首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Follicle-stimulating hormone (FSH) was produced in Chinese hamster ovary (CHO) cells using a perfusion bioreactor. Perfusion culture at 37°C yielded a high cell density but a low FSH production. To investigate the effect of culture temperature in the range of 26–37°C on cell growth and FSH production, batch cultures were performed. Lowering culture temperature below 32°C resulted in growth suppression. However, specific productivity of FSH, q FSH, increased as culture temperature decreased, and the maximum q FSH of 43.4 ng/106 cells/h was obtained at 28°C, which is 13-fold higher than that at 37°C. Based on the results obtained from batch cultures, we performed perfusion cultures with two consecutive temperatures. CHO cells were grown up to 3.2 × 107 cells/ml at 37°C and culture temperature shifted down to 28°C to obtain a high FSH titer. Soon after the maximum FSH titer of 21 μg/ml was achieved, a rapid loss of not only viable cell concentration but also cell viability was observed, probably due to the low activities of enzymes related to cell growth. Thus, the extension of production period at 28°C is critical for the enhancement of FSH production, and the use of antiapoptotic genes seems to be promising.  相似文献   

2.
The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 × 102 cells mL?1 d?1), but the lowest cell yield (5420 cells mL?1) in three nitrate level cultures. High nitrate‐grown cells showed lower levels of chlorophyll a‐specific and cell‐specific light‐saturated photosynthetic rate (Pmchl a and Pmcell), dark respiration rate (Rdchla and Rdcell) and chlorophyll a‐specific apparent photosynthetic efficiency (αchla) than was seen for low nitrate‐grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7–9 times increase compared with non‐supplemented control culture, achieving 43 540 cells mL?1 and 52 300 cells mL?1, respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.  相似文献   

3.
Kinetics of cell death and the production of dissolved organic carbon (DOC) were investigated in Anabaena flos-aquae (Lyngb.) Bréb grown on three different N sources (N2nitrate, and ammonium) in a phosphorus (P)-limited chemostat. The fraction of live cells in the total population increased as growth rate increased with decreasing P limitation. Cell death was less in nitrate and ammonium media than in N2. The specific death rate (γ), when calculated as the slope ofv?1x vs. D?1, where vxand D are live cell fraction (or cell viability) and dilution rate, respectively, was 0. 0082 day?1 in N2and 0.0042 day?1 in nitrate. The slope of the plot in ammonium culture was not significant; however, the value of the live cell fraction was within the range for the NO?3culture. The fraction of live vegetative cells in N2 culture was constant at all growth rates and the increase in the overall live cell fraction with growth rate was due entirely to an increase in live heterocysts. Live heterocysts comprised 3.5% of the total cells at a growth rate of 0.25 day?1 and increased to 6.3% at 0.75 day?1 with the ratio of live heterocysts to live vegetative cells linearly increasing with growth rate. The fraction of live vegetative cells was invariant in nitrate cultures us in N2cultures. The live heterocysts fraction also increased with growth rate in nitrate cultures, along with the live heterocysts : live vegetative cells ratio, but the level was lower than in N2cultures. DOC released from dead cells increased inversely with growth rate in N2from 36.4% of the total DOC at a growth rate of 0.75 day?1 to 54.15% at 0.25 day?1. The contribution of cell death to the total DOC production in nitrate and ammonium media was significantly less than that under N2DOC from dead cells consisted mainly of high-molecular-weight compounds, whereas DOC excreted from live cells was largely of low molecular weight.  相似文献   

4.
Net population growth of some dinoflagellates is inhibited by fluid shear at shear stresses comparable with those generated during oceanic turbulence. Decreased net growth may occur through lowered cell division, increased mortality, or both. The dominant mechanism under various flow conditions was determined for the red‐tide dinoflagellate Lingulodinium polyedrum (Stein) Dodge. Cell division and mortality were determined by direct observation of isolated cells in 0.5‐mL cultures that were shaken to generate unquantified fluid shear. Larger volume cultures were exposed to quantified laminar shear in Couette‐flow chambers (0.004–0.019 N·m ? 2 shear stress) and to unquantified flow in shaken flasks. In these larger cultures, cell division frequency was calculated from flow cytometric measurements of DNA·cell?1. The mechanism by which shear inhibits net growth of L. polyedrum depends on shear stress level and growth conditions. Observations on the isolated cells showed that shaking inhibited growth by lowering cell division without increased mortality. Similar results were found for early exponential‐phase cultures exposed to the lowest experimental shear stress in Couette‐flow chambers. However, mortality occurred when a late exponential‐phase culture was exposed to the same low shear stress and was inferred to occur in cultures exposed to higher shear stresses. Elevated mortality in those treatments was confirmed using behavioral, morphological, and physiological assays. The results predict that cell division in L. polyedrum populations will be inhibited by levels of oceanic turbulence common for near‐surface waters. Shear‐induced mortality is not expected unless shear‐stress levels are unusually high or when cellular condition resembles late exponential/stationary phase cultures.  相似文献   

5.
The present study investigated the effect of different culture conditions on the vegetative growth of a new species, Haematococcus alpinus (strain LCR‐CC‐261f) using airlift photobioreactors. The influence of culture medium, aeration rates, CO2 concentration in air‐gas mixture, temperature, light intensities, and wavelengths were investigated to achieve sustainable high cell density cultures. Growth parameters were determined by fitting the data to a form of the logistic equation that included a lag phase. The shear‐sensitive vegetative cells favored lower aeration rates in the photobioreactors. MLA medium increased to 40 mM nitrate produced high density cultures. Temperatures between 12°C and 18°C, 3% (v/v) CO2 concentration and a narrow photon flux density ranging between 37 and 48 μmol photons · m?2 · s?1 were best suited for growth. The wavelength of the light source also impacted growth and a high cell density of 9.6 × 105 cells · mL?1 was achieved using a mixture of red and blue compared to warm white, red, or blue LEDs.  相似文献   

6.
The thermoacidophilic Acidianus strain DS80 displays versatility in its energy metabolism and can grow autotrophically and heterotrophically with elemental sulfur (S°), ferric iron (Fe3+) or oxygen (O2) as electron acceptors. Here, we show that autotrophic and heterotrophic growth with S° as the electron acceptor is obligately dependent on hydrogen (H2) as electron donor; organic substrates such as acetate can only serve as a carbon source. In contrast, organic substrates such as acetate can serve as electron donor and carbon source for Fe3+ or O2 grown cells. During growth on S° or Fe3+ with H2 as an electron donor, the amount of CO2 assimilated into biomass decreased when cultures were provided with acetate. The addition of CO2 to cultures decreased the amount of acetate mineralized and assimilated and increased cell production in H2/Fe3+ grown cells but had no effect on H2/S° grown cells. In acetate/Fe3+ grown cells, the presence of H2 decreased the amount of acetate mineralized as CO2 in cultures compared to those without H2. These results indicate that electron acceptor availability constrains the variety of carbon sources used by this strain. Addition of H2 to cultures overcomes this limitation and alters heterotrophic metabolism.  相似文献   

7.
Cells of Candida utilis grown in a single-stage chemostat at D = 0.05, 0.1, 0.25, and 0.35 hr?l were separated into a fraction of scar-bearing mother cells and a fraction of scar-free daughter cells. The scar-free cells were transferred into small batch cultures where the length of the maturation phase, changes in length and width of cells, specific growth rate, and specific rate of RNA and protein synthesis were examined for 5 hr. The daughter cells grown at D = 0.05 hr?1 were very small at the moment of separation from the mother cells (about one-third of the mother cell). Their maturation phase (in a batch culture), at the beginning of which they attain the specific growth rate approaching the μmax of the strain used, lasts for 3 hr. On the other hand, daughter cells grown at D = 0.35 hr?1 are almost the same size as the mother cells at the moment of separation. After transfer to a batch culture they begin to bud almost immediately. Similarly, in their other morphological and physiological parameters they differ strikingly from immature daughter cells which are formed at low specific growth rates. The importance of these differences from the point of view of mathematical modeling of growth processes is discussed.  相似文献   

8.
Single cells isolated from aggregated Taxus cuspidata cultures via enzymatic digestion were grown in suspension culture. High seeding density (4×105 cells/ml) and the addition of cell-free conditioned medium were essential for growth. Doubling the concentration of the nutrients [ascorbic acid (150 g/l), glutamine (6.25 mm), and citric acid (150 g/l)] had no effect on single cell growth or viability. A specific growth rate of 0.11 days−1 was achieved, which is similar to the observed growth rate of aggregated Taxus suspensions. The biocide, Plant Preservative Mixture, added at 0.2% (v/v) to all single cell cultures to prevent microbial contamination, had no significant effect on growth or viability. Following cell sorting, single cell cultures can be used to establish new cell lines for biotechnology applications or provide cells for further study.  相似文献   

9.
Given their rapid growth and nutrient assimilation rates, Porphyra spp. are good candidates for bioremediation. The production potential of two northeast U.S. Porphyra species currently in culture (P. purpurea and P. umbilicalis) was evaluated by measuring rates of photosynthesis (as O2 evolution) of samples grown at 20° C. Gametophytes of P. umbilicalis photosynthesized at rates that were 80% higher than those of P. purpurea over 5–20° C at both sub‐saturating and saturating irradiances (37 and 289 μmol photons m?2 s?1). Porphyra umbilicalis was both more efficient at low irradiances (higher alpha) and had a higher Pmax than did P. purpurea (23.0 vs. 15.6 μmol O2 g?1 DW min?1), suggesting that P. umbilicalis is a better choice for mass culture where self‐shading may be severe. The photosynthesis‐irradiance relationship for the Conchocelis stage of P. purpurea was also examined. Tufts of filaments, grown at 10, 15, and 20° C, were assayed at growth temperatures at irradiances ranging from 0–315 μmol photons m?2 s?1. Tufts were slightly more productive at 15° than at 10° C, but only ca. 4–6% as productive as gametophytes. Maximum rates of net photosynthesis were reduced by 66–74% in tufts grown at 20° C (only about 2% of gametophytes). The Conchocelis stage, however, need not limit mariculture operations; once Conchocelis cultures are established, they can be maintained over the long‐term as ready sources of spores for net seeding.  相似文献   

10.
Two axenic, in vitro liquid suspension cultures were established for Agardhiella subulata (C. Agardh) Kraft et Wynne, and their growth characteristics were compared. This study illustrated how reliable routes for the development of suspension cultures of macrophytic red algae of terete thallus morphology can be achieved for biotechnology applications. Undifferentiated filament clumps of 2–8 mm diameter were established by induction of callus-like tissue from thallus explants, and lightly branched microplantlets of 2–10 mm length were established by regeneration of filament clumps. The filament clumps were susceptible to regeneration. Adventitious shoot formation was reliably induced from 40% to 70% of the filament clumps by gentle mixing at 100 rev min?1 on an orbital shaker. The specific growth rate of the microplantlets was higher than the filament clumps in nonagitated well plate culture (4%–6% per day for microplantlets vs. 2%–3% per day for filament clumps) at 24° C and 8–36 μmol photons·m?2·s?1 irradiance (10:14 h LD cycle) when grown on ASP12 artificial seawater medium at pH 8.6–8.9 with 20%–25% per day medium replacement. Oxygen evolution rate vs. irradiance measurements showed that relative to the filament clumps, microplantlets had a higher maximum specific oxygen evolution rate (Po,max= 0.181 ± 0.035 vs. 0.130 ± 0.023 mmol O2·g?1 dry cell mass·h?1), but comparable respiration rate (Qo= 0.040 ± 0.013 vs. 0.033 ± 0.017 mmol O2·g?1 dry cell mass·h?1), compensation point (Ic= 3.8 ± 2.4 vs. 5.7 ± 1.2 μmol photons·m?2·s?1), and light intensity at 63.2% of saturation (Ik= 17.5 ± 3.9 vs. 14.9 ± 2.6 μmol photons·m?2·s?1). The microplantlet culture was more suitable for suspension culture development than the filament clump culture because it was morphologically stable and exhibited higher growth rates.  相似文献   

11.
Cultures of Euglena gracilis (strain Z from French CNRS collection) can be made cadmium resistant if grown in a medium with 5x10-4M cadmium chloride. This resistance is reflected by the appearance of a second exponential growth phase. The development of this resistance was studied at the cellular level by determining the relative content of DNA at different stages of the cell cycle in an asynchronously grown culture. The culture was followed until the second, cadmium resistant, growth phase had reached its stationary state. During the first exponential growth phase, cells were mostly in the late period of DNA synthesis (stage S of the cell cycle), or in the gap preceding mitosis (stage G2 of the cell cycle). In addition, some cells contained high multiples of the normal amount of DNA. In the beginning of the second exponential growth phase, a few cells were again in G1 (the post mitotic stage of the cell cycle preceding DNA synthesis). These G1 cells were predominant at the end of the second growth period. During the second stationary phase the DNA content of the cadmium treated cells was similar to the stationary phase of the control culture. Cells had stopped growing in G1 with an unreplicated genome. The implications of these data are discussed.  相似文献   

12.
Two morphotypes of Emiliania huxleyi (Lohmann 1902) Hay et al. 1967, types A and B, known to be unequally distributed in the oceans, were grown in dilution cultures at a range of photon flux densities (PFDs) (1.5–155 μmol photons·m?2·s?1) and two temperatures (10° and 15° C). Calcite carbon and organic carbon content of the cells as well as instantaneous growth rate, cell size, chlorophyll fluorescence, and light-scatter properties clearly depended on growth conditions and differed considerably for the two morphotypes. The ratio between calcite carbon and organic carbon production showed an optimum of 0.65 in E. huxleyi type A cells at PFD = 17.5. The ratio increased slightly with a temperature increase from 10° to 15°C but remained < 1.0 at both temperatures in light-limited cells. In contrast, calcite carbon production exceeded organic carbon production (ratio: 1.4–2.2) in phosphate-deprived cultures. Emiliania huxleyi type B generally showed a higher calcite carbon/organic carbon ratio than E. huxleyi type A, but the relation with PFD was similar. The content of calcite carbon and organic carbon as well as the instantaneous growth rate, cell size, chlorophyll fluorescence, and light-scatter properties showed large diel variations that were closely related to the division cycle. Our results show the importance of mapping the structure of any sampled cell population with respect to the phase in the cell division cycle, as this largely determines the outcome of not only “per cell” measurements but also short time (less than 24 h) flux measurements. For instance, dark production of calcite by E. huxleyi was negatively affected by cell division. Slowly growing (phosphate-stressed) cultures produced calcite in the light and in the dark. In contrast, rapidly growing cultures at 10°C produced calcite only in the light, whereas in the dark there was a significant loss of calcite due to dissolution.  相似文献   

13.
A pure culture of the obligately lithoautotrophic ammonia-oxidizer Nitrosomonas eutropha was grown in a laboratory-scale bioreactor with complete biomass retention. The air supply was supplemented with nitrogen dioxide (NO2; 25 or 50 ppm) or nitric oxide (NO; 25 or 50 ppm). Compared to cultures grown without these nitrogenous oxides, the addition of NO2 or NO to the culture resulted in a significant increase of the nitrification rate, specific activity of ammonia oxidation, growth rate, and maximum cell densities. In contrast, the growth yield slightly decreased in the presence of NO or NO2. Maximum cell densities of about 2 × 1010 cells ml–1 and a maximum nitrification rate of about 221 mmol NH4 + l–1 day–1 were obtained after 3 weeks in the presence of 50 ppm NO2. Furthermore, in the stationary phase about 50% of the nitrite produced was aerobically denitrified to dinitrogen (N2) and traces of nitrous oxide (N2O). When cells were supplemented with NO, a high rate of aerobic denitrification occurred only during the first days of the exponential growth phase. Received: 12 May 1997 / Accepted: 10 November 1997  相似文献   

14.
Summary Primary cultures of newborn mouse epidermal cells proliferate rapidly and with a high growth fraction for several months when grown in medium with low calcium (0.02 to 0.1 mM). Addition of calcium to levels generally used in culture medium (1.2 mM) was followed by rapid changes in the pattern of proliferation. By using a combination of technics (a stathmokinetic method, autoradiography, [3H]thymidine incorporation into DNA, DNA flow cytometry) it was found that cell flux was blocked for 5 to 6 h, followed by a short rise in the mitotic rate at 10 h, and a gradual fall in all growth parameters until about 32 h after the calcium switch. There was no accumulation of cells in any particular cell cycle phase. The results indicate that the calcium switch is followed by a strong reduction in cell flux from G1 whereas the majority of the cells that had left G1 at the time of the switch completed one cell division before cessation of all proliferative activity. Both before and after the switch the primary epidermal cultures consisted of one diploid and one tetraploid G1 DNA stemline that seemed to react in the same way to calcium. This work reported in this paper was undertaken during the tenure of an American Cancer Society-Eleanor Roosevelt-International Cancer Fellowship awarded by the International Union Against Cancer (K. E.). The project was supported by funds partly provided by the International Cancer Research Data Bank Program of the National Cancer Institute, National Institutes of Health, Bethesda, MD, under contract N01-C0-65341 (International Cancer Research Technology Transfer) and partly by the International Union Against Cancer (O.P.F.C.).  相似文献   

15.
Macroporous microcarriers entrap cells in a mesh network allowing growth to high densities and protect them from high shear forces in stirred bioreactor cultures. We report the growth of Chinese hamster ovary (CHO) cells producing either recombinant human beta-interferon (β-IFN) or recombinant human tissue-plasminogen activator (t-PA) in suspension or embedded in macroporous microcarriers (Cytopore 1 or 2). The microcarriers enhanced the volumetric production of both β-IFN and t-PA by up to 2.5 fold compared to equivalent suspension cultures of CHO cells. Under each condition the cell specific productivity (Q P) was determined as units of product/cell per day based upon immunological assays. Cells grown in Cytopore 1 microcarriers showed an increase in Q P with increasing cell densities up to a threshold of >1 × 108 cells/ml. At this point the specific productivity was 2.5 fold higher than equivalent cells grown in suspension but cell densities above this threshold did not enhance Q P any further. A positive linear correlation (r 2 = 0.93) was determined between the specific productivity of each recombinant protein and the corresponding cell density for CHO cells grown in Cytopore 2 cultures. With a cell density range of 25 × 106 to 3 × 108 cells/ml within the microcarriers there was a proportional increase in the specific productivity. The highest specific productivity measured from the microcarrier cultures was ×5 that of suspension cultures. The relationship between specific productivity and cell density within the microcarriers leads to higher yields of recombinant proteins in this culture system. This could be attributed to the environment within the microcarrier matrix that may influence the state of cells that could affect protein synthesis or secretion.  相似文献   

16.
Ethmodiscus spp. is an important contributor to oceanic tropical-ooze sediments and thus might be an important transport vehicle of carbon from the ocean surface to sediments. The knowledge of its cell cycle and growth rate, which is still lacking, is necessary to evaluate the importance of Ethmodiscus in nutrient cycling and to solve the discrepancy between its high sedimentary abundance and rarity in the plankton. We used immunofluorescence of a cell cycle protein, prolqerating cell nuclear antigen (PCNA), and DNA-specific staining to study the progression of the cell cycle and roughly estimate the growth rate for E. rex (Rattray) Wiseman and Hendey in the southwestern North Atlantic Ocean and Caribbean Sea in June 1994 and January 1995. During the cell division cycle, the chloroplasts appeared to synthesize DNA before the nucleus (S phase). Following the S phase, the nucleus moved from one end of the cell toward the center underneath the midline of the girdle band (G2 phase) where it divided (M phase). During a very brief period, the parent cell split and moved apart from the girdle midline, and two new valves were produced (late M phase). The two daughter nuclei apparently remained attached at the joint of the two newly produced valves, where they appeared to be responsible for coordinating the symmetrical formation of the new valves. The morphologically complete daughter cells remained joined for a short period of time before separating into solitary cells whose nucleus was located at one end of the cell. Derived from the phase fraction curves, the duration of the cell cycle phases decreased in the order from G1, S, G2, to M. A conservative estimate of the growth rate in the study area obtained by using PCNA immunostaining was 0.39–0.46 d?1 in June and 0.15 d?1 in January. The validity and implication of the growth rate estimates are discussed.  相似文献   

17.
It is now well documented that apoptosis represents the prevalent mode of cell death in hybridoma cultures. Apoptotic or programmed cell death occurs spontaneously in late exponential phase of batch cultures. Until lately, no specific triggering factors had been identified. Recently, we observed that glutamine, cystine or glucose deprivation induced apoptosis in both hybridoma and myeloma cell lines whereas accumulation of toxic metabolites induced necrotic cell death in these cells. Other triggering factors such as oxygen deprivation might also be responsible for induction of apoptosis. In the present study, induction of cell death by exposure to anoxia was examined in batch culture of the SP2/0-derived hybridoma D5 clone. The mode of cell death was studied by morphological examination of acridine orange-ethidium bromide stained cells in a 1.5 L bioreactor culture grown under anoxic conditions for 75 hours. Under such conditions, viable cell density levelled off rapidly and remained constant for 25 hours. After 45 hours of anoxia, cell viability had decreased to 30% and the dead cell population was found to be 90% apoptotic. In terms of cellular metabolism, anoxia resulted in an increase in the utilization rates of glucose and arginine, and in a decrease in the utilization rate of glutamine. The lactate production rate and the yield of lactate on glucose increased significantly while the MAb production rate decreased. These results demonstrate that glycolysis becomes the main source of energy under anoxic conditions.Cells incubated for 10 hours or less under anoxic conditions were able to recuperate almost immediately and displayed normal growth rates when reincubated in oxic conditions whereas cells incubated for 22 hours or more displayed reduced growth rates. Nonetheless, even after 22 h or 29 h of anoxia, cells reincubated in oxic conditions showed no further progression into apoptosis. Therefore, upon removal of the triggering signal, induction of apoptosis ceased.Abbreviations VNA Viable non-apoptotic cells - VA Viable apoptotic cells - NVNA Nonviable non-apoptotic or necrotic cells - NVA Nonviable apoptotic cells - CF Chromatin-free cells (late nonviable apoptotic cells) - AO Acridine orange - EB Ethidium Bromide - MAb Monoclocnal antibody - D.O. Dissolved oxygen - qMAb Specific MAb production rate (mg. (109 cells)–1.day–1) - Specific growth rate (h–1) - Xv Viable cell number (105 cells.mL–1) - Xt Total cell number (105 cells.mL–1) - Ylac/glc Yield coefficient of lactate on glucose (mM lactate produced/mM glucose consumed)  相似文献   

18.
Nitzschia seriata Cleve, a common member of marine bottom ice communities in the Arctic, was grown in unialgal batch cultures to test for compensatory mechanisms for the low temperatures (?1.8° C) typical of its natural habitat. The upper lethal limit for growth was between 12° and 15°C, and the optimum was between 6° and 12° C. The Arrhenius function adequately (R2= 73%) fitted the relationship between growth rate and temperature from – 1.6° up to 10° C, with an average Q10 of 1.9 over the entire range. Light-saturated and light-limited rates of photosynthesis (normalized to chlorophyll a or cell carbon) showed complete compensation from 12° to 4° C. Photosynthetic rates, especially at light saturation, declined rapidly at temperatures below 4° C. Susceptibility to photoinhibition was greatest at the lowest growth temperatures. Cellular composition (chlorophyll a, protein, polysaccharide, and lipid contents) was not systematically related to temperature in any simple way, although cell size (carbon per cell) was maximal at the lowest growth temperature. Dark respiration was unmeasurably low (<0.015 day?1) at all growth temperatures. The strategy of adaptation in N. seriata may be characterized as optimizing efficiency and compensation, rather than maximization, of growth rate.  相似文献   

19.
The utilization of nitrogen-to-protein conversion factors (N-Prot factors) is a widely accepted and practical way to determine total protein content. The accuracy of protein determination depends on the establishment of specific N-Prot factors, since the conventional factor of 6.25 may be unsuitable for all species. This study was designed to determine the concentrations of the main nitrogenous compounds and to establish N-Prot factors specific for the following marine microalgae: Chlorella minutissima, Dunaliella tertiolecta, Hillea sp., Isochrysis galbana, Nannochloropsis oculata, Phaeodactylum tricornutum, Prorocentrum minimum, Skeletonema costatum, Synechococcus subsalsus, and Tetraselmis gracilis. Cultures were maintained under a 12-h photoperiod (300 μmol photons·m?2·s?1) at temperatures of 20.0°± 1.0° C (dark) to 23.0°± 2.0° C (light) in Walne’s culture medium without additional external carbon sources. The distribution of intracellular nitrogen was studied by determining total nitrogen (TN, by CHN [carbon, hydrogen, and nitrogen] analysis), protein N (PN, by analysis of total amino acids), and nonprotein N (NPN, determined by analysis of DNA, RNA, chlorophylls (chl) a,b, and c, and intracellular inorganic nitrogen—NO3?, NO2?, and NH3+ NH4+) in logarithmic and stationary growth phases of cultures. Variations occurred in both accumulation and distribution of PN and NPN among the species, as well as in each species during the different growth phases. Inorganic nitrogen compounds were observed to be the most important NPN source (from 6.4 ± 0.1% to 41.8 ± 4.2% of total N) in all species (except D. tertiolecta), followed by nucleic acids (from 0.8 ± 0.1% to 26.1 ± 2.4% of TN) and chlorophylls (from 0.2 ± 0.0% to 3.1 ± 0.3% of TN). Total amino acid residues ranged from 63.1 ± 4.6% up to 88.1 ± 11.2% of TN, which is in agreement with the presence of high NPN concentrations. N-Prot factors are proposed for each growth phase in the studied species, based on the ratio of amino acid residues to TN, establishing specific N-prot factors ranging from 3.60 ± 0.27 to 4.99 ± 0.64. The mean N-Prot factor for all species/growth phases was 4.58 ± 0.11. The present study shows that the use of the traditional factor 6.25 is not suitable for these marine microalgae, and possibly for other species, because it overestimates their actual protein content.  相似文献   

20.
Growth and spirolide production of the toxic dinoflagellate Alexandrium ostenfeldii (Danish strain CCMP1773) were studied in batch culture and a photobioreactor (continuous cultures). First, batch cultures were grown in 450 mL flasks without aeration and under varying conditions of temperature (16 and 22 °C) and culture medium (L1, f/2 and L1 with addition of soil extract). Second, cultures were grown at 16 °C in 8 L aerated flat-bottomed vessels using L1 with soil extract as culture medium. Finally, continuous cultures in a photobioreactor were conducted at 18 °C in L1 with soil extract; pH was maintained at 8.5 and continuous stirring was applied.This study showed that A. ostenfeldii growth was significantly affected by temperature. At the end of the exponential phase, maximum cell concentration and cell diameter were significantly higher at 16 °C than at 22 °C. In batch culture, maximum spirolide quota per cell (approx. 5 pg SPX 13-desMeC eq cell−1) was detected during lag phase for all conditions used. Spirolide quota per cell was negatively and significantly correlated to cell concentration according to the following equation: y = 4013.9x−0.858. Temperature and culture medium affected the spirolide profile which was characterized by the dominance of 13,19-didesMeC (29–46%), followed by SPX-D (21–28%), 13-desMeC (21–23%), and 13-desMeD (17–21%).Stable growth of A. ostenfeldii was maintained in a photobioreactor over two months, with maximum cell concentration of 7 × 104 cells mL−1. As in batch culture, maximum spirolide cell quota was found in lag phase and then decreased significantly throughout the exponential phase. Spirolide cell quota was negatively and significantly correlated to cell concentration according to the equation: y = 12,858x−0.8986. In photobioreactor, spirolide profile was characterized by higher proportion of 13,19-didesMeC (60–87%) and lower proportions of SPX-D (3–12%) and 13-desMeD (1.6–10%) as compared to batch culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号