首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 591 毫秒
1.
魏永永  侯静  唐文如  罗瑛 《遗传》2012,34(12):1513-1521
肿瘤发生是抑癌基因失活和原癌基因激活共同作用的结果。p53基因被认为是目前最重要的抑癌基因, 50%以上的肿瘤中存在p53基因的点突变现象; 而Ras基因是肿瘤中突变率较高的原癌基因, 其突变率在某些肿瘤中高达30%~90%。研究发现, 肿瘤发生过程中抑癌基因p53与原癌基因Ras之间存在复杂的相互协同作用。根据目前的文献报道, p53与Ras之间的协同作用可以分为3种:第一, p53对Ras的调节作用; 第二, Ras对p53的调节作用; 第三, p53和Ras共同调控某些与肿瘤发生相关的关键基因。了解p53与Ras之间的3种调控作用将有助于我们进一步认识p53失活与Ras激活协同促进肿瘤发生的分子通路和机制, 同时也将为癌症的个性化治疗和药物靶点的选择提供重要依据。因此, 文章将对近年来所发现的p53与Ras的各种协同作用机制及其与肿瘤发生的关系进行概括和综述。  相似文献   

2.
癌症发生机理的研究进展   总被引:3,自引:0,他引:3  
根据近年的研究进展,从癌基因与抑癌基因的突变及环境因素的影响等方面综述了癌症的发生机理。  相似文献   

3.
iASPP--抑癌基因家族中的癌基因   总被引:5,自引:0,他引:5  
ASPP1和ASPP2是新发现的能特异性地刺激p53细胞凋亡功能的分子,是抑癌基因家族新成员。最近又发现了这个家族的第三个成员iASPP,与前两个成员ASPP1和ASPP2的抑癌功能不同,iASPP能抑制ASPP激活p53凋亡能力的作用,因此被称为是一种新的癌基因。在肿瘤细胞中已发现存在着高表达的iASPP,因此通过抑制iASPP来恢复肿瘤细胞中p53的抑癌功能有可能成为一种新的肿瘤治疗的手段。  相似文献   

4.
《植物杂志》2009,(5):7-7
科研人员发现的一种新型蛋白质可以选择性地参与抑癌基因p53的活性调控,他们为这种蛋白质取名为Apak。当Apak与p53结合时,抑癌基因不会伤及正常细胞,而当正常细胞遇到基因组损伤信号时,Apak与p53迅速分离,释放出p53的杀伤细胞功能,从而及时清除掉对机体带来危害的部分“变坏”细胞,大大降低了肿瘤发生的风险。这次发现的Apak隶属于锌指蛋白家族,该家族中很可能存在大量没被发现的p53调控蛋白,  相似文献   

5.
p53作为最重要的抑癌因子之一,通常作为转录因子发挥肿瘤抑制作用。除转录活性外,p53及其突变型可能通过调节整合素、钙黏蛋白、Rho/ROCK信号通路等对肌动蛋白细胞骨架重建产生作用,从而影响细胞增殖和迁移。p53的这些功能在调节肌动蛋白细胞骨架重建以响应细胞外微环境和癌基因激活中起着至关重要的作用。  相似文献   

6.
多种肿瘤的抑癌基因p53发生了突变。一种腺病毒E1B缺失体ONYX-015能够在p53突变的肿瘤细胞内有效地复制而导致痛细胞的裂解,但不能在p53正常的细胞内复制。这种p53选择性抗瘤病毒代表了一类新的抗癌武器:溶癌病毒。  相似文献   

7.
<正>中科院上海生命科学研究院营养科学所陈雁研究组在一项最新研究中,揭示了抑癌基因p53在肝癌细胞由上皮向间质转化(EMT)以及肝癌转移中发挥的重要作用。近日,相关研究论文在线发表于美国《公共科学图书馆-综合》。肝细胞癌是癌症致死率最高的三大恶性肿瘤之一,其高度转移的特性成为临床治疗的最大障碍。肝癌病人的癌组织中常见p53基因的突变,尽管p53在肿瘤起始及发展中的生理功能已经得到详尽的阐述,但p53在肝癌细胞转移中的作用仍有待研究。  相似文献   

8.
突变p53功能研究新进展与个性化的肿瘤治疗新策略   总被引:1,自引:0,他引:1  
Lu SQ  Jia ST  Luo Y 《遗传》2011,33(6):539-548
p53是迄今为止研究最多的一种抑癌蛋白,最新研究仍在不断地揭示p53在调控机体代谢、生殖方面的新功能。同时,也揭示了不同p53突变蛋白的获得性新功能在肿瘤发生中的促进作用。这些研究对于了解p53突变的个性化新功能,寻找再激活野生型p53,校正突变p53的新途径奠定了基础,不同突变p53蛋白的个性化治疗将是未来肿瘤治疗的热点。文章综述了已发现的一些突变p53的获得性新功能,及针对不同的p53功能缺陷进行的p53蛋白功能再激活的策略:通过小分子或多肽再激活肿瘤细胞中的p53突变蛋白的野生型功能;通过重组的腺病毒在肿瘤细胞中表达野生型p53蛋白;通过抑制MDM2与p53的相互作用稳定野生型p53蛋白。对p53不同位点突变的深入研究可以帮助我们制定更合理的个性化治疗方案,寻求更有效的肿瘤治疗新途径。  相似文献   

9.
张杨  沈晓沛  王靖  朱晶  郭政 《生物信息学》2011,9(3):217-219,223
癌是一种涉及多基因变异的遗传异质性疾病,涉及多种生物学功能通路中不同基因的遗传变异。因此,识别癌基因是一项富有挑战性的工作。提出通过寻找在癌样本中突变显著共发生的基因筛选候选癌基因的方法。应用该方法,通过分析蛋白激酶基因在癌组织中的突变谱数据,发现了167个显著共发生突变的基因对,包含85个基因。分析这167个基因对发现:(1)发生共突变的基因富集已知的癌基因;(2)共突变基因对倾向于共扰动与癌症相关的通路对。以上结果提示,在癌样本中显著共发生突变的基因倾向于候选癌基因;在癌发生过程中起重要作用的基因倾向于协同扰动不同的癌相关细胞生物学过程。  相似文献   

10.
p53是目前发现的与人类肿瘤发病相关性最大的抑癌基因之一。野生型p53参与DNA损伤修复、细胞周期调控、细胞凋亡及抑制血管生成等。p53基因的突变会使上述功能丧失,从而导致肿瘤的形成。随着分子生物学技术的发展,对肿瘤抑制基因p53的研究越来越深入。本文综合近年来国内外的研究进展,就p53与肿瘤形成的关系及其在肿瘤治疗中的应用等作一综述。  相似文献   

11.
Tumors associated with p53 usually contain missense mutations in the p53 tumor suppressor gene rather than deletions of p53, suggesting a growth advantage for cells with missense mutations. The oncogenic roles of p53 mutants have been examined extensively in cell lines. Mouse models that inherit p53 mutations expressed at physiological levels have now been generated to examine the activities of mutant p53 upon tumorigenesis in vivo. Mice with p53 mutations develop tumor spectrums and metastatic phenotypes different from those of mice with a p53-null allele. Embryo fibroblasts with mutant p53 also show increased proliferative and transformation properties. One mechanism for this gain-of-function potential is the inhibition of function of the p53 family members p63 and p73.  相似文献   

12.
MicroRNAs are potent regulators of gene expression and modulate multiple cellular processes including proliferation, differentiation and apoptosis. A number of microRNAs have been shown to be regulated by p53, the most frequently mutated gene in human cancer. It is has been demonstrated that some mutant p53 proteins not only lose tumor suppressor activity, but also acquire novel oncogenic functions that are independent of wild-type p53. In this review, we highlight recent evidences suggesting that some mutant p53 proteins regulate the expression of specific microRNAs to gain oncogenic functions and identify a gene network regulated by the microRNAs downstream of mutant p53.  相似文献   

13.
Loss of the tumor suppression activity of p53 is required for the progression of most human cancers. In this context, p53 gene is somatically mutated in about half of all human cancers; in the rest human cancers, p53 is mostly inactivated due to the disruption of pathways important for its activation. Most p53 cancer mutations are missense mutations within the core domain, leading to the expression of full-length mutant p53 protein. The expression of p53 mutants is usually correlated with the poor prognosis of the cancer patients. Accumulating evidence has indicated that p53 cancer mutants not only lose the tumor suppression activity of WT p53, but also gain novel oncogenic activities to promote tumorigenesis and drug resistance. Therefore, to improve current cancer therapy, it is critical to elucidate the gain-of-functions of p53 cancer mutants. By analyzing the humanized p53 mutant knock-in mouse models, we have identified a new gain of function of the common p53 cancer mutants in inducing genetic instability by disrupting ATM-mediated cellular responses to DNA double-stranded break (DSB) damage. Considering that some current cancer therapies such as radiotherapy kills the cancer cells by inducing DSBs in their genome DNA, our findings will have important implications on the treatment of human cancers that express common p53 mutants.  相似文献   

14.
p53 Mutations: Gains or losses?   总被引:21,自引:0,他引:21  
Although the case for p53 as a tumor suppressor gene appears very strong, one should still keep an open eye for the possibility that mutations in p53 do not necessarily imply a mere loss of "suppressor" activity. It is still possible that the presence of a p53 mutation in a tumor contributes, in a dominant positive manner, to tumorigenesis. In other words, certain p53 mutants may well be oncogenic in their own right, and carry distinct activities that promote growth deregulation and malignant progression. Elucidating this issue also has practical implications, since the nature of the resident mutations may greatly dictate the consequences of attempts to reintroduce wild-type (wt) p53 into particular types of tumor cells. There are two major obstacles along the road to meaningful answers: the limitations of the experimental systems used for evaluating the biological activities of wt and mutant p53 and a fundamental lack of knowledge about the relevant biochemistry of the p53 protein. These two aspects constitute primary experimental challenges for investigators in the field.  相似文献   

15.
The TP53 tumor suppressor gene is mutated in many human tumors, including common types of cancer such as colon and ovarian cancer. This illustrates the key role of p53 as trigger of cell cycle arrest or cell death upon oncogenic stress. Most TP53 mutations are missense mutations that result in single amino acid substitutions in p53 and expression of high levels of dysfunctional p53 protein. Restoration of wild type p53 function in such tumor cells will induce robust cell death and allow efficient eradication of the tumor. Therapeutic targeting of mutant p53 in tumors is a rapidly developing field at the forefront of translational cancer research. Various approaches have led to the identification of small molecules that can rescue mutant p53. These include compounds that target specific p53 mutations, including PK083 and PK5174 (Y220C mutant p53) and NSC319726 (R175H mutant p53), as well as PRIMA-1 and its analog APR-246 that affect a wider range of mutant p53 proteins. APR-246 has been tested in a Phase I/II clinical trial with promising results.  相似文献   

16.
J Xu  J Wang  Y Hu  J Qian  B Xu  H Chen  W Zou  J-Y Fang 《Cell death & disease》2014,5(3):e1108
Mutation of p53 is the most common genetic change in human cancer, causing complex effects including not only loss of wild-type function but also gain of novel oncogenic functions (GOF). It is increasingly likely that p53-hotspot mutations may confer different types and magnitudes of GOF, but the evidences are mainly supported by cellular and transgenic animal models. Here we combine large-scale cancer genomic data to characterize the prognostic significance of different p53 mutations in human cancers. Unexpectedly, only mutations on the Arg248 and Arg282 positions displayed significant association with shorter patient survival, but such association was not evident for other hotspot GOF mutations. Gene set enrichment analysis on these mutations revealed higher activity of drug-metabolizing enzymes, including the CYP3A4 cytochrome P450. Ectopic expression of p53 mutant R282W in H1299 and SaOS2 cells significantly upregulated CYP3A4 mRNA and protein levels, and cancer cell lines bearing mortality-associated p53 mutations display higher CYP3A4 expression and resistance to several CYP3A4-metabolized chemotherapeutic drugs. Our results suggest that p53 mutations have unequal GOF activities in human cancers, and future evaluation of p53 as a cancer biomarker should consider which mutation is present in the tumor, rather than having comparison between wild-type and mutant genotypes.  相似文献   

17.
We have solved the crystal structures of three oncogenic mutants of the core domain of the human tumor suppressor p53. The mutations were introduced into a stabilized variant. The cancer hot spot mutation R273H simply removes an arginine involved in DNA binding without causing structural distortions in neighboring residues. In contrast, the "structural" oncogenic mutations H168R and R249S induce substantial structural perturbation around the mutation site in the L2 and L3 loops, respectively. H168R is a specific intragenic suppressor mutation for R249S. When both cancer mutations are combined in the same molecule, Arg(168) mimics the role of Arg(249) in wild type, and the wild type conformation is largely restored in both loops. Our structural and biophysical data provide compelling evidence for the mechanism of rescue of mutant p53 by intragenic suppressor mutations and reveal features by which proteins can adapt to deleterious mutations.  相似文献   

18.
19.
The promise and obstacle of p53 as a cancer therapeutic agent   总被引:1,自引:0,他引:1  
p53 is a tumor suppressor gene that is mutated in greater than 50% of human cancers. The action of p53 as a tumor suppressor involves inhibition of cell proliferation through cell cycle arrest and/or apoptosis. Loss of p53 function therefore allows the uncontrolled proliferation associated with cancerous cells. While design of most anti-cancer agents has focused on targeting and inactivating cancer promoting targets, such as oncogenes, recent attention has been given to restoring the lost activity of tumor suppressor genes. Because the loss of p53 function is so prevalent in human cancer, this protein is an ideal candidate for such therapy. Several gene therapeutic strategies have been employed in the attempt to restore p53 function to cancerous cells. These approaches include introduction of wild-type p53 into cells with mutant p53; the use of small molecules to stabilize mutant p53 in a wild-type, active conformation; and the introduction of agents to prevent degradation of p53 by proteins that normally target it. In addition, because mutant p53 has oncogenic gain of function activity, several approaches have been investigated to selectively target and kill cells harboring mutant p53. These include the introduction of mutant viruses that cause cell death only in cells with mutant p53 and the introduction of a gene that, in the absence of functional p53, produces a toxic product. Many obstacles remain to optimize these strategies for use in humans, but, despite these, restoration of p53 function is a promising anti-cancer therapeutic approach.  相似文献   

20.
Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome   总被引:13,自引:0,他引:13  
Olive KP  Tuveson DA  Ruhe ZC  Yin B  Willis NA  Bronson RT  Crowley D  Jacks T 《Cell》2004,119(6):847-860
The p53 tumor suppressor gene is commonly altered in human tumors, predominantly through missense mutations that result in accumulation of mutant p53 protein. These mutations may confer dominant-negative or gain-of-function properties to p53. To ascertain the physiological effects of p53 point mutation, the structural mutant p53R172H and the contact mutant p53R270H (codons 175 and 273 in humans) were engineered into the endogenous p53 locus in mice. p53R270H/+ and p53R172H/+ mice are models of Li-Fraumeni Syndrome; they developed allele-specific tumor spectra distinct from p53+/- mice. In addition, p53R270H/- and p53R172H/- mice developed novel tumors compared to p53-/- mice, including a variety of carcinomas and more frequent endothelial tumors. Dominant effects that varied by allele and function were observed in primary cells derived from p53R270H/+ and p53R172H/+ mice. These results demonstrate that point mutant p53 alleles expressed under physiological control have enhanced oncogenic potential beyond the simple loss of p53 function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号