首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New DNA markers for high molecular weight glutenin subunits in wheat   总被引:2,自引:0,他引:2  
End-use quality is one of the priorities of modern wheat (Triticum aestivum L.) breeding. Even though quality is a complex trait, high molecular weight (HMW) glutenins play a major role in determining the bread making quality of wheat. DNA markers developed from the sequences of HMW glutenin genes were reported in several previous studies to facilitate marker-assisted selection (MAS). However, most of the previously available markers are dominant and amplify large DNA fragments, and thus are not ideal for high throughput genotyping using modern equipment. The objective of this study was to develop and validate co-dominant markers suitable for high throughput MAS for HMW glutenin subunits encoded at the Glu-A1 and Glu-D1 loci. Indels were identified by sequence alignment of allelic HMW glutenin genes, and were targeted to develop locus-specific co-dominant markers. Marker UMN19 was developed by targeting an 18-bp deletion in the coding sequence of subunit Ax2* of Glu-A1. A single DNA fragment was amplified by marker UMN19, and was placed onto chromosome 1AL. Sixteen wheat cultivars with known HMW glutenin subunits were used to validate marker UMN19. The cultivars with subunit Ax2* amplified the 362-bp fragment as expected, and a 344-bp fragment was observed for cultivars with subunit Ax1 or the Ax-null allele. Two co-dominant markers, UMN25 and UMN26, were developed for Glu-D1 by targeting the fragment size polymorphic sites between subunits Dx2 and Dx5, and between Dy10 and Dy12, respectively. The 16 wheat cultivars with known HMW glutenin subunit composition were genotyped with markers UMN25 and UMN26, and the genotypes perfectly matched their subunit types. Using an Applied Biosystems 3130xl Genetic Analyzer, four F2 populations segregating for the Glu-A1 or Glu-D1 locus were successfully genotyped with primers UMN19, UMN25 and UMN26 labeled with fluorescent dyes.  相似文献   

2.
3.
Wheat varieties, differing in chapati characteristics, showed marked restriction fragment length polymorphism when probed for gene encoding α-gliadin. EcoRI digested DNA from variety K-68 showed five hybridizing bands whereas Sonalika showed only three bands. BamHI and HindIII digested DNA from variety C-306 showed lesser number of hybridizing bands than Sonalika, while Pst I digested K-68 DNA showed six hybridizing bands. By screening of sub-genomic library of C-306, 10 clones encoding gliadin were isolated. Partial sequencing of a clone pBJ-1 (~ 1.0 kb) showed polyglutamine coding region and an internal stop condon at 224 bp.  相似文献   

4.
In this study, ten glutenin gene promoters were isolated from model wheat (Triticum aestivum L. cv. Chinese Spring) using a genomic PCR strategy with gene-specific primers. Six belonged to high-molecular-weight glutenin subunit (HMW-GS) gene promoters, and four to low-molecular-weight glutenin subunit (LMW-GS). Sequence lengths varied from 1361 to 2554 bp. We show that the glutenin gene promoter motifs are conserved in diverse sequences in this study, with HMW-GS and LMW-GS gene promoters characterized by distinct conserved motif combinations. Our findings show that HMW-GS promoters contain more functional motifs in the distal region of the glutenin gene promoter (> − 700 bp) compared with LMW-GS. The y-type HMW-GS gene promoters possess unique motifs including RY repeat and as-2 box compared to the x-type. We also identified important motifs in the distal region of HMW-GS gene promoters including the 5′-UTR Py-rich stretch motif and the as-2 box motif. We found that cis-acting elements in the distal region of promoter 1Bx7 enhanced the expression of HMW-GS gene 1Bx7. Taken together, these data support efforts in designing molecular breeding strategies aiming to improve wheat quality. Our results offer insight into the regulatory mechanisms of glutenin gene expression.  相似文献   

5.
Based on sequence alignment, phylogenetic, and dotplot analyses, primers were designed in order to distinguish the wheat high-molecular-weight glutenin subunit alleles By8 and By9. The primers were tested on 26 lines of Bánkúti wheat, an old Hungarian variety, and a number of other varieties. Consistency was observed between their known By protein subunit and the obtained DNA marker. Comparison of the B subunit content and the By alleles of the Bánkúti lines was also in agreement with the previous prediction that the By8 and By9 subunits are linked to the Bx7 and Bx7? subunits, which are responsible for dough quality in Bánkúti wheat, respectively. Thus, the developed molecular marker would be appropriate for marker assisted selection of the dough quality trait in the introgressive breeding of Bánkúti lines into modern cultivars.  相似文献   

6.
Restriction enzyme digests of DNA from nullisomic-tetrasomic and intervarietal chromosome substitution lines of wheat were probed with a high molecular weight (HMW) glutenin cDNA. Three restriction endonucleases were used to investigate restriction-fragment differences among five wheat varieties. The results suggest that the hybridizing fragments contain single gene copies and permit the identification of the subunit encoded by each gene. Restriction-fragment variation associated with previously established allelic differences between varieties was observed. Also, there is a clear relationship between the electrophoretic mobility of a HMW subunit and the length of the central repetitive section of the gene encoding it. These results are discussed with reference to the evolution of the HMW glutenin gene family and the uses of restriction-fragment variation in plant breeding and genetics.N.P.H. was supported by a MRC Training Fellowship in Recombinant DNA Technology and a grant from the Perry Foundation. D.B. is supported by EEC Contract GBI-4-027-UK.  相似文献   

7.
小麦高分子量谷蛋白亚基对加工品质影响的效应分析   总被引:30,自引:2,他引:28  
分析了 2 50份小麦材料的高分子量谷蛋白亚基 (HMW- GS)组成以及其中 66份材料的加工品质及面条制作品质。回归分析表明 :HMW- GS与 1 0种加工品质性状均有显著的线性关系。不同亚基对综合品质效应的得分大小依次为 :Glu- Al,1 >2 * >null;Glu- Bl,1 4 +1 5>7+8>1 7+1 8>>7+9;Glu- Dl,5+1 0 >>2 +1 2 >4+1 2。不同基因位点对品质的贡献大小顺序为 :Glu- Dl>Glu- Al>Glu- Bl。首次提出了 HMW- GS综合品质评分系统  相似文献   

8.
Development of high-yielding wheat varieties with good end-use quality has always been a major concern for wheat breeders. To genetically dissect quantitative trait loci (QTLs) for yield-related traits such as grain yield, plant height, maturity, lodging, test weight and thousand-grain weight, and for quality traits such as grain and flour protein content, gluten strength as evaluated by mixograph and SDS sedimentation volume, an F1-derived doubled haploid (DH) population of 185 individuals was developed from a cross between a Canadian wheat variety “AC Karma” and a breeding line 87E03-S2B1. A genetic map was constructed based on 167 marker loci, consisting of 160 microsatellite loci, three HMW glutenin subunit loci: Glu-A1, Glu-B1 and Glu-D1, and four STS-PCR markers. Data for investigated traits were collected from three to four environments in Manitoba, Canada. QTL analyses were performed using composite interval mapping. A total of 50 QTLs were detected, 24 for agronomic traits and 26 for quality-related traits. Many QTLs for correlated traits were mapped in the same genomic regions forming QTL clusters. The largest QTL clusters, consisting of up to nine QTLs, were found on chromosomes 1D and 4D. HMW glutenin subunits at Glu-1 loci had the largest effect on breadmaking quality; however, other genomic regions also contributed genetically to breadmaking quality. QTLs detected in the present study are compared with other QTL analyses in wheat.  相似文献   

9.
小麦HMW-G12亚基基因启动子克隆及序列分析   总被引:2,自引:1,他引:1  
为了研究高分子量谷蛋白基因启动子在种子中的特异性表达,以小麦品种“东农7742”的基因组DNA为模板,根据已发表序列设计并合成引物,用PCR的方法克隆了小麦贮藏蛋白中高分子量谷蛋白12亚基基因的上游调控序列。序列测定结果表明:所克隆的启动子片段大小为424bp与Thomspon报道的序列比较,同源性为97.9%,有9个核苷酸发生了改变。推测的TATA box位于-27— -30bp,Prolamin-box位于-175— -181bp,认为该元件可能与转录速率的调控有关。  相似文献   

10.
Summary A gene encoding the high-molecular-weight (HMW) subunit of glutenin 1Ax1 was isolated from bread wheat cv Hope. Comparison of the deduced amino acid sequence with that previously reported for an allelic subunit, 1Ax2*, showed only minor differences, which were consistent with both subunits being associated with good bread-making quality. Quantitative analyses of total protein extracts from 22 cultivars of bread wheat showed that the presence of either subunit 1Ax1 or 1Ax2*, when compared with a null allele, resulted in an increase in the proportion of HMW subunit protein from ca. 8 to 10% of the total. It is suggested that this quantitative increase in HMW subunit protein may account for the association of 1Ax subunits with good quality.EMBL Data Library. Accession number: X61009  相似文献   

11.
Characterization of two HMW glutenin subunit genes from Taenitherum Nevski   总被引:1,自引:0,他引:1  
Yan ZH  Wei YM  Wang JR  Liu DC  Dai SF  Zheng YL 《Genetica》2006,127(1-3):267-276
The compositions of high molecular weight (HMW) glutenin subunits from three species of Taenitherum Nevski (TaTa, 2n = 2x = 14), Ta. caput-medusae, Ta. crinitum and Ta. asperum, were investigated by SDS-PAGE analysis. The electrophoresis mobility of the x-type HMW glutenin subunits were slower or equal to that of wheat HMW glutenin subunit Dx2, and the electrophoresis mobility of the y-type subunits were faster than that of wheat HMW glutenin subunit Dy12. Two HMW glutenin genes, designated as Tax and Tay, were isolated from Ta. crinitum, and their complete nucleotide coding sequences were determined. Sequencing and multiple sequences alignment suggested that the HMW glutenin subunits derived from Ta. crinitum had the similar structures to the HMW glutenin subunits from wheat and related species with a signal peptide, and N- and C-conservative domains flanking by a repetitive domain consisted of the repeated short peptide motifs. However, the encoding sequences of Tax and Tay had some novel modification compared with the HMW glutenin genes reported so far: (1) A short peptide with the consensus sequences of KGGSFYP, which was observed in the N-terminal of all known HMW glutenin genes, was absent in Tax; (2) There is a specified short peptide tandem of tripeptide, hexapeptide and nonapeptide and three tandem of tripeptide in the repetitive domain of Tax; (3) The amino acid residues number is 105 (an extra Q presented) but not 104 in the N-terminal of Tay, which was similar to most of y-type HMW glutenin genes from Elytrigia elongata and Crithopsis delileana. Phylogenetic analysis indicated that Tax subunit was mostly related to Ax1, Cx, Ux and Dx5, and Tay was more related to Ay, Cy and Ry.  相似文献   

12.
Summary The high-molecular-weight glutenin subunits (HMW glutenin), encoded by alleles at homoeologous lociGlu-A1,Glu-B1, andGlu-D1 on the long arms of chromosomes1A,1B, and1D of a set of F8 random recombinant inbred lines (RIL) derived from the bread wheat cross Anza × Cajeme 71, were classified by SDS-PAGE. Anza has poor breadmaking quality and HMW-glutenin subunits (Payne numbers) null (Glu-A1c), 7+8 (Glu-B1b), and 2+12 (Glu-D1a); Cajeme 71 has good quality and 1 (Glu-A1a), 17+18 (Glu-B1i), and 5+10 (Glu-D1d). The combinations of these alleles in the RIL were examined for associations with grain yield and four indicators of grain quality — protein content, yellowberry, pearling index, and SDS sedimentation volume. Data were obtained from a field experiment with three nitrogen fertilization treatments on 48 RIL and the parents. Orthogonal partitioning of the genetic variance associated with the three HMW glutenin subunit loci into additive and epistatic (digenic and trigenic) effects showed strong associations of these loci with grain yield and the indicators of quality; however, the associations accounted for no more than 25% of the differences between the parents. Genetic variance was detected among the RIL, which had the same HMW glutenin genotype for all traits. Epistatic effects were absent for grain yield and yellowberry, but were substantial for grain protein content, pearling index, and SDS sedimentation volume. All three loci had large single-locus additive effects for grain yield, protein, and SDS sedimentation volume. Yellowberry was largely influenced byGlu-B1 andGlu-D1, whereas pearling index was associated withGlu-A1 andGlu-B1. Even though the observed associations-of effects of HMW glutenin loci with the quantitative characters were small relative to the total genetic variability, they are of considerable importance in understanding the genetics of wheat quality, and are useful in the development of new wheat varieties with specific desired characteristics.  相似文献   

13.
应用简并性引物和基因组PCR反应从乌拉尔图小麦(Triticum urartu)不同种质材料中获得并测定了表达型和沉默型1Ay高分子量麦谷蛋白亚基基因全长编码区的基因组DNA序列。表达型1Ay基因编码区的序列与前人已发表的y型高分子量麦谷蛋白亚基基因编码区的序列高度同源,由其推导的1Ay亚基的一级结构与已知的高分子量麦谷蛋白亚基相似。在细菌细胞中,表达型1Ay基因编码区的克隆序列可经诱导而产生1Ay蛋白,该蛋白与种子中1Ay亚基在电泳迁移率和抗原性上类似,表明所克隆的序列真实地代表了表达型1Ay基因的全长编码区。但是,本研究所克隆的沉默型1Ay基因的编码区序列因含有3个提前终止子而不能翻译成完整的1Ay蛋白。讨论了表达型1Ay基因在小麦籽粒加工品质改良中的潜在利用价值以及1Ay基因沉默的机制。  相似文献   

14.
While quality in hexaploid wheat (Triticum aestivum L. em Thell.) is a very complex trait, it is known that the water-insoluble gluten proteins are responsible for the elasticity and chohesiveness (strength) of dough and are therefore important determinants of breadmaking quality. High-molecular-weight (HMW) glutenin subunits encoded by genes on the long arm of group 1 chromosomes have been associated with gluten strength, and a portion of the variability between cultivars can be attributed to glutenin subunit composition. Good or poor wheat breadmaking quality is associated with two allelic pairs at the Glu-D1 complex locus, designated 1Dx5–1Dy10 and 1Dx2–1Dy12, respectively. Among the HMW glutenin subunits encoded at Glu-B1, Bx7 is quite common, being associated with either of two subunits, By8 or By9. Both allelic pairs contribute moderately well to good breadmaking quality by increasing dough elasticity. Glutenin subunit screening is accomplished using electrophoresis (SDS-PAGE). In this paper, I report the development of an alternative screening method based on glutenin genes themselves using the polymerase chain reaction (PCR). This easy, quick and non-destructive PCR-based approach is an efficient alternative to standard procedures for selecting bread-wheat genotypes with good breadmaking characteristics. Received: 14 August 1999 / Accepted: 21 March 2000  相似文献   

15.
应用简并性引物和基因组PCR反应从乌拉尔图小麦(Triticum urartu)不同种质材料中获得并测定了表达型和沉默型1Ay高分子量麦谷蛋白亚基基因全长编码区的基因组DNA序列.表达型1Ay基因编码区的序列与前人已发表的y型高分子量麦谷蛋白亚基基因编码区的序列高度同源,由其推导的1Ay亚基的一级结构与已知的高分子量麦谷蛋白亚基相似.在细菌细胞中,表达型1Ay基因编码区的克隆序列可经诱导而产生1Ay蛋白,该蛋白与种子中1Ay亚基在电泳迁移率和抗原性上类似,表明所克隆的序列真实地代表了表达型1Ay基因的全长编码区.但是,本研究所克隆的沉默型1Av基因的编码区序列因含有3个提前终止子而不能翻译成完整的1Ay蛋白.讨论了表达型1Ay基因在小麦籽粒加工品质改良中的潜在利用价值以及lAy基因沉默的机制.  相似文献   

16.
17.
小麦高分子量谷蛋白亚基及其基因的研究进展   总被引:14,自引:2,他引:12  
主要介绍了小麦高分子量谷蛋白亚基(HMW-GS)及其基因的研究进展情况,目前,转基因小麦的技术已经逐渐成熟,由于分子生物学领域分子标记技术的迅速发展,尤其是PCR技术的广泛应用,为实现外源优良储藏蛋白基因导入改良品种提供了可能,利用已知小麦品种的基因序列设计引物,从众多的未知小麦品种中扩增出新基因加以研究并做外源优质HMW-GS基因的转入已成为一种趋势。  相似文献   

18.
Emmer wheat (Triticum turgidum ssp. dicoccum Schrank) is hulled wheat that survives in marginal areas of the Mediterranean Region. The HMW and LMW glutenin subunit composition of 97 accessions of emmer wheat from Spain have been analysed by SDS-PAGE. For the HMW glutenin subunits, four allelic variants were detected for the Glu-A1 locus; one of them has not been previously described. For the Glu-B1 locus, three of the nine alleles detected have not been found before. A high degree of variation was evident for the LMW glutenin subunits, and up to 23 different patterns were detected for the B-LMW glutenin subunits. Considering both types of proteins (HMW and LMW), 30 combinations were found between all the evaluated lines. This wide polymorphism can be used to transfer new quality genes to wheat, and to widen its genetic basis. Received: 13 June 2000 / Accepted: 3 July 2000  相似文献   

19.
Silencing of HMW glutenins in transgenic wheat expressing extra HMW subunits   总被引:23,自引:0,他引:23  
Wheat HMW glutenin subunit genes 1Ax1 and 1Dx5 were introduced, and either expressed or overexpressed, into a commercial wheat cultivar that already expresses five subunits. Six independent transgenic events were obtained and characterized by SDS-PAGE and Southern analysis. The 1Dx5 gene was overexpressed in two events without changes in the other endosperm proteins. Overexpression of 1Dx5 increased the contribution of HMW glutenin subunits to total protein up to 22%. Two events express the 1Ax1 subunit transgene with associated silencing of the 1Ax2* endogenous subunit. In the SDS-PAGE one of them shows a new HMW glutenin band of an apparent Mr lower than that of the 1Dx5 subunit. Southern analysis of the four events confirmed transformation and suggest that the transgenes are present in a low copy number. Silencing of all the HMW glutenin subunits was observed in two different events of transgenic wheat expressing the 1Ax1 subunit transgene and overexpressing the Dx5 gene. Transgenes and expression patterns were stably transmitted to the progenies in all the events except one where in some of the segregating T2 seeds the silencing of all HMW glutenin subunits was reverted associated with a drastic lost of transgenes from a high to a low copy number. The revertant T2 seeds expressed the five endogenous subunits plus the 1Ax1 transgene. Received: 16 June 1999 / Accepted: 29 July 1999  相似文献   

20.
Understanding the molecular structure of high-molecular-weight glutenin subunit (HMW-GS) may provide useful evidence for the study on the improvement of quality of cultivated wheat and the evolution of Glu-1 alleles. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) shows that the subunits encoded by Glu-B1 were null, named 1Bxm, in a Triticum turgidum var. dicoccoides line PI94640. Primers based on the conserved regions in wheat HMW-GS gene promoter and coding sequences were used to amplify the genomic DNA of line PI94640. The PCR products were sequenced, and the total nucleotide sequence of 3 442 bp including upstream sequence of 1 070 bp was obtained. Compared with the reported gene sequences of Glu-1Bx alleles, the promoter region of the Glu-1Bxm showed close resemblance to 1Bx7. The Glu-1Bxm coding region differs from the other Glu-1Bx alleles for a deduced mature protein with only 212 residues, and a stop codon (TAA) at 637 bp downstream from the start codon was present, which was probably responsible for the silencing of x-type subunit genes at the Glu-B1 locus. Phylogenetic tree based on the nucleotide sequence alignment of HMW glutenin subunit genes showed that 1Bxm was the most ancient type of Glu-B1 alleles, suggesting that the evolution rates are different among Glu-1Bx genes. Further study on the contribution of the unique silenced Glu-B1 alleles to quality improvement was also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号