首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol represents one of the key constituents of small, dynamic, sterol- and sphingolipid-enriched domains on the plasma membrane. It has been reported that many viruses depend on plasma membrane cholesterol for efficient infection. In this study, the role of the plasma membrane cholesterol in porcine reproductive and respiratory syndrome virus (PRRSV) infection of MARC-145 cells was investigated. Pretreatment of MARC-145 cells with methyl-β-cyclodextrin (MβCD), a drug used to deplete cholesterol from cellular membrane, significantly reduced PRRSV infection in a dose-dependent manner. This inhibition was partially reversed by supplementing exogenous cholesterol following MβCD treatment, suggesting that the inhibition of PRRSV infection was specifically mediated by removal of cellular cholesterol. Further detailed studies showed that depletion of cellular membrane cholesterol significantly inhibited virus entry, especially virus attachment and release. These results indicate that the presence of cholesterol in the cellular membrane is a key component of PRRSV infection.  相似文献   

2.
Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically important diseases of swine, which is caused by PRRS virus (PRRSV). CD151, one of PRRSV entry mediators, determines the cell susceptibility for PRRSV. Emerging evidence indicates that the host microRNAs (miRNAs) play key roles in modulating virus infection and viral pathogenesis. In the present study, targeting porcine CD151 miRNAs were identified, and their function during PRRSV infection in MARC-145 cells was further verified. We found that miR-506 could directly target porcine CD151 3′-UTR mRNA by luciferase reporter assay. Overexpression of miR-506 significantly decreased CD151 expression at both mRNA and protein levels. Furthermore, overexpression of miR-506 reduced cellular PRRSV replication and virus release in MARC-145 cells. Our results suggested that miR-506 could inhibit PRRSV replication by directly targeting PRRSV receptor of CD151 in MARC-145 cells. However, the molecular mechanisms of miR-506 and its function in vivo need further investigation.  相似文献   

3.
Direct functional screening of a cDNA expression library derived from primary porcine alveolar macrophages (PAM) revealed that CD163 is capable of conferring a porcine reproductive and respiratory syndrome virus (PRRSV)-permissive phenotype when introduced into nonpermissive cells. Transient-transfection experiments showed that full-length CD163 cDNAs from PAM, human U937 cells (histiocytic lymphoma), African green monkey kidney cells (MARC-145 and Vero), primary mouse peritoneal macrophages, and canine DH82 (histocytosis) cells encode functional virus receptors. In contrast, CD163 splice variants without the C-terminal transmembrane anchor domain do not provide PRRSV receptor function. We established several stable cell lines expressing CD163 cDNAs from pig, human, and monkey, using porcine kidney (PK 032495), feline kidney (NLFK), or baby hamster kidney (BHK-21) as the parental cell lines. These stable cell lines were susceptible to PRRSV infection and yielded high titers of progeny virus. Cell lines were phenotypically stable over 80 cell passages, and PRRSV could be serially passed at least 60 times, yielding in excess of 10(5) 50% tissue culture infective doses/ml.  相似文献   

4.
The entry of inhaled virions into airway cells is presumably the initiating step of varicella-zoster infection. In order to characterize viral entry, we studied the relative roles played by lipid rafts and clathrin-mediated transport. Virus and target cells were pretreated with agents designed to perturb selected aspects of endocytosis and membrane composition, and the effects of these perturbations on infectious focus formation were monitored. Infectivity was exquisitely sensitive to methyl-beta-cyclodextrin (M beta CD) and nystatin, which disrupt lipid rafts by removing cholesterol. These agents inhibited infection by enveloped, but not cell-associated, varicella-zoster virus (VZV) in a dose-dependent manner and exerted these effects on both target cell and viral membranes. Inhibition by M beta CD, which could be reversed by cholesterol replenishment, rapidly declined as a function of time after exposure of target cells to VZV, suggesting that an early step in viral infection requires cholesterol. No effect of cholesterol depletion, however, was seen on viral binding; moreover, there was no reduction in the surface expression or internalization of mannose 6-phosphate receptors, which are required for VZV entry. Viral entry was energy dependent and showed concentration-dependent inhibition by chlorpromazine, which, among other actions, blocks clathrin-mediated endocytosis. These data suggest that both membrane lipid composition and clathrin-mediated transport are critical for VZV entry. Lipid rafts are likely to contribute directly to viral envelope integrity and, in the host membrane, may influence endocytosis, evoke downstream signaling, and/or facilitate membrane fusion.  相似文献   

5.

Background  

Porcine reproductive and respiratory syndrome virus (PRRSV) causes major economic losses in the pig industry worldwide. In vivo, the virus infects a subpopulation of tissue macrophages. In vitro, PRRSV only replicates in primary pig macrophages and African green monkey kidney derived cells, such as Marc-145. The latter is currently used for vaccine production. However, since virus entry in Marc-145 cells is different compared to entry in primary macrophages, specific epitopes associated with virus entry could potentially alter upon growth on Marc-145 cells. To avoid this, we constructed CHO and PK15 cell lines recombinantly expressing the PRRSV receptors involved in virus entry into macrophages, sialoadhesin (Sn) and CD163 (CHOSn-CD163 and PK15Sn-CD163) and evaluated their potential for production of PRRSV.  相似文献   

6.

Background

Porcine reproductive and respiratory syndrome virus (PRRSV) is the etiologic agent of PRRS, causing widespread chronic infections which are largely uncontrolled by currently available vaccines or other antiviral measures. Cultured monkey kidney (MARC-145) cells provide an important tool for the study of PRRSV replication. For the present study, flow cytometric and fluorescence antibody (FA) analyses of PRRSV infection of cultured MARC-145 cells were carried out in experiments designed to clarify viral dynamics and the mechanism of viral spread. The roles of viral permissiveness and the cytoskeleton in PRRSV infection and transmission were examined in conjunction with antiviral and cytotoxic drugs.

Results

Flow cytometric and FA analyses of PRRSV antigen expression revealed distinct primary and secondary phases of MARC-145 cell infection. PRRSV antigen was randomly expressed in a few percent of cells during the primary phase of infection (up to about 20–22 h p.i.), but the logarithmic infection phase (days 2–3 p.i.), was characterized by secondary spread to clusters of infected cells. The formation of secondary clusters of PRRSV-infected cells preceded the development of CPE in MARC-145 cells, and both primary and secondary PRRSV infection were inhibited by colchicine and cytochalasin D, demonstrating a critical role of the cytoskeleton in viral permissiveness as well as cell-to-cell transmission from a subpopulation of cells permissive for free virus to secondary targets. Cellular expression of actin also appeared to correlate with PRRSV resistance, suggesting a second role of the actin cytoskeleton as a potential barrier to cell-to-cell transmission. PRRSV infection and cell-to-cell transmission were efficiently suppressed by interferon-γ (IFN-γ), as well as the more-potent experimental antiviral agent AK-2.

Conclusion

The results demonstrate two distinct mechanisms of PRRSV infection: primary infection of a relatively small subpopulation of innately PRRSV-permissive cells, and secondary cell-to-cell transmission to contiguous cells which appear non-permissive to free virus. The results also indicate that an intact cytoskeleton is critical for PRRSV infection, and that viral permissiveness is a highly efficient drug target to control PRRSV infection. The data from this experimental system have important implications for the mechanisms of PRRSV persistence and pathology, as well as for a better understanding of arterivirus regulation.  相似文献   

7.
重组猪肺表面活性蛋白A在体外可抑制PRRSV感染宿主细胞   总被引:2,自引:0,他引:2  
【目的】研究重组猪肺表面活性蛋白A(SP-A)在体外对猪繁殖与呼吸综合征病毒(PRRSV)感染的抑制作用。【方法】采用PCR方法从含有猪SP-A基因的质粒中扩增SP-A基因,并将其插入到含有人CD5信号肽序列的真核表达载体pcDNA3.1A-CD5中,构建成SP-A基因的真核分泌型表达载体pcDNA-CD5-SPA/MH。将重组表达载体通过磷酸钙介导转染HEK293T细胞进行瞬时表达,通过Western blot方法鉴定表达产物,采用Ni-NTA琼脂糖凝胶亲和层析法从培养基中分离和纯化重组SP-A蛋白,通过ELISA方法检测SP-A蛋白与PRRSV的结合活性。将SP-A蛋白与PRRSV孵育,然后感染MARC-145细胞和猪肺泡巨噬细胞,感染72 h后测定病毒滴度,分析重组SP-A蛋白对PRRSV感染的抑制作用。【结果】结果表明构建的真核表达载体能够介导SP-A基因在HEK293T细胞中进行分泌表达;表达的重组猪SP-A蛋白能够与PRRSV进行剂量依赖性结合;用重组猪SP-A蛋白与PRRSV进行孵育,然后感染MARC-145细胞和猪肺泡巨噬细胞,结果显示SP-A处理的PRRSV感染细胞后的病变程度明显低于对照组。感染72 h后,SP-A处理组的PRRSV在MARC-145细胞和猪肺泡巨噬细胞的滴度明显低于SP-A非处理组。【结论】重组猪SP-A在体外对PRRSV的感染有明显的抑制作用,揭示SP-A具有抗PRRSV的活性。  相似文献   

8.
Lipid rafts are special microdomains in the plasma membrane. They are enriched in sphingolipids and cholesterol, playing critical roles in many biological processes. The purpose of this study is to analyze the requirement of cholesterol, a crucial component of lipid rafts for cell infection by pseudorabies virus (PrV). Cholesterol of plasma membrane or viral envelope was depleted with methyl-beta-cyclodextrin (MβCD), and the infectivity of three strains of PrV was determined with plaque assays. The effect of adding cholesterol to MβCD-treated cells and viruses on cell infection was analyzed. Furthermore, effect of post-adsorption cholesterol depletion on PrV infection was investigated. We show that cholesterol depletion of either the plasma membrane or the viral membrane by MβCD significantly impaired the infectivity of PrV strains Kaplan, Becker, and Bartha K-61. The virus was shown to have lower cholesterol content and to respond to lower MβCD concentrations. Exogenous cholesterol added to either MβCD-treated cells or virions partially restored the virus infectivity. Optimal PrV infection requires cholesterol in viral and plasma membranes.  相似文献   

9.

Objective

To isolate specific nanobodies to porcine reproductive and respiratory syndrome virus (PRRSV) non-structural protein 4 (Nsp4) and investigate their potential antiviral activities.

Results

Three PRRSV Nsp4-specific nanobodies were isolated from a phage display library of the variable domains of camelid heavy chain-only antibodies. Nanobody genes were introduced into MARC-145 cells using lentivirus vectors to establish cell lines stably expressing nanobodies. These intracellularly expressed nanobodies were tested for interaction with PRRSV-encoded Nsp4 within PRRSV-infected MARC-145 cells. Nb41 and Nb43 intrabodies each potently inhibited PRRSV replication, protected MARC-145 cells from PRRSV-induced cytopathic effect and fully blocked PRRSV replication at an MOI of 0.001 or lower.

Conclusion

Intracellularly expressed Nb41 and Nb43 potently suppressed PRRSV replication in MARC-145 cells. Nanobodies hold great potential for development as novel antiviral treatments for PRRSV infection.
  相似文献   

10.
从PRRSV BJ-4株基因组全长cDNA获得感染性病毒   总被引:1,自引:0,他引:1  
对已构建的覆盖猪繁殖与呼吸综合征病毒(PRRSV)BJ-4全长cDNA的6个重组质粒进行测序,并对部分点突变进行定点回复突变,将突变片段顺次连接,获得了全长cDNA克隆pWSK-DCBA。通过体外转录获得病毒基因组RNA,将RNA与脂质体混合后直接转染MARC-145细胞,获得拯救病毒(rV68)。rV68能在MARC-145细胞上稳定传代,并可引起PRRSV特征性的细胞病变(CPE)。增殖动态分析表明,rV68在MARC-145细胞上的生长有所迟滞,达到最高滴度的培养时间比亲本病毒延迟12h,但滴毒无显著差异(P>0.05)。结果表明,构建的BJ-4全长cDNApWSK-DCBA具有感染性,为研究中国PRRSV的分子致病与免疫机制、新型疫苗等奠定了基础。  相似文献   

11.
Choi KS  Aizaki H  Lai MM 《Journal of virology》2005,79(15):9862-9871
Thorp and Gallagher first reported that depletion of cholesterol inhibited virus entry and cell-cell fusion of mouse hepatitis virus (MHV), suggesting the importance of lipid rafts in MHV replication (E. B. Thorp and T. M. Gallagher, J. Virol. 78:2682-2692, 2004). However, the MHV receptor is not present in lipid rafts, and anchoring of the MHV receptor to lipid rafts did not enhance MHV infection; thus, the mechanism of lipid rafts involvement is not clear. In this study, we defined the mechanism and extent of lipid raft involvement in MHV replication. We showed that cholesterol depletion by methyl beta-cyclodextrin or filipin did not affect virus binding but reduced virus entry. Furthermore, MHV spike protein bound to nonraftraft membrane at 4 degrees C but shifted to lipid rafts at 37 degrees C, indicating a redistribution of membrane following virus binding. Thus, the lipid raft involvement in MHV entry occurs at a step following virus binding. We also found that the viral spike protein in the plasma membrane of the infected cells was associated with lipid rafts, whereas that in the Golgi membrane, where MHV matures, was not. Moreover, the buoyant density of the virion was not changed when MHV was produced from the cholesterol-depleted cells, suggesting that MHV does not incorporate lipid rafts into the virion. These results indicate that MHV release does not involve lipid rafts. However, MHV spike protein has an inherent ability to associate with lipid rafts. Correspondingly, cell-cell fusion induced by MHV was retarded by cholesterol depletion, consistent with the association of the spike protein with lipid rafts in the plasma membrane. These findings suggest that MHV entry requires specific interactions between the spike protein and lipid rafts, probably during the virus internalization step.  相似文献   

12.
13.
Cholesterol is known to play an important role in stabilizing particular cellular membrane structures, so-called lipid or membrane rafts. For several viruses, a dependence on cholesterol for virus entry and/or morphogenesis has been shown. Using flow cytometry and fluorescence microscopy, we demonstrate that infection of cells by canine distemper virus (CDV) was not impaired after cellular cholesterol had been depleted by the drug methyl-beta-cyclodextrin. This effect was independent of the multiplicity of infection and the cellular receptor used for infection. However, cholesterol depletion of the viral envelope significantly reduced CDV infectivity. Replenishment by addition of exogenous cholesterol restored infectivity up to 80%. Thus, we conclude that CDV entry is dependent on cholesterol in the viral envelope. Furthermore, reduced syncytium formation was observed when the cells were cholesterol depleted during the course of the infection. This may be related to the observation that CDV envelope proteins H and F partitioned into cellular detergent-resistant membranes. Therefore, a role for lipid rafts during virus assembly and release as well is suggested.  相似文献   

14.
本文探讨依靠RNAi技术对猪繁殖与呼吸综合征病毒(PRRSV)增殖的干扰作用。筛选到针对编码PRRS病毒核衣壳蛋白的N基因的两处靶序列作为候选片段,在MARC-145细胞上进行基因干扰实验研究。成功观测到由载体表达的小干扰RNA(siRNA)在MARC-145细胞中对PRRS病毒增殖的抑制现象。通过选取不同时间段对病毒进行TCID50检测,以及对CPE出现时间进行观察和免疫荧光技术,得到RNA干扰对PRRS病毒增殖抑制作用的动态数据。证实在真核细胞水平上,RNA干扰机制可以抑制PRRS病毒的增殖。实验结果表明,依靠载体表达的RNA干扰技术将会对今后针对PRRS病毒的新型疫苗开发提供一个新思路。  相似文献   

15.
We produced a monoclonal antibody (MAb) (7G10) that has blocking activity against porcine reproductive and respiratory syndrome virus (PRRSV). In this study, we identified the components of the 7G10 MAb-bound complex as cytoskeletal filaments: vimentin, cytokeratin 8, cytokeratin 18, actin, and hair type II basic keratin. Vimentin bound to PRRSV nucleocapsid protein and anti-vimentin antibodies showed PRRSV-blocking activity. Vimentin was expressed on the surface of MARC-145, a PRRSV-susceptible cell line. Simian vimentin rendered BHK-21 and CRFK, nonsusceptible cell lines, susceptible to PRRSV infection. These results suggest that vimentin is part of the PRRSV receptor complex and that it plays an important role in PRRSV binding with the other cytoskeletal filaments that mediate transportation of the virus in the cytosol.  相似文献   

16.
We identified a postentry restriction, termed Lv2, which determines the cellular tropism of two related human immunodeficiency virus type 2 (HIV-2) isolates and is dependent on the sequence of the capsid (CA) and envelope (Env) proteins. To explain the reliance on both CA and Env, we proposed that restrictive Envs deliver susceptible capsids to a compartment where Lv2 is active whereas nonrestrictive Envs deliver capsids into a compartment where Lv2 is either absent or less active. To test this model, we used compounds that affect endocytic pathways (ammonium chloride, bafilomycin A1, hypertonic sucrose) or lipid rafts (methyl-beta-cyclodextrin) to treat restrictive cells and show that restricted virus can be rescued from Lv2 if a lipid-raft-dependent, pH-independent endocytic pathway is inhibited. Furthermore, viral entry into HeLa/CD4 cells containing a tailless CD4 receptor, located outside lipid rafts, was fully permissive. Finally, we show that a variety of primary HIV-1 and HIV-2 viruses are susceptible to Lv2. Thus, we show that the route of entry, determined by the viral envelope, can influence cellular tropism by avoiding intracellular blocks to infection.  相似文献   

17.
The cellular entry of viruses represents a critical area of study, not only for viral tropism, but also because viral entry dictates the nature of the immune response elicited upon infection. Epidemic keratoconjunctivitis (EKC), caused by viruses within human adenovirus species D (HAdV-D), is a severe, ocular surface infection associated with corneal inflammation. Clathrin-mediated endocytosis has previously been shown to play a critical role in entry of other HAdV species into many host cell types. However, HAdV-D endocytosis into corneal cells has not been extensively studied. Herein, we show an essential role for cholesterol rich, lipid raft microdomains and caveolin-1, in the entry of HAdV-D37 into primary human corneal fibroblasts. Cholesterol depletion using methyl-β-cyclodextrin (MβCD) profoundly reduced viral infection. When replenished with soluble cholesterol, the effect of MβCD was reversed, allowing productive viral infection. HAdV-D37 DNA was identified in caveolin-1 rich endosomal fractions after infection. Src kinase activity was also increased in caveolin-1 rich endosomal fractions after infection, and Src phosphorylation and CXCL1 induction were both decreased in caveolin-1-/- mice corneas compared to wild type mice. siRNA knock down of caveolin-1 in corneal cells reduced chemokine induction upon viral infection, and caveolin-1-/- mouse corneas showed reduced cellular entry of HAdV-D37. As a control, HAdV-C2, a non-corneal pathogen, appeared to utilize the caveolar pathway for entry into A549 cells, but failed to infect corneal cells entirely, indicating virus and cell specific tropism. Immuno-electron microscopy confirmed the presence of caveolin-1 in HAdV-D37-containing vesicles during the earliest stages of viral entry. Collectively, these experiments indicate for the first time that HAdV-D37 uses a lipid raft mediated caveolin-1 associated pathway for entry into corneal cells, and connects the processes of viral entry with downstream proinflammatory cell signaling.  相似文献   

18.
We previously showed that microRNA 181 (miR-181) can inhibit PRRSV replication by directly targeting its genomic RNA. Here, we report that miR-181 can downregulate the PRRSV receptor CD163 in blood monocytes and porcine alveolar macrophages (PAMs) through targeting the 3′ untranslated region (UTR) of CD163 mRNA. Downregulation of CD163 leads to the inhibition of PRRSV entry into PAMs and subsequently suppresses PRRSV infection. Our findings indicate that delivery of miR-181 can be used as antiviral therapy against PRRSV infection.  相似文献   

19.
《Autophagy》2013,9(10):1434-1447
An increasing number of studies demonstrate that autophagy, an intrinsic mechanism that can degrade cytoplasmic components, is involved in the infection processes of a variety of pathogens. It can be hijacked by various viruses to facilitate their replication. In this study, we found that PRRSV infection significantly increases the number of double- or single-membrane vesicles in the cytoplasm of host cells in ultrastructural analysis. Our results showed the LC3-I was converted into LC3-II after virus infection, suggesting the autophagy machinery was activated. We further used pharmacological agents and shRNAs to confirm that autophagy promoted the replication of PRRSV in host cells. Confocal microscopy analysis showed that PRRSV inhibited the fusion between autophagosomes and lysosomes, suggesting that PRRSV induced incomplete autophagy. This suppression caused the accumulation of autophagosomes which may serve as replication site to enhance PRRSV replication. It has been shown that NSP2 and NSP3 of arterivirus are two components of virus replication complex. We also found in our studies that NSP2 colocalized with LC3 in MARC-145 cells by performing confocal microscopy analysis and continuous density gradient centrifugation. Our studies presented here indicated that autophagy was activated during PRRSV infection and enhanced PRRSV replication in host cells by preventing autophagosome and lysosome fusion.  相似文献   

20.
Respiratory syncytial virus (RSV) is one of the major causes of respiratory infections in children, and it is the main pathogen causing bronchiolitis in infants. The binding and entry mechanism by which RSV infects respiratory epithelial cells has not yet been determined. In this study, the earliest stages of RSV infection in normal human bronchial epithelial cells were probed by tracking virions with fluorescent lipophilic dyes in their membranes. Virions colocalized with cholesterol-containing plasma membrane microdomains, identified by their ability to bind cholera toxin subunit B. Consistent with an important role for cholesterol in RSV infection, cholesterol depletion profoundly inhibited RSV infection, while cholesterol repletion reversed this inhibition. Merger of the outer leaflets of the viral envelope and the cell membrane appeared to be triggered at these sites. Using small-molecule inhibitors, RSV infection was found to be sensitive to Pak1 inhibition, suggesting the requirement of a subsequent step of cytoskeletal reorganization that could involve plasma membrane rearrangements or endocytosis. It appears that RSV entry depends on its ability to dock to cholesterol-rich microdomains (lipid rafts) in the plasma membrane where hemifusion events begin, assisted by a Pak1-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号