首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The mechanism by which Ca2+ regulates proopiomelanocortin (POMC)-derived peptide secretion and POMC mRNA levels was investigated in primary cultures of porcine intermediate lobe (IL) cells maintained in serum-free medium. POMC gene expression was evaluated by the dot blot hybridization assay with a 32P-labeled DNA probe complementary to the full-length sequence of porcine POMC mRNA. Treatment of IL cells for 24 h with the calmodulin (CAM) antagonists W7 and W13 reduced POMC mRNA levels by a maximum of 50% in a dose-dependent manner (ED50 approximately 10(-8) M). Accumulation of alpha-melanocyte-stimulating hormone (alpha-MSH) in the medium was also depressed by 50% after 8 h of treatment. The role of protein kinase C (PKC) was investigated by depleting the IL cell PKC content with phorbol ester treatment. Phorbol 12-myristate 13-acetate (PMA) at 5 X 10(-8) M induced a rapid translocation of cytoplasmic PKC activity toward the membrane. After 12 h of PMA treatment, PKC activity was undetectable in either the cytoplasmic or the particulate fractions. The same dose of PMA induced a time-dependent decrease in POMC mRNA levels (50% inhibition after 24 h). The same effect was seen with the phorbol ester phorbol 12,13-dibutyrate at 5 X 10(-8) M, whereas the inactive phorbol ester 4 alpha-phorbol at 5 X 10(-8) M was without effect after 24 h of treatment. PMA treatment had a biphasic effect on alpha-MSH secretion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of activating endogenous protein kinase C (PKC) on cell proliferation and the cell cycle were investigated by treating the breast cancer cell line SKBR-3 with phorbol 12-myristate 13 acetate (PMA). This inhibited cell growth in a concentration-dependent manner, causing a marked arrest of cells in G(1). Pre-treatment with GF109203X completely blocked the antiproliferative effect of PMA, and pre-treatment with the PKCdelta inhibitor rottlerin partially blocked it. Infecting SKBR-3 cells with an adenovirus vector containing wild-type PKCdelta, WTPKCdeltaAdV, had similar effects on PMA. Infecting the cells with a dominant-negative PKCdeltaAdV construct blocked the growth inhibition induced by PMA. Downstream of PKC, PMA treatment inhibited extracellular signal-regulated kinase mitogen-activated protein kinase phosphorylation, up-regulated c-jun NH(2)-terminal kinase phosphorylation, and inhibited retinoblastoma (Rb) phosphorylation. These results strongly implicated PKC (mainly PKCdelta) in the G(1) arrest induced by PMA and suggested PKC as a target for breast cancer treatment.  相似文献   

3.
4.
F Rossi  M McNagny  G Smith  J Frampton    T Graf 《The EMBO journal》1996,15(8):1894-1901
Our previous work showed that haematopoietic precursors transformed by the E26 avian leukemia virus undergo multilineage differentiation in response to the phorbol ester phorbol 12-myristate 13-acetate (PMA). Treatment of the cells with high concentrations of PMA (100 nM) favours myelomonocytic differentiation, while lower concentrations (20 nM) induce predominantly eosinophil differentiation. Here we have investigated the role of protein kinase C (PKC) in this process and found that 100 nM, but not 20 nM, PMA dramatically down-regulates total cellular PKC activity, indicating that high PMA concentrations result in less efficient signalling than lower PMA concentrations. Consistent with these findings is the observation that very low PMA concentrations (1 nM), which presumably only moderately activate PKC, induce myeloid differentiation. This suggests the existence of two PKC thresholds which play a role in lineage commitment. To test the model, alpha- and epsilon-PKC isoforms were expressed in E26-transformed progenitors. These cells exhibited myelomonocytic differentiation even in the absence of PMA, while treatment with concentrations of PMA as high as 100 nM led to the differentiation of predominantly eosinophils and failed to downregulate the exogenous PKC. Our results suggest that different levels of PKC activity result in three different phenotypes: (i) no PKC activity maintains the progenitor phenotype; (ii) low PKC activity favours myelomonocytic differentiation; (iii) high PKC favours eosinophil differentiation.  相似文献   

5.
The role of protein kinase C (PKC) in the regulation of ornithine decarboxylase (ODC) activity during interleukin-2 (IL-2)-dependent cell growth was investigated. A large biphasic increase in the activity of ODC was observed after treatment of IL-2-deprived CTLL-2 cells with recombinant human IL-2 (rec IL-2). The PKC activators phorbol 12-myristate 13-acetate (PMA) and 4 beta-phorbol 12,13-didecanoate (4 beta-PDD), but not the inactive analog 4 alpha-PDD, induced ODC activity in exponentially growing cultures. Unlike IL-2, however, phorbol esters were poor inducers of IL-2-depleted cultures. H-7, a potent inhibitor of PKC and cyclic nucleotide-dependent protein kinases (CN-PK), suppressed the IL-2-induced ODC activity, while HA1004, a more potent inhibitor of CN-PK than of PKC, had opposite effects depending on its concentration. The results suggest that activation of PKC is involved in but is not the sole mechanism for the induction of ODC by rec IL-2. At concentrations which suppressed the induction of ODC activity by IL-2, H-7 inhibited DNA synthesis and HA1004 did not.  相似文献   

6.
7.
The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) stimulates a rapid increase in ornithine decarboxylase (EC 4.1.1.17; ODC) activity in target cells. Here we demonstrate that this process involves a rapid accumulation of ODC mRNA, which is maximal 3 h after treatment (three- to eightfold greater than control cells) and decays to control levels within 18 h. Stimulation of ODC mRNA by TPA is blocked by phorbol dibutyrate down-regulation of protein kinase C (PKC). ODC mRNA was also induced by the PKC activators, phospholipase C and 1-oleoyl-2-acetyl-rac-glycerol, and blocked by kinase inhibitors (trifluoroperazine, H7, and palmitoyl-L-carnitine), consistent with a requirement for PKC activation in the induction mechanism. However, the non-PKC-specific protein kinase inhibitor HA1004 also suppressed expression of ODC mRNA in response to TPA, under conditions where it did not inhibit PKC, suggesting that additional kinases may be involved in the intracellular signalling process. The stability of the ODC mRNA (control value = 6.2 +/- 1.6 h) is not significantly changed by either TPA (5.7 +/- 0.8 h) or by cycloheximide (6.0 h). These results are inconsistent with any contribution from altered mRNA half-life towards the accumulation of ODC mRNA following treatment with phorbol ester tumor promoters.  相似文献   

8.
The calcium ionophore ionomycin cooperates with the S100B protein to rescue a p53-dependent G(1) checkpoint control in S100B-expressing mouse embryo fibroblasts and rat embryo fibroblasts (REF cells) which express the temperature-sensitive p53Val135 mutant (C. Scotto, J. C. Deloulme, D. Rousseau, E. Chambaz, and J. Baudier, Mol. Cell. Biol. 18:4272-4281, 1998). We investigated in this study the contributions of S100B and calcium-dependent PKC (cPKC) signalling pathways to the activation of wild-type p53. We first confirmed that S100B expression in mouse embryo fibroblasts enhanced specific nuclear accumulation of wild-type p53. We next demonstrated that wild-type p53 nuclear translocation and accumulation is dependent on cPKC activity. Mutation of the five putative cPKC phosphorylation sites on murine p53 into alanine or aspartic residues had no significant effect on p53 nuclear localization, suggesting that the cPKC effect on p53 nuclear translocation is indirect. A concerted regulation by S100B and cPKC of wild-type p53 nuclear translocation and activation was confirmed with REF cells expressing S100B (S100B-REF cells) overexpressing the temperature-sensitive p53Val135 mutant. Stimulation of S100B-REF cells with the PKC activator phorbol ester phorbol myristate acetate (PMA) promoted specific nuclear translocation of the wild-type p53Val135 species in cells positioned in early G(1) phase of the cell cycle. PMA also substituted for ionomycin in the mediating of p53-dependent G(1) arrest at the nonpermissive temperature (37.5 degrees C). PMA-dependent growth arrest was linked to the cell apoptosis response to UV irradiation. In contrast, growth arrest mediated by a temperature shift to 32 degrees C protected S100B-REF cells from apoptosis. Our results suggest a model in which calcium signalling, linked with cPKC activation, cooperates with S100B to promote wild-type p53 nuclear translocation in early G(1) phase and activation of a p53-dependent G(1) checkpoint control.  相似文献   

9.
The role of protein kinase C (PKC) and their isoforms in cell growth regulation remains elusive. Here we showed that in cultured human vascular smooth muscle cells (SMC), the PKC stimulator phorbol 12-myristate 13-acetate (PMA) inhibited [(3)H]thymidine incorporation in response to the growth factor PDGF associated with downregulation of PDGFbeta (but not alpha) receptors, which was recovered to normal level after PKC was depleted. The changes in PDGFbeta receptor were inversely correlated with PKCbeta1 protein levels regulated by PMA. The downregulation of PDGFbeta receptor by PMA was fully prevented by the PKCbeta inhibitor LY379196, however, without recovery of [(3)H]thymidine incorporation to PDGF. In contrast, [(3)H]thymidine incorporation was fully recovered after depletion of PKCs. These results indicate that in human SMC PKCbeta1 mediates PDGFbeta receptor downregulation. Other PKC isoforms activated by phorbol ester also contribute to the inhibitory effects on cell growth.  相似文献   

10.
Recently wedemonstrated the induction of apoptosis by the addition ofrecombinant lipocalin-type prostaglandin D2 synthase (L-PGDS) to the culture medium of LLC-PK1 cells. Becauseprotein kinase C (PKC) has been shown to be involved in theapoptotic process of various cell types, we examined the potentialrole of L-PGDS in phorbol 12-myristate 13-acetate (PMA)-inducedapoptosis. We report here the enzymatic activation andphosphorylation of L-PGDS in response to phorbol ester in cellculture and the direct phosphorylation of recombinant L-PGDS by PKC invitro. Treatment of cells with PMA or L-PGDS decreasedphosphatidylinositol 3-kinase (PI3-K) activity and concomitantlyinhibited protein kinase B (PKB/Akt) phosphorylation, which led to thehypophosphorylation and activation of Bad. In addition,hypophosphorylation of retinoblastoma protein was also observed inresponse to L-PGDS-induced apoptosis. Cellular depletion ofL-PGDS levels by using an antisense RNA strategy prevented PI3-Kinactivation by phorbol ester and inhibited caspase-3 activation andapoptosis. We conclude that phorbol ester-induced apoptosis is mediated by L-PGDS phosphorylation and activation by PKC and is accompanied by inhibition of the PI3-K/PKBanti-apoptotic signaling pathways.

  相似文献   

11.
NADPH oxidases are major sources of superoxide in the vascular wall. This study investigates the role of protein kinase C (PKC) in regulating gene expression of NADPH oxidases. Treatment of human umbilical vein endothelial cells (HUVEC) and HUVEC-derived EA.hy 926 endothelial cells with phorbol 12-myristate 13-acetate (PMA) or phorbol 12,13-dibutyrate led to a PKC-dependent biphasic expression of the gp91phox homolog Nox4. A downregulation of Nox4 was observed at 6 h and an upregulation at 48 h after phorbol ester treatment. The early Nox4 downregulation was associated with a reduced superoxide production, whereas the late Nox4 upregulation was accompanied by a clear enhancement of superoxide. PMA activated the PKC isoforms alpha and epsilon in HUVEC and EA.hy 926 cells. Knockdown of PKCepsilon by siRNA prevented the early downregulation of Nox4, whereas knockdown of PKCalpha selectively abolished the late Nox4 upregulation. Vascular endothelial growth factor (VEGF), which activates PKCalpha but not PKCepsilon in HUVEC, increased Nox4 expression without the initial downregulation. VEGF-induced Nox4 upregulation was associated with an enhanced proliferation and angiogenesis of HUVEC. Both effects could be reduced by inhibition of NADPH oxidase. Thus, a selective inhibition/knockdown of PKCalpha may represent a novel therapeutic strategy for vascular disease.  相似文献   

12.
Human T cell activation by phorbol esters and diacylglycerol analogues   总被引:5,自引:0,他引:5  
Activation of protein kinase C (PKC), by the phorbol ester PMA, or the membrane-permeable diacylglycerol 1-oleoyl 2-acetylglycerol (OAG), had different effects on the proliferation-associated responses of a more than 99% pure population of human T cells. Treatment with PMA or OAG caused down-regulation of the TCR-CD3 complex, but only PMA, in combination with ionomycin, was capable of stimulating IL-2R expression and proliferation. Immunocytochemical staining with antisera specific for the PKC subspecies alpha, beta I, beta II, and gamma showed that untreated resting T cells normally coexpress alpha, beta I, and beta II PKC subspecies, which are distributed diffusely throughout the cell, with some localization around the periphery of the nucleus. There was no difference between the responses of these PKC subspecies to OAG and PMA, redistributing, after 10 min of treatment, to a discrete focal area within the cell. Treatment with OAG resulted in transient redistribution of PKC, maximal at 10 min, while in PMA-stimulated cells, the PKC redistribution was prolonged, persisting for at least 24 h. The results suggest that the difference in cellular response to treatment with PMA and OAG is not a consequence of differential activation of various PKC subspecies.  相似文献   

13.
The p21 (cip1/waf1) protein induces cell cycle arrest through inhibition of the activity of cdk (cyclin dependent kinase)/cyclin complexes. Expression of p21 is induced in a p53-dependent manner by DNA damage. p21 can also be induced independently of p53 by phorbol ester or okadaic acid. In this study, we have addressed the role of the PKC (protein kinase C) signaling pathway in the induction of p21 in response to PMA (phorbol myristate acetate) and okadaic acid. Levels of p21 (protein and mRNA) rapidly increased (within approximately 4 h) in U937 cells treated with PMA. The PKC-specific inhibitors RO 31-8220 and GF109203X down-regulated PMA or okadaic acid-induced p21 expression. Following persistent PKC activation, p21 mRNA levels remained elevated, indicating an enhanced stability of the mRNA. Using actinomycin D to measure mRNA stability and p21 promoter luciferase assays to measure activity, we provide evidence to support a role for the PKC signaling pathway in p21 mRNA stability. Thus, PKC regulates the amount of p21 in U937 cells at the level of mRNA accumulation and translation.  相似文献   

14.
Treatment of M5076 tumor cells with the phorbol estes 12-O-tetradecanoylphorbol 13-acetate (TPA) and phorbol 12,13 dibutyrate (PdBu) inhibited cellular proliferation, whereas 1,2-dioctanoyl-glycerol (DiC8) and 1-oleoyl2-acetyl-glycerol (OAG) did not affect cell growth. Inhibition of cellular proliferation in this cell line appears to be a consequence of protein kinase C (PKC) down-regulation since phorbol esters, but not a single application of diacylglycerols (DGs) down-regulated cellular PKC levels. By repeated application of DGs, PKC down-regulation was achieved and correlated with inhibition of proliferation. Phorbol ester-induced PKC down-regulation was reversible, upon removal of the phorbol ester, and the reappearance of PKC was associated with resumption of proliferation. The mitogenic responsiveness of these cells to added serum depended upon cellular PKC levels. Phorbol esters also caused the phosphorylation of two proteins which were not phosphorylated in response to DG treatment. Inhibition of growth of M5076 cells appears to be associated with phosphorylation of two novel proteins and/or PKC down-regulation.  相似文献   

15.
Nuclear factor kappa-B (NF-kappa B) has been shown to play an important role in LPS-mediated induction of several genes in macrophages. Several studies have implicated protein kinase C (PKC) or cAMP-dependent protein kinase in the regulation of NF-kappa B activity. In this study we have investigated the mechanism of NF-kappa B induction in murine macrophages. A chloramphenicol acetyl transferase (CAT) expression vector containing multiple copies of the TNF-alpha NF-kappa B element was transfected into the RAW264 macrophage-like cell line and assessed for inducible CAT activity. LPS treatment of the transfected cells resulted in a significant induction of CAT activity. CAT activity was not induced by treatment with phorbol myristate acetate (PMA) or the cAMP analogue 8-bromo cAMP. To further study NF-kappa B induction, nuclear extracts were prepared from RAW264 cells. Extracts from RAW264 cells that were treated from 30 min to 2 hr with LPS had a significant increase in NF-kappa B binding activity as determined by the electrophoresis mobility shift assay (EMSA). Treatment of these cells from 30 min to 2 hr with PMA did not result in such binding activity. U.V. crosslinking analysis of the DNA-binding activity confirmed these results and indicated that LPS induced a 55 KD DNA-binding protein. Induction of this NF-kappa B binding activity was not inhibited by pretreatment with the PKC inhibitor H-7. H-7 did inhibit induction of TPA responsive element binding by either LPS or PMA. Prolonged exposure to phorbol ester, a treatment which down-regulates PKC, had no effect on LPS induction of NF-kappa B activity in these cells. These results suggest that the induction of NF-kappa B in macrophages by LPS is independent of PKC.  相似文献   

16.
We have characterized effects of phorbol, 12-myristate 13 acetate (PMA) on growth and differentiation in a nullipotent embryonal carcinoma (EC) cell line, F9, in a pluripotent EC line, P19, and in the differentiated derivatives of these cells, In P19EC and F9EC PMA addition resulted in inhibition of growth, while in the differentiated derivates PMA was mitogenic. PMA did not induce differentiation in EC cells but potentiated the retinoic acid (RA) induced differentiation in P19EC, although, not in F9EC. Rapid morphological changes by PMA were seen in P19EC and two differentiated derivatives which represent different stages of differentiation. In F9 no rapid morphological changes were induced by PMA. Using [3H]phorbol dibutyrate as a ligand we showed that during differentiation into endoderm-like cells the number of phorbol ester receptors increases, while in epithelial-like derivatives no increase is found. In differentiated cells with an increased number of phorbol ester receptors, the cytoplasmic Ca2+- and phospholipid-dependent protein kinase (the putative receptor for phorbol esters) activity was also increased. Only in those derivatives where the number of phorbol ester receptors is increased, is the binding of epidermal growth factor (EGF) inhibited by PMA. These results suggest a relationship between levels of expression of phorbol ester receptors, cytoplasmic protein kinase C and biological effects, namely rapid morphological changes, altered growth, potentiation of RA induced differentiation, and inhibition of EGF binding.  相似文献   

17.
18.
The molecular mechanism underlying protein kinase C (PKC)-mediated cell cycle arrest is poorly understood. We undertook to characterize phorbol ester-activated PKC-mediated cell cycle arrest. Treatment with phorbol ester inhibited cell growth of human histiocytic lymphoma U937 cells with 83% of the cells arrested in G1 phase. Reduced activity of cdk2 correlated with cdk2 dephosphorylation and accumulation of cdk2 inhibitor p21Waf in phorbol ester-treated cells. Dephosphorylation of cdk2 was not associated with cdk7 and cdc25A activity in phorbol ester-treated cells. Protein phosphatase inhibitor assays suggest that the dephosphorylation of cdk2 results in the activation of a specific protein tyrosine phosphatase. Thus, dephosphorylation of cdk2 as well as accumulation of cdk2 inhibitor is likely to contribute to the G1 phase arrest in phorbol ester-treated in U937 cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号