首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Single-stage continuous fermentations to produce xanthan gum have been run at dilution rates (D) from 0.023 to 0.196 hr?1. Xanthan production rate (XPR) was a function of D. XPR increased from 0.34 g/hr/kg at D = 0.023 hr?1 to the maximum 0.84 g/hr/kg at D = ca. 0.15 hr?1. At D > 0.15 hr?1 XPR decreased and at the highest D studied (0.196 hr?1) was 0.69 g/hr/kg. Yield of xanthan from glucose consumed was 81–89%. Steady states ended between 6.5 and 8.7 turnovers when a variant strain occurred.  相似文献   

2.
Inoculum size has been found to affect significantly the maximum attainable specific growth rate during batch cultivation ofCandida utilis. Lower inoculum size resulted in an increased growth rate and relatively longer lag. The culture is found to be most active in the beginning of the exponential phase as regards its RNA synthesis rate. Batch data were used for predicting the conditions of the yeast population in single-stage continuous culture system. Predicted and the experimental values showed a reasonable agreement. In single-stage chemostat the physiology of the yeast was studied on the basis RNA, DNA and protein synthesis rates at various growth rates. The results indicate that the productivity of cells and the rate of synthesis of macromolecules is highest at the dilution rate values of 0.33 to 0.35 hr−1. In order to attain so-called unrestricted conditions of growth a pluristage pluristream continuous system was employed. It is assumed that under such conditions the specific growth rate and the synthetic activity of yeasts may reach its maximum on a given medium. The results presented do not show such conditions of growth under the experimental conditions employed (D 1=0.35 hr−1 andD 2=0.2 to 1.7 hr−1) withCandida utilis cultivated on beet molasses medium. Second stage of a two-stage two-stream continuous system is constantly fed with the cells from the foregoing stage; this category of cells on entering the new conditions of the second stage is expected to show some adaptation period. Experiments are reported to this effect.  相似文献   

3.
The production of tylosin and related compounds by Streptomyces fradiae NRRL 2702 was studied in batch and chemostat cultures using a soluble synthetic medium. In batch culture, a trophophase–idiophase kinetic pattern was observed with tylosin, macrocin, and relomycin accumulating in the idiophase. When the organism was grown in chemostat culture, the specific rate of production of tylosin and related compounds (qtylosin) was found to be a function of the growth rate. The maximum value of (qtylosin) was observed when D = 0.017 hr?1. At this growth rate only tylosin and relomycin accumulated in the medium. By varying the concentration of glucose in the ingoing medium it was possible to study the effects of glucose on tylosin synthesis in chemostat cultures. At a growth rate of 0.017 hr?1, the maximum value of qtylosin was 0.71 mg tylosin/g dry weight (DW)/hr when the glucose uptake rate was 7 mg glucose/g DW-hr. This value of qtylosin was 40% greater than the maximum qtylosin observed in batch culture. When glycerol was substituted for glucose in the medium, it was possible in chemostat culutures to get values of qtylosin approximately 20% greater than those obtained with glucose at the same uptake rate. By varying the concentration of sodium glutamate in the ingoing medium it was possible to show that increasing the specific uptake rate of sodium glutamate increased the values of qtylosin obtained. Similar chemostat experiments where the inorganic phosphate concentration in the ingoing medium was varied showed that increased the uptake of phosphate decreased the values of qtylosin obtained. Also increasing the uptake rate of phosphate increased the relomycin-to-tylosin ratio. By taking into consideration the suppressing effects of glucose and the stimulating effects of sodium glutamate on tylosin synthesis, it was possible to formulate a medium that resulted in a value of qtylosin of 1.1 mg/g/hr being obtained at a growth rate of 0.03 hr?1. Batch fermentations with this medium did not follow a trophophase–idiophase kinetic pattern, but instead tylosin was actively synthesized during a period of rapid mycelial growth.  相似文献   

4.
Using ball milled cellulose as the only carbon source Trichoderma viride was grown in a continuous flow culture at pH = 5.0 and T = 30°C. Steady-state values for cell protein, cellulose, and cellulase for different substrate concentrations (4–11 g/liter) and dilution rates (0.033–0.080 hr?1) were obtained. Under steady-state conditions, 50–75% of the cellulose was consumed indicating a critical dilution rate on 0.17 hr?1. Cellulase activity (U/ml) in the fermentation broth increased slightly with increasing substrate concentration and decreased with increasing dilution rate, while the specific cellulase productivity (U/mg cell protein·hr) was fairly independent of the dilution rate, with a maximum around D = 0.05 hr?1. Following step changes in substrate concentration and dilution rate, new steady-state values were reached after three to five residence times (cell protein and cellulose) and four to six residence times (celullase activity).  相似文献   

5.
A gram-negative bacterium strongly lytic toward living cells of the food yeast Saccharomyces fragilis was isolated by continuous-flow enrichment from compost. The organism was identified as a species of Arthrobacter. The extracellular lytic enzyme complex produced by this bacterium contained β-1,3-glucanase, mannan mannohydrolase, and proteolytic activities. The polysaccharases were inducible by whole yeast cells. In chemostat cultures on chemically defined media, synthesis of the polysaccharases was very slight and only detectable at dilution rates below 0.02 hr?1. Enzyme production in defined media was not solely dependent on growth rate but also was influenced by the growth limiting substrate and the culture history. The production of individual depolymerases and of the lytic activity was studied in batch and chemostat cultures containing yeast as the limiting substrate. The maximum specific growth rate of the Arthrobacter under these conditions was 0.22 hr?1. β-1,3-Glucanase and proteolytic activities were synthesized by exponentially growing bacteria but maximum lytic titers did not develop until the specific growth rate was declining, at which time mannan mannohydrolase syntheses was induced. In yeast limited chemostats polysaccharase syntheses were greatest at the lowest dilution rates examined, namely 0.02 hr?1. Further optimization of enzyme production was achieved by feeding the Arthrobacter culture to a second-stage chemostat. A comparison of lytic enzyme productivities in batch and chemostat cultures has been made.  相似文献   

6.
The long term shear effects on a hybridoma cell line were studied by the simulation of a hollow fiber perfusion system. Various mechanical/environmental stress conditions were applied and steady state concentrations of live, dead and lysed cells were measured or calculated in a continuous culture. From mathematical modeling, it is shown that inclusion of a lysed cell index (LCI) renders a better fit to the material balance equation at steady state. The specific cell death rate increased with increasing shear force as expected only when the LCI was included. Without the inclusion of the LCI, the calculated specific cell growth rates are about 25–60% of the value when included. The results reported may lend some insight to design improvements since most perfusion devices add shear stresses to the cells in the reactor.List of Symbols b ml/hr continuous culture flow rate - D hr–1 dilution rate (b/V) - m g glucose/109 cells/hr specific maintenance coefficient - S 0 g/l feed substrate concentration - S g/l reactor substrate concentration - t hr time - V ml reactor volume - X + cells/ml live cell concentration - X cells/ml dead cell concentration - X 0 cells/ml lysed cell concentration - Y x/s 109 cells/g glucose cell/substrate yield coefficient - hr–1 specific growth rate - hr–1 specific death rate - hr–1 specific lysis rate - hr–1 specific lysis rate for simultaneous death and lysis  相似文献   

7.
Continuous decolorization of molasses waste water by mycelia of Coriolus versicolor Ps4a was studied using waste water from a baker’s yeast factory, treated by means of methane fermentation and with activated sludge. Optimum decolorization with bare pellet-type mycelia in shaking flasks needed the addition of glucose (0.5%) and peptone (0.05%) and aerobic conditions (1ppm of dissolved oxygen). Continuous decolorization in a bubbling column reactor showed a decolorization yield of approximately 75% in only 20 hr at a dilution rate (D) of 0.03 hr?1 under the optimum conditions.

In order to continue the decolorization for a longer time, mycelia immobilized within Caalginate gel were tested in a bubbling column reactor under the optimum conditions. The immobilized mycelia showed an almost constant decolorization yield (65.7%) during continuous decolorization for 16 days at D = 0.22 hr?1.  相似文献   

8.
Fusarium moniliforme was grown on a carob aqueous extract in a chemostat for fungal protein production. The substrate was adjusted to provide 0.5% carob sugars supplemented with inorganic salts. The dilution rate varied from 0.086 to 0.227 hr?1 under constant conditions of temperature (30°C), pH (4.5), and oxygen saturation (60–80%). A yield of 0.709 g dry mycelium/g consumed carob sugar and a productivity value of 0.687 g dry mycelium/liter hr?1 were obtained at μ = 0.205 hr?1. The maintenance coefficient was 0.077 g carob sugar/g dry mycelium hr?1. While the carbohydrate and purine content of dry mycelium increased at μ values from 0.114 to 0.205 hr?1 both true (Lowry) and crude (N × 6.25) protein contents decreased at the same μ range. Maximum values of 36.3% true and 47.9% crude protein of dry mycelium were obtained at μ = 0.114 hr?1, whereas a minimum purine content of 99.8 μmol/g corresponding to 6.42% nucleic acids was recorded at μ = 0.086 hr?1. It was concluded that a continuous fermentation of carob aqueous extract using F. moniliforme should be operated at growth rates of approximately 0.205 hr?1 in order to maximize protein production.  相似文献   

9.
10.
A flow cytometry analysis and in vitro enzyme activity study is carried out on the methylotrophic yeast, Hansenula polymorpha, during both (a) batch growth and (b) continuous cultures subjected to single perturbations in either system dilution rate or influent carbon substrate composition. Flow cytometry of yeasts growing diauxically on a glucose: methanol mixture during exponential growth, exhibit DNA and RNA distributions indicative of the S-synthesis-phase of the cell cycle. Cells at the stationary growth stage exhibit DNA and RNA distributions that indicate one portion of the population in the G 0/G1 resting phase and another in the M-mitosis-phase.Yeast cells grown at a steady-state of D=0.2 h1, then shifted to D=0.35 h–1, at a constant influent substrate mixture, are also examined with both flow cytometry and in vitro enzyme assays. Distributions of DNA, RNA, and total protein at either steady state and during the shift between dilution rates did not resemble any observed in batch culture. Flow cytometry indicates significant changes in cell composition within 20 min of the imposed dilution rate shift. In vitro enzyme assays show a response time in decreasing methanol oxidase activity of 2.5–3 h upon a dilution rate shift-up, while hexokinase activity increases to its steady-state level in less than 3 h. Similar cell compositional changes are reported for shifts in influent substrate methanol: glucose ratio at a constant dilution rate of D=0.35 h –1. Results suggest that an unsteady-state regime, oscillating between conditions that promote maximum enzyme activity of either glucose- or methanol-metabolizing enzymes, may allow simultaneous enhanced time-averaged production of both sets of enzymes.  相似文献   

11.
Batch experiments were run using heterogeneous populations to determine whether a hyperbolic equation of the type suggested by Monod could be used to depict the relation between specific growth rate, μ, and NH3-N concentration when ammonia N was the growth-limiting nutrient. The heterogeneous populations employed were developed from sewage seed grown on glucose at various levels of nitrogen and various dilution rates in completely mixed continuous flow reactors. It was found that the hyperbolic function could be used. Values of μm in the range of 0.4–0.7 hr?1 were observed, and values of Ks, in general, ranged from 1.5 to 4.0 mg/l. Variation in the values of these growth “constants” did not follow any discernible pattern related to past growth history (i.e., COD:N ratio or dilution rate at which the cells were previously grown).  相似文献   

12.
High concentrations of both ethanol and sugar in the fermentation broth inhibit the growth of yeast cells and the rate of product formation. Inhibitory effects of ethanol on the yeast strain Saccharomyces cerevisiae NRRL-Y-132 were studied in batch and continuous chemostat cultures. Growth was limited by either glucose or ethanol. Feed medium was supplemented with different ethanol concentrations. Ethanol was found to inhibit growth and the activity of yeast to produce ethanol in a noncompetitive manner. A linear kinetic pattern for growth and product formation was observed according to μ = μm (1 – P/Pm) and v = vm (1 – P/Pm′), where μm is the maximum specific growth rate at P = 0 (hr?1); Pm is the maximum specific product formation rate at P = 0 (hr?1); Pm is the maximum ethanol concentration above which cells do not grow (g/liter); Pm′ is the maximum ethanol concentration above which cells do not produce ethanol (g/liter). Substrate inhibition studies were carried out using short-time experimental techniques under aerobic and anaerobic condition. The degree of substrate inhibition was found to be higher than that has been reported for ethanol fermentation of pure sugar. The kinetic relationships thus obtained were used to compute growth, substrate utilization, and alcohol production patterns and have been discussed with reference to batch and continuous fermentation of enzymatically produced bagasse hydrolysate.  相似文献   

13.
The physiology of Aspergillus nidulans strain 224 has been studied under conditions of batch- and glucose-limited chemostat-culture and the effect of different steady state growth rates and dissolved oxygen tensions (DOT) examined. Measurements of the specific activities of selected glucose enzymes, the extent of oxygen uptake inhibition by glycolytic inhibitors, and radiorespirometric analyses were made in order to follow the variations in glucose catabolism, which occurred under these conditions. Greatly increased activity of the hexosemonophosphate (HMP) pathway was found during: (i) exponential growth of batch cultures; (ii) at near maximum specific growth rates (μ = 0.072 hr?1) (DOT = 156 mm Hg); and (iii) at low DOT levels (<30 mm Hg) (μ = 0.050 hr?1) in chemostat cultures. These changes in glucose eatabolism have been discussed in terms of the biosynthetic demands of the fungus under the influence of changing growth pressures. Preliminary studies also have been made of transition state behavior following stepwise alteration of the DOT. A new steady state was established after 4–5 culture doublings during which period an “overshoot” in HMP pathway activity occurred; these kinetics are indicative of a derepression of certain glucose enzymes. Low molecular weight phenols are synthesized during the exponential phase in batch cultures and these are further metabliized to a major secondary metabolite, melanin, at the onset of stationary phase conditions. The kinetics of tyrosinase production in steady state chemostats differs from those that might be predicted for an enzyme associated solely with secondary metabolism. A primary physiological role for this oxidase in Aspergillus nidulans has been postulated.  相似文献   

14.
15.
In order to better understand the kinetics of cellulose degradation by Thermoactinomyces sp., continuous-culture experiments were performed utilizing the various intermediates of cellulose degradation as the feed substrates. Steady-state data from the glucose runs suggest that this organism has a growth yield of 0.42 g cell/g glucose, and a specific maintenance of 0.24 g glucose/g cell/hr. The Monod equation did not seen to model the growth well, since a plot of 1/D vs. 1/S gave a maximum specific growth rate that was even lower than one of the steady-state dilution rates. A dynamic washout experiment suggested a maximum specific specific growth rate of 0.36 hr?1 and indicated that glucose is only slightly growth inhibitory as the inhibition constant, Ki, is 19 g glucose/liter. An equation for substrate concentration for washout conditions was derived. This equation predicted the transient glucose concentration relatively well. A fill-and-draw technique was investigated for determination of the growth parameters. It was not successful because of difficulties in contamination and accurately monitoring the dissolved oxygen in the small highly agitated vessel. However, the technique could be useful in studying the growth characteristics of sludge in a waste treatment system where contamination is not a worry. One could cover the medium surface and use a nonsterilizable dissolved oxygen probe of high sensitivity membrane to overcome these difficulties.  相似文献   

16.
Citric acid was produced by five species of the yeast Candida after growth on a medium containing soy biodiesel-based crude glycerol. After growth on a medium containing 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, Candida parapsilosis ATCC 7330 and C. guilliermondii ATCC 9058 produced the highest citric acid levels. On 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C, the citric acid level produced by C. parapsilosis ATCC 7330 was 1.8 g L?1 or 11.3 g L?1, respectively, while C. guilliermondii ATCC 9058 produced citric acid concentrations of 3.0 g L?1 or 10.4 g L?1, respectively. Biomass production by C. guilliermondii ATCC 9058 on 10 g L?1 or 60 g L?1 crude glycerol for 168 hr at 30°C was highest at 1.2 g L?1 or 6.9 g L?1, respectively. The citric acid yields observed for C. guilliermondii ATCC 9058 after growth on 10 g L?1 or 60 g L?1 crude glycerol (0.35 g g?1 or 0.21 g g?1, respectively) were generally higher than for the other Candida species tested. When similar crude glycerol concentrations were present in the culture medium, citric acid yields observed for some of the Candida species utilized in this study were about the same or higher compared to citric acid yields by Yarrowia lipolytica strains. Based on the findings, it appeared that C. guilliermondii ATCC 9058 was the most effective species utilized, with its citric acid production being similar to what has been observed when citric acid-producing strains of Y. lipolytica were grown on crude glycerol under batch conditions that could be of significance to biobased citric acid production.  相似文献   

17.
Formaldehyde production was investigated with cells of a mutant, AOU-1, of a methanol yeast, Candida boidinii S2 grown in methanol-limited chemostat culture. The highest productivity was shown with cells from the culture at a dilution rate of 0.075 hr-1, when cells had the highest activity of alcohol oxidase and almost minimum activity of formaldehyde dehydrogenase. Under optimal reaction conditions, 950 mm formaldehyde was produced in 10-hr reaction with the cells. By the chemostat culture, not only formaldehyde productivity but also cell productivity was improved in comparison with batch culture. A maximum cell productivity of 0.2 g · liter-1 · hr-1 and a cell yield of 47% were obtained.  相似文献   

18.
The kinetics of the batch-wise liquid-phase oxidation of ferrous sulfate by the organism Thiobacillus ferrooxidans has been studied over a range of temperatures from 20°C to 31°C and in the presence of an abundant supply of oxygen, carbon dioxide, and other nutrients. The rate of oxidation was found to be accurately described by the equation where t = time hr, S = concentration of ferrous ions g Fe++/1., μm = maximum specific growth rate of bacteria, hr?1. Y = mass of bacteria produced per gram of iron oxidized g/g, K = saturation constant, g Fe++/l., and X = concentration of bacteria g/1. The value for the maximum specific growth rate, μm, was found to vary from 0.12 hr?1 at 20°C to 0.20 hr?1 at 31°C, while the value for the saturation constant K varied randomly between 1 and 2 g/1. A method has also been described which permitted evaluation of the relevant rate constants μm and K without direct knowledge of the bacterial population. This method was found to yield values of μm and K which agreed with values determined accurately by a statistical regression analysis of the experimental data.  相似文献   

19.
Tunisian microalgae are diverse and rarely been studied. This study reports a first investigation of thermophile Chlorophyta isolated from mats community colonizing the geothermal springs in the north of Tunisia at water temperature 60 °C. In the study, the combined effect of temperature and light intensity was investigated on the cell growth, the mother and daughter cells abundance and the extracellular polymeric substances synthesis in batch culture of the isolated species. Three levels were tested for each factor, 20, 30, 40 °C for temperature; and 20, 70, 120 μmol photons m?2 s?1 for light intensity, using full factorial design and response surface methodology. The thermophile strain was identified as a genus Graesiella and showed 99.8 % similarity with two Graesiella species: Graesiella emersonii and Graesiella vacuolata based on the 18S rDNA molecular identification. The optimal growth condition was found at 30 °C and 120 µmol photons m?2 s?1 (7 MC mL?1 day?1), with the abundance of vegetative cells (daughter cells). In contrast, the number of mother cells increased significantly as the growth decreased; consequently, the highest ratio of auto spore mother cells versus daughter cells (19.4) was obtained at 20 °C and 20 µmol photons m?2 s?1. The highest yield of EPS production (11.7 mg L?1 day?1) was recorded at the highest temperature (40 °C) and lowest light intensity (20 µmol photons m?2s?1). These results revealed how the species respond to high and low temperatures and suggest that the species should be considered as facultative thermophile.  相似文献   

20.
A kinetic analysis was made of the relationship between salicylate production from naphthalene and growth of Pseudomonas fluorescens in semicontinuous dialysis culture. The specific rates both of product formation and growth initially were increased by the diffusional withdrawal of salicylate, but subsequently were reduced to low levels despite continued salicylate removal. Productivity and growth were correlated by the Luedeking-Piret equation in an initial nondialysis period and in the early stages of dialysis fermentation, when specific growth rates exceeded. 005 hr?1. Below this level of growth at later stages of dialysis fermentation, the specific production rate was correlated only with total cell mass by a proportionality constant of .035 hr?1, which was attributed to maintenance metabolism. Maintenance accounted for about 84% of the total salicylate produced, while growth-associated metabolism accounted for the remainder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号