首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
藜芦碱和乌头碱在受损背根节神经元诱发不同的放电模式   总被引:4,自引:0,他引:4  
Duan JH  Xing JL  Yang J  Hu SJ 《生理学报》2005,57(2):169-174
为了研究钠通道失活门阻断后受损背根节神经元放电模式的变化特征,在大鼠背根节慢性压迫模型上采用单纤维技术记录A类神经元的自发放电。藜芦碱和乌头碱是钠通道失活门的抑制剂,但二者作用于不同的位点,前者结合于D2-S6,后者结合于D3-S6。我们比较了这两种试剂引发的放电模式。结果发现,在同一神经元,藜芦碱(1.5~5.0μmol/L)可以引起放电峰峰间期的慢波振荡,即峰峰间期由大逐渐减小,然后又逐渐增大,形成重复的振荡波形,每个振荡持续约数十秒至数分钟:而乌头碱(10~200μmol/L)则引起强直性放电,即峰峰间期逐渐减小,然后维持在一个稳定的水平。这两种不同的放电模式不因背景放电或试剂浓度的不同而发生明显的改变。实验结果表明,藜芦碱和乌头碱在受损的背根节神经元可以引发不同的放电模式,这可能与它们结合于钠通道上不同位点的抑制作用有关。  相似文献   

2.
为了研究受损背根节神经元的放电型式与其对钾离子通道阻断剂四乙基胺(tetraethylammonium,TEA)反应敏感性的关系,在大鼠背根节慢性压迫模型上记录单纤维自发放电。这些自发放电有周期和非周期两种型式,TEA(2mmol/L)分别引起27.3%的周期放电神经元和93.2%的非周期放电神经元 放电增加(P〈0.01)。非周期放电神经元对不同浓度的TEA的反应均比周期放电神经元大(P〈0.0  相似文献   

3.
藜芦碱致使大鼠背根神经节A类神经元产生触发性振荡   总被引:4,自引:0,他引:4  
Duan JH  Duan YB  Xing JL  Hu SJ 《生理学报》2002,54(3):208-212
在大鼠L5背根节浸浴钠通道失活门阻断剂藜芦碱(veratridine),记录该背根节神经元A类单纤维传入放电。发现:浸浴藜芦碱(1.8-3μmol/L)10min后,触压皮肤感受野或刺激坐骨神经引起部分静息纤维产生高频放电,其放电峰峰间期(interspike interval,ISI)形成U字形等型式的振荡,称之为触发性振荡。刺激脉冲的间隔越大,触发该振荡所需要的刺激脉冲数也就越多;不同时程和形式的刺激引起触发性振荡的形式无明显差异;触发性振荡的后抑制时期一般为30-90s。另外,实验还观察到该触发性振荡可由同一神经刺激引起的传入冲动触发。上述结果表明,用黎芦碱处理可使初级感觉神经元产生一种触发性振荡,该振荡机制可能与触发病的发作有关。  相似文献   

4.
目的:检测脊神经切断大鼠背根节(DRG)神经元重复放电能力和钠电流的变化,并研究介导其电流变化的钠通道亚型的表达情况。方法:脊神经切断术后2~8d慢性痛大鼠模型背根节急性分离,对中等直径DRG神经元运用全细胞膜片钳技术记录神经元放电和钠电流的变化。对背根节神经元进行RT-PCR检测,分析其钠通道亚型的表达情况。结果:电流钳下,实验组DRG神经元在电流刺激下产生重复放电,而对照组神经元多诱发单个动作电位,电压钳记录发现实验组背根节神经元快钠电流和持续性钠电流幅值均明显大于对照组,PCR结果显示,Nav1.3、Nav1.7和Nav1.8通道亚型mRNA表达显著增高。结论:钠通道介导了脊神经受损模型的DRG神经元兴奋性增高,持续性钠电流可能通过调节阈下膜电位振荡的产生调节神经元兴奋性。  相似文献   

5.
目的:检测脊神经切断大鼠背根节(DRG)神经元重复放电能力和钠电流的变化,并研究介导其电流变化的钠通道亚型的表达情况。方法:脊神经切断术后2~8d慢性痛大鼠模型背根节急性分离,对中等直径DRG神经元运用全细胞膜片钳技术记录神经元放电和钠电流的变化。对背根节神经元进行RT-PCR检测,分析其钠通道亚型的表达情况。结果:电流钳下,实验组DRG神经元在电流刺激下产生重复放电,而对照组神经元多诱发单个动作电位,电压钳记录发现实验组背根节神经元快钠电流和持续性钠电流幅值均明显大于对照组,PCR结果显示,Nav1.3、Nav1.7和Nav1.8通道亚型mRNA表达显著增高。结论:钠通道介导了脊神经受损模型的DRG神经元兴奋性增高,持续性钠电流可能通过调节阈下膜电位振荡的产生调节神经元兴奋性。  相似文献   

6.
Long KP  Hu SJ  Duan YB  Xu H 《生理学报》1999,51(5):481-487
本文记录了大鼠损伤背根节神经元的自发放电活动。采用背根节慢性压迫动物模型,记录慢性压迫手术后3-10d背根节的自发放电。在记录的156根纤维中,观察到17根(占11A%)出现的动作电位峰峰间期以某一基础间期的整数倍模式出现的整数倍时间节律形式,其回归映射图为晶格状点阵结构,并且该时间形式受细胞膜上钠,钾通道的调控。  相似文献   

7.
海马CA1区ripple节律相关高频放电中间神经元   总被引:1,自引:0,他引:1  
通过在清醒小(Mus musculus)大脑同步记录海马区单神经元放电和场电位,发现在海马CAl区存在两类-9慢波睡眠时海马特征场电位“ripple”高频振荡(100-250Hz)相关的高频放电中间神经元.这两类神经元在慢波睡眠时的放电与ripple在时间上有高度同步性,对应每个ripple振荡波,它们都有一串高频放电.其中一类中间神经元(类型Ⅰ)在一个ripple振荡波的每个子振荡周期基本有1个放电,而另一类中间神经元(类型Ⅱ)则有1-2个放电.在ripple振荡波时段,这两类中间神经元的峰值放电频率分别高达310±33.17Hz(类型Ⅰ)和410±47.61Hz(类型Ⅱ).动物清醒活动时,这两类中间神经元的放电与海马场电位的theta节律有锁相关系,它们的最大放电概率在theta节律的波谷段.给予动物摇晃刺激时,这两类中间神经元的放电频率均会短促增加.这些研究结果显示,海马CAl区的这种高频放电中间神经元参与调节海马神经元网络的整体活动状态.  相似文献   

8.
在大鼠受损坐骨神经上由藜芦碱诱发的抛物线簇放电   总被引:5,自引:0,他引:5  
在大鼠受损坐骨神经上加入 5 μmol L藜芦碱溶液 ,观察到了抛物线簇放电的现象。根据Plant模型 ,发生抛物线簇放电的前提条件必须有两个慢变量所支配的慢振荡过程。结合实验模型 ,从离子通道活动的角度揭示了抛物线簇放电发生的生物物理机制。由藜芦碱诱发的慢变钠内流和钙依赖钾外流被认为是引发实验所观察到的抛物线簇放电的两个慢变量。进而阐明了藜芦碱引起这一放电形式所起的作用 ,即抑制钠通道失活引发慢变钠内流。这种利用非线性动力学理论的分析方法可能会为分析药物的药物动力学提供一种新的途径。  相似文献   

9.
损伤神经元自发放电的整数倍节律及其动力学机制   总被引:3,自引:3,他引:0  
实验采用大鼠背根节慢性压迫动物模型,记录术后3~10天背根节的自发放电,在156根纤维中观察到17根(11%)出现的动作电位峰峰间期以某一基础间期的整数倍出现的时间节律形式,其回归映射图为晶格状点阵结构。同时观察到Na^+通道特异阻剂TTX和K^+通道阻断剂4-AP能对整数倍放电节律产生影响。结果表明,看似不规则的整倍数放电时间序列是有着内在的结构和规律性的, 膜上通道和环境的状态决定。建立针对本  相似文献   

10.
缓激肽对背根节神经元钠通道电流的作用   总被引:1,自引:0,他引:1  
目的:观察缓激肽(bradykinin,BK)对大鼠背根节神经元电压依赖性钠通道电流的作用。方法:采用全细胞膜片钳技术,记录钠通道电流。结果:缓激肽剂量依赖性(0.01~10μmol/L)增高小细胞背根节神经元诱发放电频率;缓激肽剂量依赖性(O.01~10μmol/L)增加小细胞背根节神经元的河豚毒素不敏感(TTX—resistant,TTX—R)钠电流,对TTX敏感(TTX—sensitive,TTX-S)钠电流无明显影响。结论:缓激肽引起炎性痛的机制可能与TTX-R钠通道电流有关。  相似文献   

11.
The treatment of neuropathic pain remains a major challenge to pain clinicians. Certain nociceptive and non-nociceptive dorsal root ganglion (DRG) neurons may develop abnormal spontaneous activities following peripheral nerve injury, which is believed to be a major contributor to chronic pain. Subthreshold membrane potential oscillation (SMPO) observed in injured DRG neurons was reported to be involved in the generation of abnormal spontaneous activity. Tetrodotoxin-sensitive sodium (Na+) channels were testified to be involved in the generation of SMPO, but their specific subunits have not been clarified. We hypothesize that the subunits of voltage-gated sodium channel, Nav1.3 and Nav1.6, are involved in the generation of SMPO. An attempt to test this hypothesis may lead to a new therapeutic strategy for neuropathic pain.  相似文献   

12.
The existence of three distinct types of proton-gated sodium currents classified in accordance with their kinetics of desensitization as fast, medium and slow, has been confirmed in the present study on isolated rat trigeminal ganglion neurons. The emphasis was put on the investigation of a peculiar medium type of a chemically gated channel population, using the concentration jump method. The features of the medium-type mechanism allow to distinguish it from the other already known types: it was insensitive to the Ca antagonist verapamil (in contrast to proton-gated sodium current found in dorsal root ganglion neurons), displayed a strong dependence of the kinetics of desensitization on the membrane potential, and (besides the apparent proton-gating) was activated and desensitized by the application of ammonia containing solution at normal pH values. The effect of ammonia itself appeared to be a good tool for the separation of fast and slow proton-gated responses. The results obtained allow to postulate a nonspecific proton-activation of medium-type receptor-channel complexes and their specificity to ammonia (Kd = 10(-4) mol/l) as an agonist.  相似文献   

13.
The actions of serotonin on frog primary afferent terminals and cell bodies   总被引:1,自引:0,他引:1  
The actions of serotonin (5-HT) were studied in the isolated frog spinal cord and dorsal root ganglion preparations. In the spinal cord, 5-HT increased the spontaneous activity recorded from dorsal roots, facilitated evoked spinal reflexes and produced fast and slow primary afferent depolarization (PAD). A direct action of 5-HT on primary afferent terminals is likely since 5-HT induced PAD remained in the presence of 1 microM tetrodotoxin and 2 mM Mn2+. The direct action of 5-HT on primary afferent terminals was blocked by methysergide and attenuated by concentrations of Mn2+ in excess of that required to block transmitter release. Cell bodies of the dorsal root ganglion were also depolarized by 5-HT. A slow hyperpolarization occasionally followed the initial depolarization. The depolarizing action of 5-HT in the dorsal root ganglion was also attenuated by treatment with Mn2+. It is concluded that 5-HT acts directly on frog primary afferents and that this influence may involve a calcium sensitive process. The dorsal root ganglion response to 5-HT appears to be a suitable model of the afferent terminal response.  相似文献   

14.
Wang YY  Wen ZH  Duan JH  Zhu JL  Wang WT  Dong H  Li HM  Gao GD  Xing JL  Hu SJ 《Neuro-Signals》2011,19(1):54-62
Noise can play a constructive role in the detection of weak signals in various kinds of peripheral receptors and neurons. What the mechanism underlying the effect of noise is remains unclear. Here, the perforated patch-clamp technique was used on isolated cells from chronic compression of the dorsal root ganglion (DRG) model. Our data provided new insight indicating that, under conditions without external signals, noise can enhance subthreshold oscillations, which was observed in a certain type of neurons with high-frequency (20-100 Hz) intrinsic resonance from injured DRG neurons. The occurrence of subthreshold oscillation considerably decreased the threshold potential for generating repetitive firing. The above effects of noise can be abolished by blocking the persistent sodium current (I(Na, P)). Utilizing a mathematical neuron model we further simulated the effect of noise on subthreshold oscillation and firing, and also found that noise can enhance the electrical activity through autonomous stochastic resonance. Accordingly, we propose a new concept of the effects of noise on neural intrinsic activity, which suggests that noise may be an important factor for modulating the excitability of neurons and generation of chronic pain signals.  相似文献   

15.
The nociceptive C-fibers of the dorsal root ganglion express several sodium channel isoforms that associate with one or more regulatory beta-subunits (beta1-beta4). To determine the effects of individual and combinations of the beta-subunit isoforms, we co-expressed Nav1.8 in combination with these beta-subunits in Xenopus oocytes. Whole-cell inward sodium currents were recorded using the two-microelectrode voltage clamp method. Our studies revealed that the co-expression beta1 alone or in combination with other beta-subunits enhanced current amplitudes, accelerated current decay kinetics, and negatively shifted the steady-state curves. In contrast, beta2 alone and in combination with beta1 altered steady-state inactivation of Nav1.8 to more depolarized potentials. Co-expression of beta3 shifted steady-state inactivation to more depolarized potentials; however, combined beta1beta3 expression caused no shift in channel availability. The results in this study suggest that the functional behavior of Nav1.8 will vary depending on the type of beta-subunit that expressed under normal and disease states.  相似文献   

16.
Among the three clusters of dorsal unpaired median neurons of the Periplaneta americana terminal abdominal ganglion, another type of neuron has been characterized by anterograde cobalt stainings and microelectrode technique. These neurons are bilaterally distributed in the ganglion. Their axons ipsilaterally exit the ganglion via the anterior proctodeal nerves, to innervate the proctodeum. They are characterized by a long-duration overshooting action potentials and a low firing frequency. Most often the depolarizing phase is composed of two peaks: a fast spike followed by a slow phase. Tetrodotoxin suppressed the fast peak and blocked the spontaneous activity suggesting that sodium channels are involved in the depolarizing phase as well as in the initiation of the action potential. Calcium channel blockers induced a disappearing of the slow depolarizing phase indicating the participation of calcium ions and a reduction of the afterhyperpolarization reflecting the participation of calcium-activated potassium channels. Furthermore, cadmium, as lanthanum or barium, induced a long-lasting plateau potential, which would be due to a persistent sodium conductance. Tetraethylammonium increased the duration of the action potential indicating that potassium channels are implicated in the falling phase. The results demonstrate that these neurons are different from other cells, especially dorsal unpaired median neurons, of the central nervous system of the cockroach.Abbreviations DUM dorsal unpaired median - SDP slow depolarizing phase - AP action potential - PAP plateau action potential - TAG terminal abdominal ganglion - CNS central nervous system  相似文献   

17.
Dorsal root potentials (DRPs) were recorded by a sucrose gap method in experiments on parasagittal slices of the isolated rat spinal cord. In most cases the DRP consisted of fast and slow waves. The fast wave of DRP was inhibited by the GABA antagonist picrotoxin and the blocker of GABA-activated chloride channels, furosemide, but it was potentiated by pentobarbital sodium. The slow wave of DRP disappeared if the extracellular K+ concentration was raised to 10 mM and it was depressed by tetraethylammonium and 4-aminopyridine, blockers of electrically excitable potassium channels. It is concluded that the fast wave of DRP and the initial components of the slow wave of DRP are GABA-ergic in origin; the slow wave of DRP, however, is linked with an increase in extracellular K+ concentration near the primary afferent terminals. The possible mechanisms of the increase in extracellular K+ concentration during dorsal root stimulation are discussed.A. M. Gor'kii Donetsk Medical Institute. Translated from Neirofiziologiya, Vol. 16, No. 6, pp. 796–800, November–December, 1984.  相似文献   

18.
Tandrup  T. 《Brain Cell Biology》2002,31(1):73-78
To test the hypothesis that a somatofugal wave of atrophy moving distally in the axon of primary sensory neurons leads to loss of myelinated nerve fibers in acrylamide neuropathy, rats (N = 18) were intoxicated with an initial dose of 75 mg acrylamide per kg body weight followed by daily treatment with 30 mg/kg for three, six and 12 days. Ten age matched saline treated rats served as controls. Numbers and mean volumes of A- and B-cell perikarya of the L5 dorsal root ganglion, numbers of myelinated axons and the mean cross sectional myelinated axon area 3 and 18 mm from the ganglion in the dorsal root and in the sural nerve were estimated using stereological techniques. After three days no changes in the number or size of primary sensory perikarya or myelinated axons were observed. However, after six days 11% of the A-cell perikarya showed signs of chromatolysis (P < 0.001). After 12 days the rats showed signs of ataxia and 23% (P < 0.001) of A-cell perikarya were chromatolytic. There was a tendency for atrophy of the mean perikaryal volume of A-cells (2P = 0.059). The size-frequency distributions of axonal area of myelinated fibers in the dorsal root 3 mm from the ganglion were displaced to the left towards smaller sizes (25–50% quartile: 2P < 0.005 and 75–100% quartile: 2P < 0.05). In conclusion, the primary structural event in acute acrylamide intoxication is chromatolysis of A-cells of the dorsal root ganglion without the occurrence of somatofugal axonal atrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号