首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 474 毫秒
1.
Patients affected by nonketotic hyperglycinemia (NKH) usually present severe neurological symptoms and suffer from acute episodes of intractable seizures with leukoencephalopathy. Although excitotoxicity seems to be involved in the brain damage of NKH, the mechanisms underlying the neuropathology of this disease are not fully established. The objective of the present study was to investigate the in vitro effects of glycine (GLY), that accumulate at high concentrations in the brain of patients affected by this disorder, on important parameters of oxidative stress, such as lipid peroxidation (thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence) and the most important non-enzymatic antioxidant defense reduced glutathione (GSH) in cerebral cortex from 30-day-old rats. GLY significantly increased TBA-RS and chemiluminescence values, indicating that this metabolite provokes lipid oxidative damage. Furthermore, the addition of high doses of the antioxidants melatonin, trolox (soluble vitamin E) and GSH fully prevented GLY-induced increase of lipid peroxidation, indicating that free radicals were involved in this effect. GLY also decreased GSH brain concentrations, which was totally blocked by melatonin treatment. Finally, GLY significantly reduced sulfhydryl group content from a commercial GSH solution, but did not oxidize reduced cytochrome C. Our data indicate that oxidative stress elicited in vitro by GLY may possibly contribute at least in part to the pathophysiology of the neurological dysfunction in NKH.  相似文献   

2.
Despite the significant brain abnormalities, the neurotoxic mechanisms of brain injury in hypertryptophanemia are virtually unknown. In this work, it was investigated the in vitro effect of l-tryptophan on various parameters of oxidative stress, namely spontaneous chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total radical-trapping antioxidant potential (TRAP), total antioxidant reactivity (TAR) and glutathione (GSH) levels in cerebral cortex from 30-day-old rats. Tryptophan significantly increased chemiluminescence and TBA-RS measurements indicating that this amino acid induced lipid peroxidation in vitro. We also observed that tryptophan significantly decreased the brain antioxidant defenses by reducing the values of TRAP, TAR and GSH, reflecting that the overall content of antioxidants was reduced by tryptophan. Furthermore, the tryptophan-induced increase of TBA-RS was fully prevented by GSH and by combination of catalase plus superoxide dismutase, but not by the inhibitor of nitric oxide synthase N(omega)-nitro-L-arginine methyl ester (L-NAME). In case these findings also occur in human hypertryptophanemia or in other neurodegenerative diseases in which tryptophan accumulates, it is feasible that oxidative stress may be involved in the mechanism leading to the brain injury observed in patients affected by these disorders.  相似文献   

3.
Tyrosine levels are abnormally elevated in tissues and body fluids of patients with inborn errors of tyrosine metabolism. Tyrosinemia type II, which is caused by tyrosine aminotransferase deficiency, provokes eyes, skin, and central nervous system disturbances in affected patients. However, the mechanisms of brain damage are still poorly known. Considering that studies have demonstrated that oxidative stress may contribute, along with other mechanisms, to the neurological dysfunction characteristic of hypertyrosinemia, in the present study we investigated the effects of antioxidant treatment (NAC and DFX) on DNA damage and oxidative stress markers induced by chronic administration of l-tyrosine in cerebral cortex, hippocampus, and striatum of rats. The results showed elevated levels of DNA migration, and thus DNA damage, after chronic administration of l-tyrosine in all the analyzed brain areas, and that the antioxidant treatment was able to prevent DNA damage in cerebral cortex and hippocampus. However, the co-administration of NAC plus DFX did not prevent the DNA damage in the striatum. Moreover, we found a significant increase in thiobarbituric acid-reactive substances (TBA-RS) and DCFH oxidation in cerebral cortex, as well as an increase in nitrate/nitrite levels in the hippocampus and striatum. Additionally, the antioxidant treatment was able to prevent the increase in TBA-RS levels and in nitrate/nitrite levels, but not the DCFH oxidation. In conclusion, our findings suggest that reactive oxygen and nitrogen species and oxidative stress can play a role in DNA damage in this disorder. Moreover, NAC/DFX supplementation to tyrosinemia type II patients may represent a new therapeutic approach and a possible adjuvant to the current treatment of this disease.  相似文献   

4.
3-methylglutaconic (MGT), 3-methylglutaric (MGA) and occasionally 3-hydroxyisovaleric (OHIVA) acids accumulate in a group of diseases known as 3-methylglutaconic aciduria (MGTA). Although the clinical presentation of MGTA is mainly characterized by neurological symptoms, the mechanisms of brain damage in this disease are poorly known. In the present study we investigated the in vitro effect of MGT, MGA and OHIVA on various parameters of oxidative stress in cerebral cortex from young rats. Thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence were significantly increased by MGT, MGA and OHIVA, indicating that these metabolites induce lipid oxidative damage. Furthermore, the addition of melatonin, alpha-tocopherol and superoxide dismutase plus catalase fully prevented MGT-induced increase on TBA-RS, suggesting that free radicals were involved in this effect. These metabolites also provoked protein oxidative damage determined by increased carbonyl formation and sulfhydryl oxidation, but did not induce superoxide generation in submitochondrial particles. It was also verified that MGA and MGT significantly decreased the non-enzymatic antioxidant defenses in cerebral cortex supernatants and that melatonin and alpha-tocopherol totally blocked MGA-induced GSH reduction. The data indicate that the metabolites accumulating in MGTA elicit oxidative stress in vitro in the cerebral cortex. It is therefore presumed that this pathomechanism may be involved in the brain damage observed in patients affected by MGTA.  相似文献   

5.
1. Glutaric acidemia type I (GA I) is a neurometabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase, which leads to tissue accumulation of predominantly glutaric acid (GA) and also 3-hydroxyglutaric acid to a lesser amount. Affected patients usually present progressive cortical atrophy and acute striatal degeneration attributed to the toxic accumulating metabolites. 2. In the present study, we determined a number of oxidative stress parameters, namely chemiluminescence, thiobarbituric acid-reactive substances (TBA-RS), total antioxidant reactivity (TAR), glutathione (GSH) levels, and the activities of catalase and glutathione peroxidase (GPx), in various tissues from rats chronically exposed to GA or to saline (controls). High GA concentrations, similar to those found in glutaric aciduria type I, were induced in the brain by three daily subcutaneous injections of saline-buffered GA (5 μmol/g body weight) to Wistar rats of 5–22 days of life. The parameters were assessed 12 h after the last GA administration in different brain structures, skeletal muscle, heart, liver, erythrocytes, and plasma. The lipid peroxidation parameters chemiluminescence and/or TBA-RS measurements were found significantly increased in midbrain, liver, and erythrocytes of GA-injected rats. The activity of GPx was significantly reduced in midbrain and markedly increased in liver. TAR measurement was significantly reduced in midbrain and liver. Furthermore, GSH levels were reduced in liver and heart. We also investigated the acute in vivo effect of GA administration on the same oxidative stress parameters in cerebral structures and erythrocytes from 22-day-old rats. We found that TBA-RS values were significantly increased in erythrocytes, TAR levels were markedly decreased in midbrain and cerebellum, and GPx activity mildly reduced in the midbrain. 3. These data showing an imbalance between antioxidant defences and oxidative damage, particularly in midbrain, liver, and erythrocytes from GA-injected rats, indicate that oxidative stress might be involved in GA toxicity and that the midbrain, where the striatum is located, is the brain structure more susceptible to GA chronic and acute exposition.  相似文献   

6.
Phenylketonuria (PKU) is an autossomal recessive disease caused by phenylalanine-4-hydroxylase deficiency, which is a liver-specific enzyme that catalyzes the hydroxylation of l-phenylalanine (Phe) to l-tyrosine (Tyr). The deficiency of this enzyme leads to the accumulation of Phe in the tissues and plasma of patients. The clinical characterization of this disease is mental retardation and other neurological features. The mechanisms of brain damage are poorly understood. Oxidative stress is observed in some inborn errors of intermediary metabolism owing to the accumulation of toxic metabolites leading to excessive free radical production and may be a result of restricted diets on the antioxidant status. In the present study we evaluated various oxidative stress parameters, namely thiobarbituric acid-reactive species (TBA-RS) and total antioxidant reactivity (TAR) in the plasma of PKU patients. The activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were also measured in erythrocytes from these patients. It was observed that phenylketonuric patients present a significant increase of plasma TBA-RS measurement, indicating a stimulation of lipoperoxidation, as well as a decrease of plasma TAR, reflecting a deficient capacity to rapidly handle an increase of reactive species. The results also showed a decrease of erythrocyte GSH-Px activity. Therefore, it is presumed that oxidative stress is involved in the pathophysiology of the tissue damage found in PKU.  相似文献   

7.
《Free radical research》2013,47(9):1076-1081
Abstract

Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

8.
Binge alcohol consumption in adolescents is increasing, and it has been proposed that immature brain deals poorly with oxidative stress. The aim of our work was to study the effect of an acute dose of ethanol on glutathione (GSH) metabolism in frontal cortex, hippocampus and striatum of juvenile and adult rats. We have observed no change in levels of glutathione produced by acute alcohol in the three brain areas studied of juvenile and adult rats. Only in the frontal cortex the ratio of GSH/GSSG was increased in the ethanol-treated adult rats. GSH levels in the hippocampus and striatum were significantly higher in adult animals compared to young ones. Higher glutathione peroxidase (GPx) activity in adult rats was observed in frontal cortex and in striatum. Our data show an increased GSH concentration and GPx activity in different cerebral regions of the adult rat, compared to the young ones, suggesting that age-related variations of total antioxidant defences in brain may predispose young brain structures to ethanol-induced, oxidative stress-mediated tissue damage.  相似文献   

9.
The present work investigated the in vitro effects of isovaleric acid (IVA) and isovalerylglycine (IVG), which accumulate in isovaleric acidemia (IVAcidemia), on important parameters of oxidative stress in supernatants and mitochondrial preparations from brain of 30-day-old rats. IVG, but not IVA, significantly increased TBA-RS and chemiluminescence values in cortical supernatants. Furthermore, the addition of free radical scavengers fully prevented IVG-induced increase of TBA-RS. IVG also decreased GSH concentrations, whereas IVA did not modify this parameter in brain supernatants. Furthermore, IVG did not alter lipid peroxidation or GSH concentrations in mitochondrial preparations, indicating that the generation of oxidants by IVG was dependent on cytosolic mechanisms. On the other hand, IVA significantly induced carbonyl formation both in supernatants and purified mitochondrial preparations from rat brain, with no effect observed for IVG. Therefore, it is presumed that oxidative damage may be at least in part involved in the pathophysiology of the neuropathology of IVAcidemia.  相似文献   

10.
Lycopene attenuates diabetes-associated cognitive decline in rats   总被引:2,自引:0,他引:2  
Kuhad A  Sethi R  Chopra K 《Life sciences》2008,83(3-4):128-134
Diabetes-induced learning and memory impairment, characterized by impaired cognitive functions and neurochemical and structural abnormalities, involve direct neuronal damage caused by intracellular glucose. The present study was designed to investigate the effect of lycopene, a potent anti-oxidant and anti-inflammatory molecule, on cognitive functions, oxidative stress and inflammation in streptozotocin (STZ)-induced diabetic rats. Cognitive functions were investigated using a spatial version of the Morris water maze test. Acetylcholinesterase activity, a marker of cholinergic dysfunction, was increased by 1.8 fold in the cerebral cortex of diabetic rats. There was about 2 fold and 2.2 fold rise in thiobarbituric acid-reactive substance levels in cerebral cortex and hippocampus of diabetic rats, respectively. Non-protein thiol levels and enzymatic activities of superoxide dismutase and catalase were decreased in both cerebral cortex and hippocampal regions of diabetic rat brain. Total nitric oxide levels in cerebral cortex and hippocampus was increased by 2.4 fold and 2 fold respectively. Serum tumor necrosis factor-alpha, an inflammatory marker, was found to increase by 8 fold in diabetic rats. Chronic treatment with lycopene (1, 2 and 4 mg/kg; p.o.) significantly and dose dependently attenuated cognitive deficit, increased acetylcholinesterase activity, oxidative-nitrosative stress and inflammation in diabetic rats. The results emphasize the involvement of oxidative-nitrosative stress and peripheral inflammation in the development of cognitive impairment in diabetic animals and point towards the therapeutic potential of lycopene in diabetes-induced learning and memory impairment.  相似文献   

11.
We studied the role of oxidative stress and the effect of vinpocetine (1.5, 3 or 6 mg/kg) and piracetam (150 or 300 mg/kg) in acute demyelination of the rat brain following intracerebral injection of ethidium bromide (10 μl of 0.1%). Results: ethidium bromide caused (1) increased malondialdehyde (MDA) in cortex, hippocampus and striatum; (2) decreased total antioxidant capacity (TAC) in cortex, hippocampus and striatum; (3) decreased reduced glutathione (GSH) in cortex and hippocampus (4); increased serum nitric oxide and (5) increased striatal (but not cortical or hippocampal) acetylcholinesterase (AChE) activity. MDA decreased in striatum and cortex by the lower doses of vinpocetine or piracetam but increased in cortex and hippocampus and in cortex, hypothalamus and striatum by the higher dose of vinpocetine or piracetam, respectively along with decreased TAC. GSH increased by the higher dose of piracetam and by vinpocetine which also decreased serum nitric oxide. Vinpocetine and piracetam displayed variable effects on regional AChE activity.  相似文献   

12.
The present work investigated the in vitro effects of isovaleric acid (IVA) and isovalerylglycine (IVG), which accumulate in isovaleric acidemia (IVAcidemia), on important parameters of oxidative stress in supernatants and mitochondrial preparations from brain of 30-day-old rats. IVG, but not IVA, significantly increased TBA-RS and chemiluminescence values in cortical supernatants. Furthermore, the addition of free radical scavengers fully prevented IVG-induced increase of TBA-RS. IVG also decreased GSH concentrations, whereas IVA did not modify this parameter in brain supernatants. Furthermore, IVG did not alter lipid peroxidation or GSH concentrations in mitochondrial preparations, indicating that the generation of oxidants by IVG was dependent on cytosolic mechanisms. On the other hand, IVA significantly induced carbonyl formation both in supernatants and purified mitochondrial preparations from rat brain, with no effect observed for IVG. Therefore, it is presumed that oxidative damage may be at least in part involved in the pathophysiology of the neuropathology of IVAcidemia.  相似文献   

13.
Hereditary fructose intolerance is an autosomal recessive disorder characterized by the accumulation of fructose in tissues and biological fluids of patients. The disease results from a deficiency of aldolase B, responsible for metabolizing fructose in the liver, kidney, and small intestine. We investigated the effect of acute fructose administration on oxidative stress and neuroinflammatory parameters in the cerebral cortex of 30-day-old Wistar rats. Animals received subcutaneous injection of sodium chloride (0.9 %) (control group) or fructose solution (5 μmol/g) (fructose group). One hour later, the animals were euthanized and the cerebral cortex was isolated. Oxidative stress (levels of thiobarbituric acid-reactive substances (TBA-RS), carbonyl content, nitrate and nitrite levels, 2′,7′-dihydrodichlorofluorescein (DCFH) oxidation, glutathione (GSH) levels, as well as the activities of catalase (CAT) and superoxide dismutase (SOD)) and neuroinflammatory parameters (TNF-α, IL-1β, and IL-6 levels and myeloperoxidase (MPO) activity) were investigated. Acute fructose administration increased levels of TBA-RS and carbonyl content, indicating lipid peroxidation and protein damage. Furthermore, SOD activity increased, whereas CAT activity was decreased. The levels of GSH, nitrate, and nitrite and DCFH oxidation were not altered by acute fructose administration. Finally, cytokines IL-1β, IL-6, and TNF-α levels, as well as MPO activity, were not altered. Our present data indicate that fructose provokes oxidative stress in the cerebral cortex, which induces oxidation of lipids and proteins and changes of CAT and SOD activities. It seems therefore reasonable to propose that antioxidants may serve as an adjuvant therapy to diets or to other pharmacological agents used for these patients, to avoid oxidative damage to the brain.  相似文献   

14.
We investigated the in vitro effect of 3-hydroxykynurenine (3HKyn), 3-hydroxyanthranilic acid (3HAA), kynurenine (Kyn) and anthranilic acid (AA) on various parameters of oxidative stress in rat cerebral cortex and in cultured C6 glioma cells. It was demonstrated that 3HKyn and 3HAA significantly reduced the thiobarbituric acid-reactive substances (TBA-RS) and chemiluminescence measurements in rat cerebral cortex, indicating that these metabolites prevent lipid peroxidation in the brain. In addition, GSH spontaneous oxidation was significantly prevented by 3HAA, but not by the other kynurenines in cerebral cortex. We also verified that 3HKyn and 3HAA significantly decreased the peroxyl radicals induced by the thermolysis of 2,2'-azo-bis-(2-amidinopropane)-derived peroxyl radicals, and to a higher degree than the classical peroxyl scavenger trolox. 2-Deoxy-d-ribose degradation was also significantly prevented by 3HKyn, implying that this metabolite was able to scavenge hydroxyl radicals. Furthermore, the total antioxidant reactivity of C6 glioma cells was significantly increased when these cells were exposed from 1 to 48h to 3HKyn, being the effect more prominent at shorter incubation times. TBA-RS values in C6 cells were significantly reduced by 3HKyn when exposed from 1 to 6h with this kynurenine. However, C6 cell morphology was not altered by 3HKyn. Finally, we tested whether 3HKyn could prevent the increased free radical production induced by glutaric acid (GA), the major metabolite accumulating in glutaric acidemia type I, by evaluating the isolated and combined effects of these compounds on TBA-RS levels and 2',7'-dihydrodichlorofluorescein (DCFH) oxidation in rat brain. GA provoked a significant increase of TBA-RS values and of DCFH oxidation, effects that were attenuated and fully prevented, respectively, by 3HKyn. The results strongly indicate that 3HKyn and 3HAA behave as antioxidants in cerebral cortex and C6 glioma cells from rats.  相似文献   

15.
Hepatic Encephalopathy (HE) is one of the most common complications of acute liver diseases and is known to have profound influence on the brain. Most of the studies, available from the literature are pertaining to whole brain homogenates or mitochondria. Since brain is highly heterogeneous with functions localized in specific areas, the present study was aimed to assess the oxidative stress in different regions of brain-cerebral cortex, cerebellum and pons medulla during acute HE. Acute liver failure was induced in 3-month old adult male Wistar rats by intraperitoneal injection of thioacetamide (300 mg/kg body weight for two days), a well known hepatotoxin. Oxidative stress conditions were assessed by free radical production, lipid peroxidation, nitric oxide levels, GSH/GSSG ratio and antioxidant enzyme machinery in three distinct structures of rat brain-cerebral cortex, cerebellum and pons medulla. Results of the present study indicate a significant increase in malondialdehyde (MDA) levels, reactive oxygen species (ROS), total nitric oxide levels [(NO) estimated by measuring (nitrites + nitrates)] and a decrease in GSH/GSSG ratio in all the regions of brain. There was also a marked decrease in the activity of the antioxidant enzymes-glutathione peroxidase, glutathione reductase and catalase while the super oxide dismutase activity (SOD) increased. However, the present study also revealed that pons medulla and cerebral cortex were more susceptible to oxidative stress than cerebellum. The increased vulnerability to oxidative stress in pons medulla could be due to the increased NO levels and increased activity of SOD and decreased glutathione peroxidase and glutathione reductase activities. In summary, the present study revealed that oxidative stress prevails in different cerebral regions analyzed during thioacetamide-induced acute liver failure with more pronounced effects on pons medulla and cerebral cortex. Murthy Ch.R.K—Deceased while in service.  相似文献   

16.
Histidinemia is an inherited metabolic disorder biochemically characterized by high concentrations of histidine in biological fluids. Usually affected patients are asymptomatic although some individuals have mental retardation and speech disorders. Considering the high prevalence of histidinemia and the scarce information on the effects of maternal histidinemia on their progeny, we investigated various parameters of oxidative stress in brain cortex and hippocampus of the offspring from female rats that received histidine (0.5 mg/g of body weight) in the course of pregnancy and lactation. At 21 days of age we found a significant increase of thiobarbituric acid reactive substances (TBARS), 2′,7′-dihydrodichlorofluorescein oxidation, superoxide dismutase (SOD) activity, catalase (CAT) activity, total sulfhydryls and glutathione (GSH) content in cerebral cortex and hippocampus. We also verified that at 60 days of age, GSH, SOD and total sulfhydryls returned to normal levels in brain cortex, while the other parameters decreased in the same structure. In the hippocampus, at 60 days of age GSH returned to normal levels, CAT persisted elevated and the other parameters decreased. These results indicate that histidine administration to female rats can induce oxidative stress in the brain from the offspring, which partially recovers 40 days after breastfeeding stopped.  相似文献   

17.
Chronic oxidative stress plays an important role in depression. The aim of present study was to examine the stress-induced changes in serum corticosterone (CORT) levels, cytosolic protein carbonyl groups, malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO) and total superoxide dismutase (SOD) activity in the prefrontal cortex versus hippocampus of male Wistar rats exposed to acute (2 h of immobilization or cold), chronic (21d of social isolation) stress, and their combination (chronic + acute stress). The subcellular distribution of nuclear factor-κB (NF-κB) and cytosolic cyclooxygenase 2 (COX-2) protein expressions were also examined. Depressive- and anxiety-like behaviors were assessed via the forced swim, sucrose preference, and marble burying tests in chronically isolated rats. Although both acute stressors resulted in elevated CORT, increased MDA in the prefrontal cortex and NF-κB activation accompanied by increased NO in the hippocampus were detected only following acute cold stress. Chronic isolation resulted in no change in CORT levels, but disabled appropriate response to novel acute stress and led to depressive- and anxiety-like behaviors. Increased oxidative/nitrosative stress markers, likely by NF-κB nuclear translocation and concomitant COX-2 upregulation, associated with decreased SOD activity and GSH levels, suggested the existence of oxidative stress in the prefrontal cortex. In contrast, hippocampus was less susceptible to oxidative damage showing only increase in protein carbonyl groups and depleted GSH. Taken together, the prefrontal cortex seems to be more sensitive to oxidative stress than the hippocampus following chronic isolation stress, which may be relevant for further research related to stress-induced depressive-like behavior.  相似文献   

18.
Phenylketonuria (PKU) is biochemically characterized by the accumulation of phenylalanine (Phe) and its metabolites in tissues of affected children. Neurological damage is the clinical hallmark of PKU, and Phe is considered the main neurotoxic metabolite in this disorder. However, the mechanisms of neurotoxicity are poorly known. The main objective of the present work was to measure the activities of the mitochondrial respiratory chain complexes (RCC) and succinate dehydrogenase (SDH) in brain cortex of Wistar rats subjected to chemically induced hyperphenylalaninemia (HPA). We also investigated the in vitro effect of Phe on SDH and RCC activities in the cerebral cortex of 22-day-old rats. HPA was induced by subcutaneous administration of 2.4 mol/g body weight -methylphenylalanine, a phenylalanine hydroxylase inhibitor, once a day, plus 5.2 M/g body weight phenylalanine, twice a day, from the 6th-21st postnatal day. The results showed a reduction of SDH and complex I + III activity in brain cortex of rats subjected to HPA. We also verified that Phe inhibited the in vitro activity of complexes I + III, possibly by competition with NADH. Considering the importance of SDH and RCC for the maintenance of energy supply to brain, our results suggest that energy deficit may contribute to the Phe neurotoxicity in PKU.  相似文献   

19.
We previously reported that inhibition of Rho-kinase (ROCK) by hydroxyl fasudil improves cognitive deficit and neuronal damage in rats with chronic cerebral ischemia (Huang et al., Cell Mol Neurobiol 28:757–768, 2008). In this study, fasudil mesylate (FM) was investigated for its neuroprotective potential in rats with ischemia following middle cerebral artery occlusion (MCAO) and reperfusion. The effect of fasudil mesylate was also studied in rat brain cortical and hippocampal slices treated with oxygen-glucose deprivation (OGD) injury. Gross anatomy showed that cerebral infarct size, measured with 2,3,5-triphenyltetrazolium chloride (TTC) staining, was significantly smaller in the FM-treated than in the non-FM-treated ischemic rats. In the brain regions vulnerable to ischemia of ischemic rats, fasudil mesylate was also found to significantly restore the enzyme protein expression level of endothelial nitric oxide synthase (eNOS), which was decreased in ischemia. However, it remarkably reduced the protein synthesis of inducible nitric oxide synthase (iNOS) that was induced by ischemia and reperfusion. In rat brain slices treated with OGD injury, fasudil mesylate increased the neuronal cell viability by 40% for cortex and by 61% for hippocampus, respectively. Finally, in the presence of OGD and fasudil mesylate, superoxide dismutase (SOD) activity was increased by 50% for cortex and by 58% for hippocampus, compared to OGD only group. In conclusion, our in vivo study showed that fasudil mesylate not only decreased neurological deficit but also reduced cerebral infarct size, possibly and at least partially by augmenting eNOS protein expression and inhibiting iNOS protein expression after ischemia-reperfusion. Xian-Ju Huang contributed equally to this article.  相似文献   

20.
Owing to its lipophilic property, carbon tetrachloride (CCl4) is rapidly absorbed by both the liver and brain. We investigated the protective effects of crocin against brain damage caused by CCl4. Fifty rats were divided into five groups of ten: control, corn oil, crocin, CCl4 and CCl4 + crocin. CCl4 administration decreased glutathione (GSH) and total antioxidant status (TAS) levels, and catalase (CAT) activity, while significant increases were observed in malondialdehyde (MDA) and total oxidant status (TOS) levels and superoxide dismutase (SOD) activity. The cerebral cortex nuclear lamina developed a spongy appearance, neuronal degeneration was observed in the hippocampus, and heterochromatic and pyknotic neurons with increased cytoplasmic eosinophilia were observed in the hippocampus after CCl4 treatment. Because crocin exhibits strong antioxidant properties, crocin treatment increased GSH and TAS levels and CAT activities, and decreased MDA and TOS levels and SOD activity; significant improvements also were observed in histologic architecture. We found that crocin administration nearly eliminated CCl4 induced brain damage by preventing oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号