首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P J Wettstein 《Immunogenetics》1981,14(3-4):241-252
Individual mice were tested for their proliferation T-cell response to H-Y- and H-3-incompatible stimulator cells in secondary mixed lymphocyte culture. Responders expressing the H-2b haplotype were restricted in their response to stimulators presenting H-Y and H-3 in the context of H-2b. Lymphocytes from individual B10 females proliferated in response to H-Y presented with I-Ab and Db. The ratio of I-Ab/Db-restricted responses varied between individual responders, indicating significant qualitative variation between genetically identical responders. The majority of the proliferative response in all tested mice was restricted to the entire H-2b haplotype suggesting complementation of I-Ab- and Db-region genes in presenting the H-Y antigen. Similar observations were made in the response of individual B10.LP mice to the H-3 antigen. H-3-specific, proliferating T cells were restricted to H-3 antigen presented with KbAb and Db with significant variation between individuals in proliferative response to H-3 plus KbAb and Db. In contrast to the response to H-Y, the proliferative response to H-3 plus H-2b could be accounted for by the summation of the proliferative responses to H-3 plus KbAb and Db. These observations demonstrate that the proliferative response to non-H-2H antigens in the context of I-region determinants is not a sine qua non for the T-cell response to these antigens. Further, the individual qualitative and quantitative variation observed with individual genetically identical mice has strong implications for our knowledge of intrastrain variation in immune responsiveness and the characterization of inbred strains for immune responsiveness.  相似文献   

2.
Cloned B-cell lines from a female T16H/XSxr mouse in which Tdy expression was suppressed due to X inactivation and from a male X/XSxr mouse, both of the (kxb)F1 haplotype, were examined for H-Y expression. This was determined both by their ability to act as targets for H-2k and H-2b-restricted H-Y-specific cytotoxic T cells and by their ability to stimulate the proliferation of H-2Kk, H-2Db (class I) and Ab (class II)-restricted T-cell clones. In B-cell clones from the T16H/XSxr mouse, expression of H-Y/Db exhibited partial X inactivation and only a proportion ( 30%) of the cells were targets for or stimulated H-2Db-restricted H-Y-specific T cells. In contrast, H-Y eiptopes restricted by H-2k (H-Y/Kk, H-Y/Dk) and Ab (H-Y/Ab) exhibited no X inactivation. Furthermore, no inactivation of H-Y/Db, H-Y/Ab, or H-Yk was observed in the male X/XSxr mouse. These results indicate that the T16H/XSxr female is a mosaic, as a result of the variable spread of X inactivation into the Sxr region. They further suggest that the H-Y antigen recognized in association with H-2k and H-2Db class I molecules and Ab class II molecules may be the product of more than one gene.  相似文献   

3.
Antigen-primed female thoracic duct lymphocyte (TDL) populations (B6, H-2KbI-AbDb) were depleted of T cells specific for the male H-Y antigen presented in the context of I-Ab, by negative selection through irradiated male H-2KbI-AbDb recipients. This ocedure substantially removed the capacity of such TDL to respond to H-Y-H-2Db. The response can be reconstituted by adding either smaller numbers of unfiltered, H-Y-primed, B6 female TDL or anti-Ly-2-treated memory T cells. The results thus support the idea that concurrent presence of helper T cells specific for H-Y-H-2-I-Ab is required for the generation of secondary cytotoxic T lymphocyte responses to H-Y-H-2Db. This is discussed in the context of similar, though not identical, experiments with the vaccinia virus model.  相似文献   

4.
Serological characterization of threeK-S interval recombinant strains, TBR2 (H-2 at2 ), TBR3 (H-2 at3 ) and AIR1 (H-2 a2 ) was performed using anti-H-2, Ia, Ss and Slp antisera. The data presented here reveal that the crossover events in both TBR2 and TBR3 occurred between theI-A andI-E subregions. In both cases, theH-2K andI-A subregions were derived from theH-2 t1 chromosome, while theI-E, S andH-2D regions were derived from theH-2 b chromosome (K s A k E b S b D b ). TheH-2 a2 chromosome resulted from a crossover event between theH-2 a1 andH-2 i9 chromosomes. Ia and Ss typing of AIR1 suggested that theK toI-E regions originated fromH-2 a1 and theS andD regions originated fromH-2 i9 (K k A k E k S b D d ).  相似文献   

5.
A highly selected alloreactive T-cell line was developed by repeated restimulation of B10.D2/n lymph-node cells with irradiated C57BL/10Sn (BIO) spleen cells in long-term MLC for up to 2 1/2 years. Continuous growth of the line requires restimulation every 2 to 4 weeks with fresh H-2b stimulator cells. The line proliferates strongly against H-2b but not againstH-2 d ,H-2 f ,H-2 q ,H-2 r , orH-2 s stimulators. Analysis of recombinant mouse strains showed that the proliferative response is directed against I-Ab but not Kb or Db determinants. During the growth period of the line, strong cross-reactivity with H-2p (B10.P) and weak cross-reactivity with H-2k strains (e.g., CBA/J and B10.BR) was observed. A clone with exquisite specificity for I-Ab, but with no cross-reactivity with H-2p or H-2k was isolated from the line; thus clonal heterogeneity of the line still exists despite the highly selective growth conditions. — The majority of T cells from the line or clone were shown to bind I-Ab but not Kb or Db determinants either spontaneously during restimulation with fresh B10 stimulator cells or via membrane vesicles expressing I-Ab determinants. No killing activity by the line in either specific or nonspecific cytolytic T-cell assays was observed nor was the T 145 glycoprotein, characteristic of killer T cells, detected.Abbreviations used in this paper B6 C57BL/6J - B10 C57BL/10Sn - Con A Concanavalin A - CTL cytotoxic T lymphocyte - FCS fetal calf serum - FDA fluorescein diacetate - FITC fluorescein isothiocyanate - Ia I-region-associated antigens - LPS lipopolysaccharide fromE. coli - Lyt T-lymphocyte-defined antigen - MLC mixed leukocyte culture - NP-40 nonidet P-40 - PAGE pofyacrylamide gel electrophoresis - PHA phytohemagglutinin fromPhaseolus vulgaris - PM plasma membrane - SDS sodium dodecyl sulfate - TCGF T-cell growth factor(s) - TdR thymidine  相似文献   

6.
The secondary cytotoxic responses to the male-specific antigen (H-Y) in mice showH-2 restriction so that the cytotoxic female cell must share the K- and/or D-end antigen with the male target cells. The association with the K and/or D end varies with differentH-2 haplotypes,e.g., H-2 b cytotoxic cells require the H-2Db antigen(s) on the target cells, while cytotoxic cells fromH-2 b/H-2 d F1 mice sensitized toH-2 d male cells kill only male targets having H-2Kd antigen(s). This association of H-Y with appropriate K/D antigens seems to be needed also in the induction of the cytotoxic response. Of the independent haplotypes, onlyH-2 b strains are capable of making secondary anti-H-Y responses and this trait seems to be dominant,i.e., the F1 strains with oneH-2 b parent are able to produce anti-H-Y cytotoxic cells against both theH-2 b parent and the nonresponder parent. The mating of the two nonresponder strains may produce F1 mice which are responders, thus suggestingIr gene complementation. Mapping data indicates that at least one of these complementary genes is located in theI-C region fork/s complementation.  相似文献   

7.
Murine responses to immunization with 2, 4, 6-trinitrophenyl (TNP) conjugated to autogenous mouse serum albumin (MSA) in complete Freund's adjuvant (CFA) are controlled by a gene(s) in theK orI-A region of theH-2 complex. High immune responses of bothH-2 d andH-2 b mice have been mapped to this region of the major histocompatibility complex. No modifying effects were observed from genes to the right ofI-A in either responder haplotype. High responsiveness controlled byK b orI-A b is inherited with complete or partial recessivity, depending on the route of immunization and the sex of the responder. However, high responsiveness controlled byK d orI-A d is inherited dominantly. This unusual pattern of inheritance of immune responsiveness to TNP-MSA is consistent with the genetic mapping toK orI-A. TNP-MSA-specific T-cell reactivity following immunization with TNP-MSA in vivo was examined utilizing a T-cell-dependent proliferation assay in vitro with cells obtained from high or low responder mice. Genetic mapping and mode of inheritance in this assay for antigen-specific T-cell reactivity corresponded with results obtained from a plaque-forming cell (PFC) assay measuring antibody production by B cells. Both the proliferative and PFC responses are probably under the sameIr gene control. Both gene dosage effects and Ir-gene-product interaction could influence the generation of specific immune responsiveness in F1 hybrids between high and low responders to TNP-MSA.  相似文献   

8.
The strength of the H-Y antigen on thymus cells and on skin was compared in differentH-2-congenic mouse strains using a host-versus-graft reaction popliteal lymph node assay, and skin grafts from males of parental strains grafted to F1 hybrid females. The results revealed considerable differences in the strength of the H-Y antigen among different congenic strains; these differences demonstrate the effect of theH-2-linked gene on the expression of the H-Y antigen. The linkage withH-2 was also confirmed in tests with segregating F2 generations. In the strains bearing recombinantH-2 haplotypes, the strength of the H-Y antigen is similar to that of parental strain from which the recombinant received itsK end, and the responsible gene (or genes) map to the left ofI-C. The effect of theH-2-linked gene(s) on thymus cells and skin is different. The gene linked to theK end ofH- 2b determines a strong H-Y antigen on thymus cells, but a relatively weak H-Y antigen on skin. The gene linked to theK end ofH- 2k determines a weak H-Y antigen on thymus cells, but a strong H-Y antigen on skin. The gene linked to theK end ofH- 2d determines a weak H-Y antigen on both thymus cells and skin. Our observations raise the possibility that the structural gene for the H-Y antigen is linked toH-2. Alternative (but not exclusive) explanations invoke regulatory effects ofH-2 on the expression of the H-Y antigen, possibly by means of the control of the cellular andogen receptors.  相似文献   

9.
The reactivity of H-2b-restricted murine T cells towards bovine insulin was reported to depend on the expression of Ia.W39, a private specificity of I-Ab, on antigen-presenting cells. Cells of male (CBA/N x B6)F1 mice carrying the mutation xid on the X chromosome lack Ia.W39 on the cell surface. These cells are unable to present bovine insulin to primed T cells derived from female (CBA/N x B6)F1 mice. We show here that spleen cells of male (CBA/N x B6)F1 hybrids served perfectly as accessory cells for the insulin-dependent induction of a proliferative response of long-term cultured T cells with (B10 x B10.BR)F1 genotype, restricted to recognizing insulin in the context of F1-unique I-A determinants. The epitope on the insulin molecule essential for stimulation was determined to depend on the glutamic acid residue in position 4 of the A chain of insulin. This contrasts with the H-2b-restricted response of B6 mice to bovine insulin, which appears to be directed at the A chain loop determinant (amino acids A8 and A10). These data suggest that distinct I-Ab-encoded structures, the expression of which is regulated independently, may serve as components of restriction elements for H-2b and (H-2b x H-2k)F1 restricted T cells, which are specific for different epitopes of bovine insulin.  相似文献   

10.
F1 complementation results indicate that a new gene, putatively controlling a minor histocompatibility antigen, is closely linked to the minor histocompatibility gene,H-3, in the fifth linkage group of chromosome 2 of the mouse. This gene controls a product that was capable of inducing as well as acting as a target for cytotoxic lymphocytes (CTL). The lytic activity of CTL developed in B10.LP-H-3b mice specific for the product of the new gene of B10 was restricted to target cells possessing H-2Db antigens. This contrasts to the H-2Kb-restricted activity of H-3.1 specific CTL.  相似文献   

11.
The T-cell mediated immune responses to the male specific minor histocompatibility antigen H-Y in mice have been studied extensively as a model for immune responses to other weak antigens like tumor antigens or autoantigens. In a recent analysis of the strain distribution of the cytotoxic T-cell (Tc-cell) responsiveness to H-Y, it has been found that genes both within and outside the H-2 complex exert an interactive control. Whereas the H-2 b strains all are high responders, independent of their non-H-2 background, other H-2 haplotypes (d, k, and s) only allow for a response if they are combined with certain non-H-2 genes. The H-2-linked immune response genes (Ir-genes) have been previously mapped to the I and K or D region of the H-2 complex, but the mapping of the non-H-2 genes has not yet been established. In this study evidence is presented, using recombinant inbred strains and immunoglobulin heavy chain (Igh) congenic strains of mice, to show that there is more than one non-H-2 Ir-gene involved, that the main controlling genes are not linked to the Igh complex, and that at least one non-H-2 Ir-gene is linked to the H-3 region on chromosome 2. This region includes genes for beta-2-microglobulin (2m), the Ly-mllalloantigen a polymorphic cell surface glycoprotein (Pgp-1), a B-cell specific antigen Ly-4, a transplantation antigen H-3, and genes (Ir-2) controlling the immune response to Ea-1 and H-13.  相似文献   

12.
The cytotoxic antibody response to the H-2Db alloantigen has been investigated in ten strains of the C57BL/10 background. Three types of responses could be distinguished: no detectable response, an IgM response, and an IgG response. The IgG response is influenced by the D and probably the I-A region of the H-2 complex, whereas the IgM response is dependent on the allele for the E chain. The hypothesis is proposed that regulatory T cells, which recognize the antigen in context of self MHC molecules, determine the outcome of an anti-H-2Db immunization in which the I-E molecule restricts the IgM response and the I-A molecule restricts the IgG response; the D molecule is probably responsible for activation of suppressor T cells which suppress only the IgG response.  相似文献   

13.
H-2 class I antigen expression on mouse teratocarcinoma cell lines   总被引:1,自引:0,他引:1  
Immunity against PCC3 teratocarcinoma cells (129, H-2 b) was induced in allogeneic (C3H, H-2 k) mice by preimmunization with L cells (C3H, H-2 k) expressing cosmid-introduced K b or D b genes, but not with nontransfected L cells. In addition, the growth of PCC3 cells in sublethally irradiated (C3H × B6-H-2 bm1)F1 and (C3H × B6-H-2 bm13 )F1 mice bearing the K bm1 and D bm13 mutations, respectively, was either prevented, stopped, or delayed in comparison with the (C3H × B6)F1 (k × b) mice, which failed to reject the PCC3 cells. The teratocarcinoma line OC15S was exceptional because it reacted specifically with Kb- and Db-specific (but not Ib-specific) alloantisera, and because Kb- and Db-specific antibodies could be absorbed by OC15S cells. The subpopulation of OC15S cells bearing the ECMA-7 antigen characteristic for embryonic carcinoma (EC) cells was isolated by the fluorescence-activated cell sorter and was shown to react specifically with Kb- and Db-specific antisera. These experiments show that teratocarcinoma cells express antigens similar or identical to the K-and D-region products of differentiated cells. The lack of expression of class I antigens is thus neither a condition nor a consequence of the pluripotentiality of the EC cells. The exact nature of the major histocompatibility complex antigens on EC cells has yet to be established using the methods of molecular biology and biochemistry.  相似文献   

14.
Antisera specific for either H-2Kb, H-2Db, H-2Kk or H-2Dk antigenic determinants were examined for their capacity to neutralize Friend virus (FV) collected from the serum of infectedH-2 b /H-2 k heterozygous mice. Neutralizing activity was detected (1) only withanti-H-2D b antisera, (2) only when the surface of virus particles had been mildly deranged by osmotic shock treatment and (3) only in the assay for the defective spleen focus-forming virus component of FV.  相似文献   

15.
The genetic control of delayed-type hypersensitivity in mice was investigated by contact sensitization with picryl chloride. Distribution patterns of contact sensitivity in 11 inbred strains of mice showed significant differences among strains. Comparison of levels of response between congenic-resistant lines and their inbred partners, at 9 to 11 weeks of age, revealed a clear association betweenH-2 haplotype and the magnitude of response. Testing ofH-2 recombinants further suggested the influence of two genes mapping at either end of theH-2 complex. While theH-2K d andH-2D k alleles were associated with a high response, theH-2K k ,H-2K b ,H-2D d , andH-2D b alleles were associated with a low response. Analysis of the ontogeny of response suggested that theH-2 haplotype manifests its effect through the maturation of contact sensitivity. On both the C57BL/6By and C57BL/10Sn backgrounds, theH-2 d haplotype was associated with early maturation of response, while theH-2 b haplotype was associated with late maturation. Analysis of the response of congenic lines with different genetic backgrounds and of CXB recombinant-inbred lines further revealed the marked effects of yet other genes on this trait.  相似文献   

16.
Immune response (Ir) genes mapping in theI region of the mouseH-2 complex appear to regulate specifically the presentation of a number of antigens by macrophages to proliferating T cells. We have investigated the possibility that similarIr genes mapping in theH-2K andH-2D regions specifically regulate the presentation of target antigens to cytotoxic effector T cells. We report that the susceptibility of targets expressing specific non-H-2 H alloantigens to lysis by H-2-compatible, H-antigen-specific cytotoxic effector T cells is controlled by polymorphicH-2K/D genes. This control of susceptibility to lysis is accomplished through what we have defined operationally as antigen-specific regulation of non-H-2 H antigen immunogenicity. High immunogenicity of the H-4.2 alloantigen is determined by a gene mapping in theH-2K region ofH-2 b . However, high immunogenicity of H-7.1 is determined by a gene mapping in theH-2D region ofH-2 b . High immunogenicity of the H-3.1 alloantigen is determined by genes mapping in both theH-2K andH-2D regions ofH-2 b . Therefore, genes mapping in theH-2K andH-2D regions serve a function in presenting antigen to cytotoxic effector T cells. This function is analogous to that played byI-regionIr genes expressed in macrophages which present antigen to proliferating T cells. We present arguments for classification of theseH-2K/D genes as a second system ofIr genes and discuss the implications of twoH-2-linkedIr-gene systems, their possible functions, and their evolution.  相似文献   

17.
Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2Kb gene are highly susceptible to persisting Theiler''s virus infection within the CNS and subsequent demyelination, mice expressing the Db transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of Kb but encoding the peptide binding domain of Db, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric Kbα1α2Db gene (low) and Db (high) in the CNS of infected mice mirror expression levels of their endogenous H-2q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.  相似文献   

18.
The hybrids (the CANS lines) between inflammatory macrophages from C57BL/6N (B6) mice (H-2b) and BALB/c mouse (H-2d)-derived myeloma cell line NS1 in the early period after cell fusion showed no macrophage functions. However, most of the hybrids expressed these functions after prolonged cultivation accompanied with chromosome loss. In contrast, the hybrids initially displaying myeloma functions ( light chain production) lost this function when they exhibited macrophage functions. We studied the expression of cell-surface antigens in these hybrids and found that hybrids in the early period after cell fusion codominantly expressed both parental cell H-2 antigens (H-2Kb, H-2Kd, and H-2Dd) but not the H-2Db antigen. On the other hand, aged hybrids strongly expressed the H-2 d antigen but lacked the H-2Kb antigen. Alternatively, these aged hybrids with macrophage functions expressed antigen(s) as detected with antiaged CANS-196 cell sera and asialo GM1 antigen, both of which were thought to be found exclusively on macrophages. Thus, the expression of cell-surface antigens in these hybrids was greatly altered after cell fusion.  相似文献   

19.
Immunogenicity for T cell-independent B-cell response assessed by splenic plaque-forming cell (PFC) response and cell-surface expression measured by laser flow cytometry of various class I H-2 antigens on mouse red blood cells (RBC) were compared. It was found that the order of magnitude of both immunogenicity and cell-surface expression on RBC is H-2Dd H-2Db > H-2Kd, H-2Kb. Furthermore, H-2d public antigens and H-2Ld antigens were neither immunogenic nor easily demonstrable on RBC. These findings contrasted with poor immunogenicity for PFC response (Nakashima et al. 1982, 1983) and proportionally strong expression of H-2 antigens on lymphoid cells. Immunogenicity and cell-surface expression of H-2Dd antigen on RBC were not shown to be controlled by the action of genes outside H-2D. It was therefore suggested that a number of H-2 antigens, including H-2Kd private, H-2Kb private, and H-2d public specificities are at least functionally defective on RBC. This is possibly due to the structural characteristics of the antigens. Since immunogenicity and cell-surface expression were in parallel, the expression of H-2 antigens on RBC must be dictated by a subset of B cells whose activity was assessed by PFC response. This finding supports the view that the H-2 molecules display a new category of activity which is different from their ability to activate T cells and depends on their expression on RBC.  相似文献   

20.
Quantitative variation in H-2-antigen expression   总被引:1,自引:0,他引:1  
Minor differences in the expression of individual H-2K and H-2D antigens were detected on mouse spleen cells. The method involved the use of an125I-protein A radioimmunoassay using highly specific anti-H-2 sera to make estimates of the number of cell-bound antibody molecules. The maximum number of antibody binding sites varied for each H-2 antigen reflecting differences of between 10 and 70 percent in the expression of any two antigens. The order of magnitude of expression was Db>(Kd)=Kk=Kb=Dq>Dd>Kq>Dk. Minor background differences were detectable, but antigen expression was allele-specific and independent of the expression of other K, D or I antigens expressed on the same cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号