently reported that LRRK2 interacts with and phosphorylates a number of mammalian ribosomal proteins, several of which exhibit increased phosphorylation via both G2019S and I2020T LRRK2. Blocking the phosphorylation of ribosomal protein s15 through expression of phospho-deficient T136A s15 prevents age-associated locomotor deficits and dopamine neuron loss caused by G2019S LRRK2 expression in Drosophila indicating that s15 is a pathogenic LRRK2 substrate. We previously described that G2019S LRRK2 causes an induction of bulk mRNA translation that is blocked by T136A s15 or the protein synthesis inhibitor anisomycin. Here, we report the protective effects of the eIF4E/eIF4G interaction inhibitor 4EGI-1, in preventing neurodegenerative phenotypes in G2019S LRRK2 flies, and discuss how our findings and those of other groups provide a framework to begin investigating the mechanistic impact of LRRK2 on translation.  相似文献   

8.
《Fly》2013,7(3):165-169
LRRK2 mutations are a frequent cause of familial Parkinson disease (PD) and are also found in a number of sporadic PD cases. PD-linked G2019S and I2020T mutations in the kinase domain of LRRK2 result in elevated kinase activity, which is required for the toxicity of these pathogenic variants in cell and animal models of PD. We recently reported that LRRK2 interacts with and phosphorylates a number of mammalian ribosomal proteins, several of which exhibit increased phosphorylation via both G2019S and I2020T LRRK2. Blocking the phosphorylation of ribosomal protein s15 through expression of phospho-deficient T136A s15 prevents age-associated locomotor deficits and dopamine neuron loss caused by G2019S LRRK2 expression in Drosophila indicating that s15 is a pathogenic LRRK2 substrate. We previously described that G2019S LRRK2 causes an induction of bulk mRNA translation that is blocked by T136A s15 or the protein synthesis inhibitor anisomycin. Here, we report the protective effects of the eIF4E/eIF4G interaction inhibitor 4EGI-1, in preventing neurodegenerative phenotypes in G2019S LRRK2 flies, and discuss how our findings and those of other groups provide a framework to begin investigating the mechanistic impact of LRRK2 on translation.  相似文献   

9.
The occurrence of linear condensed polyphosphates and cyclic condensed metaphosphates was studied by means of pulse-labeling with 32P-orthophosphate (3–5 h) in a number of Phaeophyceae species: Pylaiella litoralis, Ilea fascia, Ectocarpus siliculosus and also Rhodophyceae species: Ceramium deslongchampsii, C. rubrum, Rhodomela confervoides, Porphyridium purpureum and P. aerugineum. Twodimensional cellulose thin layer chromatography revealed that in all species studied 32P-radioactivity was generally present in all oligopolyphosphates containing 2 to 7 phosphate residues, in cyclic metaphosphates (tri-, tetra-, penta- and hexametaphosphates) and in high-molecular-weight condensed phosphates which remained at the starting point. Among the low-molecular-weight condensed inorganic phosphates the trimetaphosphate had a significantly higher specific activity than the other oligophosphates which were separated on the chromatography plates as measured by the direct scanning with a Geiger-Muller counter.The phosphate uptake strongly depends on the internal pool of reserve phosphates of the algae cells. The 32P-orthophosphate incorporation of the cells is low and sluggish when growning in a synthetic medium or in sea water. Accordingly 32P appeared preferentially in the low-molecular-weight fractions of condensed phosphates since the storage phosphates were not yet used. After previous incubation in a P-free culture medium of the algae the 32P was rather rapidly incorporated and was found mostly in the highmolecular-weight condensed phosphates.During MAK-chromatography the high-molecular-weight fractions were eluted together with the nucleic acids (tRNA and DNA) while most of the low-molecular-weight fractions left the column immediately on elution.  相似文献   

10.
Genetic studies show that LRRK2, and not its closest paralogue LRRK1, is linked to Parkinson's disease. To gain insight into the molecular and cellular basis of this discrepancy, we searched for LRRK1‐ and LRRK2‐specific cellular processes by identifying their distinct interacting proteins. A protein microarray‐based interaction screen was performed with recombinant 3xFlag‐LRRK1 and 3xFlag‐LRRK2 and, in parallel, co‐immunoprecipitation followed by mass spectrometry was performed from SH‐SY5Y neuroblastoma cell lines stably expressing 3xFlag‐LRRK1 or 3xFlag‐LRRK2. We identified a set of LRRK1‐ and LRRK2‐specific as well as common interactors. One of our most prominent findings was that both screens pointed to epidermal growth factor receptor (EGF‐R) as a LRRK1‐specific interactor, while 14‐3‐3 proteins were LRRK2‐specific. This is consistent with phosphosite mapping of LRRK1, revealing phosphosites outside of 14‐3‐3 consensus binding motifs. To assess the functional relevance of these interactions, SH‐SY5Y‐LRRK1 and ‐LRRK2 cell lines were treated with LRRK2 kinase inhibitors that disrupt 14‐3‐3 binding, or with EGF, an EGF‐R agonist. Redistribution of LRRK2, not LRRK1, from diffuse cytoplasmic to filamentous aggregates was observed after inhibitor treatment. Similarly, EGF induced translocation of LRRK1, but not of LRRK2, to endosomes. Our study confirms that LRRK1 and LRRK2 can carry out distinct functions by interacting with different cellular proteins.

  相似文献   


11.
The effect of leucine-rich repeat kinase 2 (LRRK2) mutation I2020T on its kinase activity has been controversial, with both increased and decreased effects being reported. We conducted steady-state and pre-steady-state kinetic studies on LRRKtide and its analog LRRKtideS. Their phosphorylation differs by the rate-limiting steps: product release is rate-limiting for LRRKtide and phosphoryl transfer is rate-limiting for LRRKtideS. As a result, we observed that the I2020T mutant is more active than wild type (WT) LRRK2 for LRRKtideS phosphorylation, whereas it is less active than WT for LRRKtide phosphorylation. Our pre-steady-state kinetic data suggest that (i) the I2020T mutant accelerates the rates of phosphoryl transfer of both reactions by 3–7-fold; (ii) this increase is masked by a rate-limiting product release step for LRRKtide phosphorylation; and (iii) the observed lower activity of the mutant for LRRKtide phosphorylation is a consequence of its instability: the concentration of the active form of the mutant is 3-fold lower than WT. The I2020T mutant has a dramatically low KATP and therefore leads to resistance to ATP competitive inhibitors. Two well known DFG-out or type II inhibitors are also weaker toward the mutant because they inhibit the mutant in an unexpected ATP competitive mechanism. The I2020 residue lies next to the DYG motif of the activation loop of the LRRK2 kinase domain. Our modeling and metadynamic simulations suggest that the I2020T mutant stabilizes the DYG-in active conformation and creates an unusual allosteric pocket that can bind type II inhibitors but in an ATP competitive fashion.  相似文献   

12.
Leucine-rich repeat kinase 2 (LRRK2), a product of a causative gene for the autosomal-dominant form of familial Parkinson's disease (PARK8), harbors a Ras-like small GTP binding protein-like (ROC) domain besides the kinase domain, although the relationship between these two functional domains remains elusive. Here we show by thin-layer chromatographic analysis that LRRK2 stably binds GTP but lacks a GTPase activity in HEK293 and Neuro-2a cells. A ROC domain mutation that converts LRRK2 to a guanine nucleotide-free form (T1348N) abolishes the kinase activity of LRRK2 as well as its phosphate incorporation upon metabolic labeling. The phosphorylation of LRRK2 was inhibited by potential inhibitors for cyclic AMP-dependent protein kinase. These data suggest that binding of GTP to the ROC domain regulates the kinase activity of LRRK2 as well as its phosphorylation by other kinase(s).  相似文献   

13.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common cause of familial Parkinson's disease. Much research effort has been directed towards the catalytic core region of LRRK2 composed of GTPase (ROC, Ras of complex proteins) and kinase domains and a connecting COR (C-terminus of ROC) domain. In contrast, the precise functions of the protein-protein interaction domains, such as the leucine-rich repeat (LRR) domain, are not known. In the present study, we modeled the LRRK2 LRR domain (LRRLRRK2) using a template assembly approach, revealing the presence of 14 LRRs. Next, we focused on the expression and purification of LRRLRRK2 in Escherichia coli. Buffer optimization revealed that the protein requires the presence of a zwitterionic detergent, namely Empigen BB, during solubilization and the subsequent purification and characterization steps. This indicates that the detergent captures the hydrophobic surface patches of LRRLRRK2 thereby suppressing its aggregation. Circular dichroism (CD) spectroscopy measured 18% α-helices and 21% β-sheets, consistent with predictions from the homology model. Size exclusion chromatography (SEC) and dynamic light scattering measurements showed the presence of a single species, with a Stokes radius corresponding to the model dimensions of a protein monomer. Furthermore, no obvious LRRLRRK2 multimerization was detected via cross-linking studies. Finally, the LRRLRRK2 clinical mutations did not influence LRRLRRK2 secondary, tertiary or quaternary structure as determined via SEC and CD spectroscopy. We therefore conclude that these mutations are likely to affect putative LRRLRRK2 inter- and intramolecular interactions.  相似文献   

14.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the major genetic cause of autosomal-dominantly inherited Parkinson's disease. LRRK2 is implicated in the regulation of intracellular trafficking, neurite outgrowth and PD risk in connection with Rab7L1, a putative interactor of LRRK2. Recently, a subset of Rab GTPases have been reported as substrates of LRRK2. Here we examine the kinase activity of LRRK2 on Rab7L1 in situ in cells. Phos-tag analyses and metabolic labeling assays revealed that LRRK2 readily phosphorylates Golgi-localized wild-type Rab7L1 but not mutant forms that are distributed in the cytoplasm. In vitro assays demonstrated direct phosphorylation of Rab7L1 by LRRK2. Subsequent screening using Rab7L1 mutants harboring alanine-substitution for every single Ser/Thr residue revealed that Ser72 is a major phosphorylation site, which was confirmed by using a phospho-Ser72-specific antibody. Moreover, LRRK2 pathogenic Parkinson mutants altogether markedly enhanced the phosphorylation at Ser72. The modulation of Ser72 phosphorylation in Rab7L1 resulted in an alteration of the morphology and distribution of the trans-Golgi network. These data collectively support the involvement of Rab7L1 phosphorylation in the LRRK2-mediated cellular and pathogenetic mechanisms.  相似文献   

15.
Protein phosphorylation was investigated inStreptomyces lincolnensis underin vivo conditions. In cells grown in the presence of32P-orthophosphate, proteins ofM=12, 22, 45, 68 and 90 kDa were labeled with32P (detected by gel electrophoresis and autoradiography). These proteins were shown to contain O-phosphoserine and a small proportion of O-phosphotyrosine. Taken together the results indicate thatStreptomyces lincolnensis harbors several protein kinases including a protein-tyrosine kinase activity.  相似文献   

16.
Genetic mutations in leucine‐rich repeat kinase 2 (LRRK2) have been linked to autosomal dominant Parkinson's disease. The most prevalent mutation, G2019S, results in enhanced LRRK2 kinase activity that potentially contributes to the etiology of Parkinson's disease. Consequently, disease progression is potentially mediated by poorly characterized phosphorylation‐dependent LRRK2 substrate pathways. To address this gap in knowledge, we transduced SH‐SY5Y neuroblastoma cells with LRRK2 G2019S via adenovirus, then determined quantitative changes in the phosphoproteome upon LRRK2 kinase inhibition (LRRK2‐IN‐1 treatment) using stable isotope labeling of amino acids in c ulture combined with phosphopeptide enrichment and LC‐MS/MS analysis. We identified 776 phosphorylation sites that were increased or decreased at least 50% in response to LRRK2‐IN‐1 treatment, including sites on proteins previously known to associate with LRRK2. Bioinformatic analysis of those phosphoproteins suggested a potential role for LRRK2 kinase activity in regulating pro‐inflammatory responses and neurite morphology, among other pathways. In follow‐up experiments, LRRK2‐IN‐1 inhibited lipopolysaccharide‐induced tumor necrosis factor alpha (TNFα) and C‐X‐C motif chemokine 10 (CXCL10) levels in astrocytes and also enhanced multiple neurite characteristics in primary neuronal cultures. However, LRRK2‐IN‐1 had almost identical effects in primary glial and neuronal cultures from LRRK2 knockout mice. These data suggest LRRK2‐IN‐1 may inhibit pathways of perceived LRRK2 pathophysiological function independently of LRRK2 highlighting the need to use multiple pharmacological tools and genetic approaches in studies determining LRRK2 function.

  相似文献   


17.
Parkinson’s disease (PD) is a late-onset neurodegenerative disease which occurs at more than 1% in populations aging 65-years and over. Recently, leucine-rich repeat kinase 2 (LRRK2) has been identified as a causative gene for autosomal dominantly inherited familial PD cases. LRRK2 G2019S which is a prevalent mutant found in familial PD patients with LRRK2 mutations, exhibited kinase activity stronger than that of the wild type, suggesting the LRRK2 kinase inhibitor as a potential PD therapeutics. To develop such therapeutics, we initially screened a small chemical library and selected compound 1, whose IC50 is about 13.2 μM. To develop better inhibitors, we tested five of the compound 1 derivatives and found a slightly better inhibitor, compound 4, whose IC50 is 4.1 μM. The cell-based assay showed that these two chemicals inhibited oxidative stress-induced neurotoxicity caused by over-expression of a PD-specific LRRK2 mutant, G2019S. In addition, the structural analysis of compound 4 suggested hydrogen bond interactions between compound 4 and Ala 1950 residue in the backbone of the ATP binding pocket of LRRK2 kinas domain. Therefore, compound 4 may be a promising lead compound to further develop a PD therapeutics based on LRRK2 kinase inhibition.  相似文献   

18.
LRRK2 is an autosomal dominant gene whose mutations cause familial Parkinson's disease (PD). The LRRK2 protein contains a functional kinase and a GTPase domain. PD phenotypes caused by LRRK2 mutations are similar to those of idiopathic PD, implying that LRRK2 is an important participant in PD pathogenesis. Of LRRK2's PD-specific mutations, the G2019S is the most frequently observed one. Its over-expression is known to increase kinase activity and neurotoxicity compared to wild type (WT) LRRK2. Here, using a simple colorimetric cell viability assay, we analyzed LRRK2's neurotoxicity in dopaminergic SN4741 cells following treatment with hydrogen peroxide. When WT, G2019S, or empty vector was expressed in SN4741 cells, cell death was modestly and significantly increased in the order of G2019S > WT > vector. When these transfected cells were treated with hydrogen peroxide to mimic oxidative stress, cellular neurotoxicity was enhanced in the same order (i.e. G2019S > WT > vector). Moreover, incubation of SN4741 cells with conditioned medium from cells expressing G2019S and subjected to hydrogen peroxide treatment exhibited 10-15% more cell death than conditioned medium from cells transfected with vector or WT, suggesting that G2019S-expressing cells secrete a factor(s) affecting viability of neighboring cells. The kinase domain was mapped to be responsible for oxidative stress-induced neurotoxicity. In addition, over-expression of WT and G2019S LRRK2 lead to a weak, but significant, increase in intracellular reactive oxygen species (ROS) in the order of G2019S > WT as measured by DCFH-DA assay in both the presence and absence of H2O2 treatment. Furthermore, in G2019S-expressing cells, co-expression of the anti-oxidant protein DJ-1 or ERK inhibitor treatment restored survival rate to a level similar to that of cells transfected with control vector under H2O2 treatment. Taken together, our data suggest that the LRRK2 kinase domain increases the generation of ROS and causes enhanced neurotoxicity under H2O2 treatment, which can be at least partially rescued by DJ-1 or the ERK inhibitor.  相似文献   

19.
20.
Summary Bombyx mori L. ribosomal proteins have been analyzed by four related two-dimensional polyacrylamide gel electrophoretic systems (Madjar et al. 1977a). In the small and large subunits are present 32 and 45 proteins, respectively, whose numbering is proposed. No significant differences in composition or migration could be detected between proteins in membranebound ribosomes and free ribosomes. The molecular weights of the proteins vary from 60,000 to less than 10,000. In vivo phosphorylation was investigated by labeling with 32P-orthophosphate. Autoradiograms of four two dimensional gels unambiguously show five labeled ribosomal proteins: S1, S7, L6, L29, and L40.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号