首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments by flow cytometry (FCM) after nuclei isolation have never been done to investigate cyclins. We have conducted different experiments by FCM using whole cells and isolated nuclei to study the immunolocalization and kinetic patterns of cyclin B1 and cyclin E in various leukemic cell lines. During asynchronous growth, all whole cells had a scheduled, cell cycle phase-restricted expression of cyclin B1. By using a washless immunostaining of unfixed nuclei, cyclin B1 was detected in all cell cycle phases, including G1, although to a lesser extent than in G2/M, suggesting that in whole cells the cyclin B1 epitope is masked and accessible only in isolated nuclei. When the cells were synchronized at the G1/S boundary by thymidine or in the G1 phase by sodium n-butyrate, an identical accumulation of cyclin B1 was observed. As for cyclin E, its expression was higher with thymidine treatment than with sodium n-butyrate, particularly in nuclei. The elevated cyclin B1 level in the cells arrested at the G1/S boundary may reflect the increased half-life of this protein stabilized as the result of cyclin E overexpression. However, our FCM data also support the notion that accumulation of human cyclin B1 in leukemic cell lines begins during the G1 phase of the cell cycle, probably in the nucleus. The detection of cyclin B1 by Western blot in cells sorted in the G1 phase of the cell cycle confirms this finding. It is possible, therefore, that tumor transformation or leukemic phenotype may invariably be associated with altered cyclin B1 expression.  相似文献   

2.
3.
CD95 engagement results in apoptosis in thymocytes and in the Jurkat human leukemic T cell line. Biochemical analyses in CD95-engaged thymocytes and Jurkat cells revealed dysregulation of the G1/S cell cycle control point. Cyclin E was upregulated upon CD95 engagement, suggesting G1-to-S progression, but there was no upregulation of cyclin A. Instead, cyclin E was degraded by caspases. In addition, c-myc that normally acts on S-phase progression through the activation of cdc25A appeared to be involved in the inhibition of S-phase progression after CD95 ligation. This implies that G1-->S progression and apoptosis are intimately linked in cells undergoing CD95 ligation. Furthermore, our data suggest that CD95-induced apoptosis occurs at the G1/S phase transition. We therefore suggest that CD95 engagement not only triggers death signals but also affects the G1/S checkpoint.  相似文献   

4.
Cyclins are cell cycle regulatory proteins. We compared the concurrent kinetics of apoptosis and cyclin expression between HIV-infected cells (J1.1), and uninfected Jurkat cells. Cells were cultured with TNF-alpha and harvested at 24, 48 and 72 hr to examine cyclin expression and DNA content. We found a decline in the levels of the mitotic B cyclin in Jurkat cells (16 to 2%, 48 hr), while in J1.1 cells it was observed in cyclin E (60 to 37%, 72 hr). Because cyclin B is mitotic, results suggest that Jurkat cells undergo apoptosis at G2, while J1.1 cells enter mitosis and then die by apoptosis, as no changes in cyclin B or DNA content at G2M were observed. G1 cyclin E decline in J1.1 cells also suggests that they die after entering mitosis. Based on differences in the cyclins involved, it seems that HIV-1 manipulates the cell cycle to protect J1.1 cells from apoptosis induction at G2, a critical cell cycle phase for HIV replication. Thus, cyclins are useful to characterize points in the cell cycle at which apoptosis is induced, and could become excellent tools to evaluate mechanisms of action of antiretroviral drugs in the cell cycle of HIV-infected cells.  相似文献   

5.
Cyclin D3 regulates proliferation and apoptosis of leukemic T cell lines   总被引:1,自引:0,他引:1  
Activation of the T cell receptor in leukemic T cell lines or T cell hybridomas causes growth inhibition. A similar growth inhibition is seen when protein kinase C is activated through addition of phorbol myristate acetate. This inhibition is due to an arrest of cell cycle progression in G(1) combined with an induction of apoptosis. Here we have investigated the mechanism by which these stimuli induce inhibition of proliferation in Jurkat and H9 leukemic T cell lines. We show that expression of cyclin D3 is reduced by each of these stimuli, resulting in a concomitant reduction in cyclin D-associated kinase activity. This reduction in cyclin D3-expression is crucial to the observed G(1) arrest, since ectopic expression of cyclin D3 can abrogate the G(1) arrest seen with each of these stimuli. Moreover, ectopic expression of cyclin D3 also prevents the induction of programmed cell death by phorbol myristate acetate and T-cell receptor activation, leading us to conclude that cyclin D3 not only plays a crucial role in progression through the G(1) phase, but is also involved in regulating apoptosis of T cells.  相似文献   

6.
Peripheral homeostasis and tolerance requires the suppression or removal of excessive or harmful T lymphocytes. This can occur either by apoptosis through active antigen-induced death or cytokine withdrawal. Alternatively, T cell activation can be suppressed by agents that activate the cAMP-dependent protein kinase (PKA) signaling pathway, such as prostaglandin E2. Stimulation of PKA inhibits lymphocyte proliferation and immune effector functions. Here we have investigated the mechanism by which activation of PKA induces inhibition of proliferation in human leukemic T cell lines. Using a variety of agents that stimulate PKA, we can arrest Jurkat and H9 leukemic T cells in the G(1) phase of the cell cycle, whereas cell viability is hardly affected. This G(1) arrest is associated with an inhibition of cyclin D/Cdk and cyclin E/Cdk kinase activity. Interestingly, expression of cyclin D3 is rapidly reduced by PKA activation, whereas expression of the Cdk inhibitor p27(kip1) is induced. Ectopic expression of cyclin D3 can override the growth suppression induced by PKA activation to some extent, indicating that growth inhibition of leukemic T cells by PKA activation is partially dependent on down-regulation of cyclin D3 expression. Taken together our data suggest that immunosuppression by protein kinase A involves regulation of both cyclin D3 and p27(kip1) expression.  相似文献   

7.
Entry into mitosis by mammalian cells is triggered by the activation of the cdc2/cyclin B holoenzyme. This is accomplished by the specific dephosphorylation of key residues by the cdc25C phosphatase. The polo-like kinases are a family of serine/threonine kinases which are also implicated in the control of mitotic events, but their exact regulatory mechanism is not known. Recently, a Xenopus homologue, PLX1, was reported to phosphorylate and activate cdc25, leading to activation of cdc2/cyclin B. Jurkat T leukemia cells were chemically arrested and used to verify that PLK protein expression and its phosphorylation state is regulated with respect to cell cycle phase (i.e., protein is undetectable at G1/S, accumulates at S phase and is modified at G2/M). Herein, we show for the first time that endogenous human PLK protein immunoprecipitated from the G2/M-arrested Jurkat cells directly phosphorylates human cdc25C. In addition, we demonstrate that recombinant human (rh) PLK also phosphorylates rhcdc25C in a time- and concentration-dependent manner. Phosphorylation of endogenous cdc25C and recombinant cdc25C by PLK resulted in the activation of the phosphatase as assessed by dephosphorylation of cdc2/cyclin B. These data are the first to demonstrate that human PLK is capable of phosphorylating and positively regulating human cdc25C activity, allowing cdc25C to dephosphorylate inactive cdc2/cyclin B. As this event is required for cell cycle progression, we define at least one key regulatory mode of action for human PLK in the initiation of mitosis.  相似文献   

8.
Cyclins form complexes with cyclin-dependent kinases. By controlling activity of the enzymes, cyclins regulate progression through the cell cycle. A- and B-type cyclins were discovered due to their distinct appearance in S and G(2) phases and their rapid proteolytic destruction during mitosis. Transition from G(2) to mitosis is basically controlled by B-type cyclins. In mammals, two cyclin B proteins are well characterized, cyclin B1 and cyclin B2. Recently, a human cyclin B3 gene was described. In contrast to the expression pattern of other B-type cyclins, we find cyclin B3 mRNA expressed not only in S and G(2)/M cells but also in G(0) and G(1). Human cyclin B3 is expressed in different variants. We show that one isoform remains in the cytoplasm, whereas the other variant is translocated to the nucleus. Transport to the nucleus is dependent on three autonomous nonclassical nuclear localization signals that where previously not implicated in nuclear translocation. It had been shown that cyclin B3 coimmunoprecipitates with cdk2; but this complex does not exhibit any kinase activity. Furthermore, a degradation-resistant version of cyclin B3 can arrest cells in G(1) and G(2). Taken together with the finding that cyclin B3 mRNA is not only expressed in G(2)/M but is also detected in significant amounts in resting cells and in G(1) cells. This may suggest a dominant-negative function of human cyclin B3 in competition with activating cyclins in G(0) and the G(1) phase of the cell cycle.  相似文献   

9.
We examined concentration-dependent changes in cell cycle distribution and cell cycle-related proteins induced by butyric acid. Butyric acid enhanced or suppressed the proliferation of Jurkat human T lymphocytes depending on concentration. A low concentration of butyric acid induced a massive increase in the number of cells in S and G2/M phases, whereas a high concentration significantly increased the accumulation of cells in G2/M phase, suppressed the accumulation of cells in G0/G1 and S phases, and induced apoptosis that cell cycle-related protein expression in Jurkat cells treated with high levels of butyric acid caused a marked decrease in cyclin A, cyclin E, cyclin-dependent kinase 2 (CDK2), CDK4 and CDK6 protein levels in G0/G1 and S phases, with apoptosis induction, and a decrease in cyclin B, Cdc25c and p27KIP1 protein levels, as well as an increase in p21CIP1/WAF1 protein level, in the G2/M phase. Taken together, our results indicate that butyric acid has bimodal effects on cell proliferation and survival. The inhibition of cell growth followed by the increase in apoptosis induced by high levels of butyric acid were related to an increase in cell death in G0/G1 and S phases, as well as G2/M arrest of cells. Finally, these results were further substantiated by the expression profile of butyric acid-treated Jurkat cells obtained by means of cDNA array.  相似文献   

10.
Pentagalloylglucose, which is found in many medicinal plants, can arrest the cell cycle at G(1) phase through down-regulation of cyclin-dependent kinases 2 and 4 and up-regulation of the cyclin-dependent kinase inhibitors p27(Kip1) and p21(Cip1/WAF1) in human breast cancer cells. Pentagalloylglucose also induces apoptosis in human leukemic cells. However, the mechanisms by which pentagalloylglucose induces these effects is unclear. We now show that pentagalloylglucose inhibits the activities of purified 20 and 26 S proteasomes in vitro, the 26 S proteasome in Jurkat T cell lysates, and chymotrypsin-like activity of the 26 S proteasome in intact Jurkat T cells. The turnover of p27(Kip1) and p21(Cip1/WAF1), which is necessary for cell cycle progression mediated by proteasome degradation, was disrupted by treatment of human Jurkat T cells with pentagalloylglucose. This was shown by cycloheximide treatment and in vivo pulse-chase labeling experiments, and this effect correlated with the arrest of proliferation of Jurkat T cells at G(1). Inhibition of the proteasome by pentagalloylglucose and by the proteasome inhibitor MG132 caused accumulation of ubiquitin-tagged proteins in Jurkat T cells. The addition of pentagalloylglucose to Jurkat T cells enhanced the stability of the proteasome substrate Bax and increased cytochrome c release and apoptosis. Our findings suggest a mechanism for the effect of pentagalloylglucose on the cell cycle in human leukemic cells: that pentagalloylglucose down-regulates proteasome-mediated pathways because it is a proteasome inhibitor.  相似文献   

11.
12.
13.
14.
Inhibition of S/G2 phase CDK4 reduces mitotic fidelity   总被引:2,自引:0,他引:2  
Cyclin-dependent kinase 4 (CDK4)/cyclin D has a key role in regulating progression through late G(1) into S phase of the cell cycle. CDK4-cyclin D complexes then persist through the latter phases of the cell cycle, although little is known about their potential roles. We have developed small molecule inhibitors that are highly selective for CDK4 and have used these to define a role for CDK4-cyclin D in G(2) phase. The addition of the CDK4 inhibitor or small interfering RNA knockdown of cyclin D3, the cyclin D partner, delayed progression through G(2) phase and mitosis. The G(2) phase delay was independent of ATM/ATR and p38 MAPK but associated with elevated Wee1. The mitotic delay was because of failure of chromosomes to migrate to the metaphase plate. However, cells eventually exited mitosis, with a resultant increase in cells with multiple or micronuclei. Inhibiting CDK4 delayed the expression of the chromosomal passenger proteins survivin and borealin, although this was unlikely to account for the mitotic phenotype. These data provide evidence for a novel function for CDK4-cyclin D3 activity in S and G(2) phase that is critical for G(2)/M progression and the fidelity of mitosis.  相似文献   

15.
The signals involved in the initiation of mitogen-induced activation of resting guinea pig T cells were examined. The combination of phytohemagglutinin (PHA) and 4 beta-phorbol 12-myristate 13-acetate (PMA) stimulated DNA synthesis by accessory cell (AC)-depleted T cells cultured at high density, but the use of low density cultures indicated that intact AC were absolutely necessary for PHA-stimulated T cell DNA synthesis even in the presence of PMA, interleukin 1 (IL 1), or interleukin 2 (IL 2). In contrast, AC-depleted T cells were able to respond to the combination of the calcium ionophore, ionomycin, and PMA regardless of the cell density at which they were cultured. Cell cycle analysis by acridine orange staining indicated that neither PHA nor ionomycin, in the absence of AC, activated resting T cells. PMA in the absence of all AC, supported cell cycle entry and progression to the DNA synthetic phase of the majority of ionomycin-stimulated T cells, but permitted only a small number of PHA-triggered T cells to enter the initial stage of the cell cycle (G1a) characterized by a modest increase in cellular RNA content. Although PMA permitted some PHA-stimulated T cells to enter the cell cycle, most required intact AC to enter G1, and all required intact AC to progress through G1 and synthesize maximal amounts of RNA. No PHA-stimulated cells reached the S phase without intact AC. In PHA-stimulated cultures containing intact AC, PMA increased the number of cells entering the cell cycle and increased the rate of their progress to the DNA synthetic phase. IL 1 also augmented PHA-stimulated AC-dependent T cell DNA synthesis in the presence or absence of PMA, but appeared to be most active during the later stage of the first cell cycle, augmenting the number of activated cells that entered the S phase of the cell cycle. These results support the conclusion that intact AC, IL 1, and a PMA-like signal play distinct roles in the progression of mitogen-stimulated T cells through the first round of the cell cycle.  相似文献   

16.
Novel techniques were used to determine when in the cell cycle of proliferating NIH 3T3 cells cellular Ras and cyclin D1 are required. For comparison, in quiescent cells, all four of the inhibitors of cell cycle progression tested (anti-Ras, anti-cyclin D1, serum removal, and cycloheximide) became ineffective at essentially the same point in G1 phase, approximately 4 h prior to the beginning of DNA synthesis. To extend these studies to cycling cells, a time-lapse approach was used to determine the approximate cell cycle position of individual cells in an asynchronous culture at the time of inhibitor treatment and then to determine the effects of the inhibitor upon recipient cells. With this approach, anti-Ras antibody efficiently inhibited entry into S phase only when introduced into cells prior to the preceding mitosis, several hours before the beginning of S phase. Anti-cyclin D1, on the other hand, was an efficient inhibitor when introduced up until just before the initiation of DNA synthesis. Cycloheximide treatment, like anti-cyclin D1 microinjection, was inhibitory throughout G1 phase (which lasts a total of 4 to 5 h in these cells). Finally, serum removal blocked entry into S phase only during the first hour following mitosis. Kinetic analysis and a novel dual-labeling technique were used to confirm the differences in cell cycle requirements for Ras, cyclin D1, and cycloheximide. These studies demonstrate a fundamental difference in mitogenic signal transduction between quiescent and cycling NIH 3T3 cells and reveal a sequence of signaling events required for cell cycle progression in proliferating NIH 3T3 cells.  相似文献   

17.
The regulation of the first cell cycle of human, activated (G1) PBL was analyzed by flow cytometry and [3H]thymidine incorporation. Endogenous IL 2 production was blocked in situ by pharmacologic concentration of DEX (100 to 1000 nM), resulting in an 80 to 90% reduction of thymidine uptake. Although T lymphocyte activation (G0-G1a transition) by PHA was unaltered, cells remained in the G1a phase of the cell cycle due to insufficient RNA synthesis for proliferation. The addition of IL 2-containing supernatants reversed this inhibitory effect of DEX by allowing the cells to synthesize more RNA (G1a-G1b transition). Such cells could enter the S phase and proliferate. Similar studies were performed on cells treated with a monoclonal antibody (anti-Tac) against the IL 2 receptor. In these studies, IL 2-induced RNA synthesis, and subsequent proliferation of DEX-treated and PHA-stimulated cells was inhibited by anti-Tac. Anti-Tac did not, however, inhibit the effect of endogenous IL 2 (PHA-stimulated PBL without DEX treatment), although it did bind equally well to such cells. Thus, IL 2 directly or indirectly regulates human T cell proliferation at the level of RNA synthesis. Furthermore, anti-Tac can inhibit the mitogenic signal given by endogenous IL 2, but not by in situ produced IL 2, an observation of importance to further investigations of the mechanisms by which IL 2 interacts with specific receptors to elicit proliferation.  相似文献   

18.
NGX6基因对人结肠癌细胞HT-29细胞周期的影响   总被引:7,自引:1,他引:6  
NGX6基因是新克隆的候选抑瘤基因,研究表明NGX6重表达可抑制结肠癌细胞的增殖.为进一步研究NGX6对细胞周期的影响,采用流式细胞仪检测NGX6重表达对结肠癌细胞HT-29细胞周期的影响,发现NGX6重表达可增加HT-29细胞在G0/G1期的分布比例,减少了S,G2,M期细胞数.利用蛋白质印迹和流式细胞术分析NGX6转染前后HT-29细胞周期素(cyclins)和细胞周期素依赖性蛋白激酶抑制物(cyclin-dependentkinaseinhibitor,CKI)的表达变化,发现NGX6可下调HT-29细胞中cyclinE、cyclinD1的表达及上调p27的表达,对cyclinA和cyclinB的表达无明显影响,p16在三组结肠癌细胞中均无表达.研究结果表明,NGX6在HT-29细胞中通过下调cyclinE、cyclinD1和上调p27的表达,阻滞细胞周期于G0/G1期,从而发挥其在结肠癌中的抑瘤作用.  相似文献   

19.
M-phase promoting factor is a complex of cdc2 and cyclin B that is regulated positively by cdc25 phosphatase and negatively by wee1 kinase. We isolated the wee1 gene promoter and found that it contains one AP-1 binding motif and is directly activated by the immediate early gene product c-Fos at cellular G(1)/S phase. In antigen-specific Th1 cells stimulated by antigen, transactivation of the c-fos and wee1 kinase genes occurred sequentially at G(1)/S, and the substrate of wee1 kinase, cdc2-Tyr15, was subsequently phosphorylated at late G(1)/S. Under prolonged expression of the c-fos gene, however, the amount of wee1 kinase was increased and its target cdc2 molecule was constitutively phosphorylated on its tyrosine residue, where Th1 cells went into aberrant mitosis. Thus, an immediate early gene product, c-Fos/AP-1, directly transactivates the wee1 kinase gene at G(1)/S. The transient increase in c-fos and wee1 kinase genes is likely to be responsible for preventing premature mitosis while the cells remain in the G(1)/S phase of the cell cycle.  相似文献   

20.
Mitogen-activated protein (MAP) kinase and phosphoinositide 3-kinase (PI3K) pathways are necessary for cell cycle progression into S phase; however the importance of these pathways after the restriction point is poorly understood. In this study, we examined the regulation and function of extracellular signal-regulated kinase (ERK) and PI3K during G(2)/M in synchronized HeLa and NIH 3T3 cells. Phosphorylation and activation of both the MAP kinase kinase/ERK and PI3K/Akt pathways occur in late S and persist until the end of mitosis. Signaling was rapidly reversed by cell-permeable inhibitors, indicating that both pathways are continuously activated and rapidly cycle between active and inactive states during G(2)/M. The serum-dependent behavior of PI3K/Akt versus ERK pathway activation indicates that their mechanisms of regulation differ during G(2)/M. Effects of cell-permeable inhibitors and dominant-negative mutants show that both pathways are needed for mitotic progression. However, inhibiting the PI3K pathway interferes with cdc2 activation, cyclin B1 expression, and mitotic entry, whereas inhibiting the ERK pathway interferes with mitotic entry but has little effect on cdc2 activation and cyclin B1 and retards progression from metaphase to anaphase. Thus, our study provides novel evidence that ERK and PI3K pathways both promote cell cycle progression during G(2)/M but have different regulatory mechanisms and function at distinct times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号