首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bees collect food from flowers that differ in morphology, color, and scent. Nectar‐seeking foragers can rapidly associate a flower's cues with its profitability, measured as caloric value or ‘net energy gain,’ and generally develop preferences for more profitable species. If two flower types are equally easy to discover and feed from, differences in profitability will arise from differences in the volume or the sugar concentration of their nectar crops. Although there has been much study of how bees respond to one or the other of these two kinds of nectar variation, few studies have considered both at once. We presented free‐foraging bumblebees with two different types of equally rewarding artificial flowers. After a period of familiarization, we made one type more rewarding than the other by increasing its nectar concentration, volume, or both. Bees responded more rapidly to a change in the reward's sugar concentration than to a change in its volume, even if the profitability differences were approximately equal. Sucrose concentration differences (40% vs. 13%) caused bees to virtually abandon the more dilute flower type, whether both types offered the same volume (2 μl) or the less concentrated reward offered higher volume (7 μl vs. 0.85 μl). When the two types of flower differed only in nectar volume (7 μl vs. 0.85 μl), the less rewarding type continued to receive 22% of the visits. We propose three different hypotheses to explain the stronger response of the bees to changes in sugar concentration: (i) their response threshold to sucrose concentration might change; (ii) less time is needed to assess the concentration of a reward than its volume; and (iii) a smaller sample size may be needed for reliable estimation of profitability when flowers differ in concentration.  相似文献   

2.
Rands SA  Whitney HM 《PloS one》2008,3(4):e2007
As well as nutritional rewards, some plants also reward ectothermic pollinators with warmth. Bumble bees have some control over their temperature, but have been shown to forage at warmer flowers when given a choice, suggesting that there is some advantage to them of foraging at warm flowers (such as reducing the energy required to raise their body to flight temperature before leaving the flower). We describe a model that considers how a heat reward affects the foraging behaviour in a thermogenic central-place forager (such as a bumble bee). We show that although the pollinator should spend a longer time on individual flowers if they are warm, the increase in total visit time is likely to be small. The pollinator's net rate of energy gain will be increased by landing on warmer flowers. Therefore, if a plant provides a heat reward, it could reduce the amount of nectar it produces, whilst still providing its pollinator with the same net rate of gain. We suggest how heat rewards may link with plant life history strategies.  相似文献   

3.
Summary Decisions made as to what prey types to include in the diet were analysed for two populations of the spider,Agelenopsis aperta existing under markedly different prey availability and predation levels. Potential prey types were ranked as to their relative profitabilities with respect to energy gain per handling effort and predation risk. Members of the population experiencing limited prey availability but low risk of predation to visually hunting predators exhibited a significantly higher capture attempt rate towards all prey encountered than the population for which prey were abundant but for which predation was a significant problem. Neither spider population preferentially attacked prey that exhibited higher profitability rankings. An experiment was completed that indicates thatA. aperta can discriminate between more and less profitable prey. Suggestions are made as to why the population experiencing abundant food did not exhibit a narrower diet when compared to the population existing under limited food.  相似文献   

4.
The central-place forager in a social-insect colony, e.g., the bumblebee, has been expected to maximize its net rate of energy gain to increase the success of its colony. In addition to foraging behavior, the nest location is an important factor for the success of the colony. The bumblebee’s nest location would be affected by the spatial distribution of flowers and their food quality. In this study, we constructed a model to estimate bumblebee nest sites, using the net energy intake rate at available food sites for workers foraging from the nest site. We hypothesized that the probability of colony establishment at a site in coordinates (x, y) was high as the sum of the net energy intake rate I(x, y) increased. To obtain I(x, y), nectar standing crop, sugar concentration, and foraging time were measured for ten plant species in the study site covering 6.25 km2. As available flowers changed seasonally, I(x, y) was calculated for three periods: the end of April, the beginning of May, and the middle of May. To verify our hypothesis, we compared the estimations in our model with the actual nest sites of Bombus ardens found in the beginning of May and June by means of tracking bumblebees. From the results, we considered that the net energy intake rate at mid-May might represent the probability of colony establishment, because it could affect colony persistence and reproductive success.  相似文献   

5.
6.
Maximizing the average rate of energy intake (profitability) may not always be the optimal foraging strategy for ectotherms with relatively low energy requirements. To test this hypothesis, we studied the feeding behaviour of captive insectivorous lizards Psammodromus algirus, and we obtained experimental estimates of prey mass, handling time, profitability, and attack distance for several types of prey. Handling time increased linearly with prey mass and differed significantly among prey types when prey size differences were controlled for, and mean profitabilities differed among prey taxa, but profitability was independent of prey size. The attack distance increased with prey length and with the mobility of prey, but it was unrelated to profitability. Thus, lizards did not seem to take account of the rate of energy intake per second as a proximate cue eliciting predatory behavior. This information was combined with pitfall-trap censuses of prey (in late April, mid-June and late July) that allowed us to compare the mass of the prey captured in the environment with that of the arthropods found in the stomachs of sacrificed free-living lizards. In April, when food abundance was low and lizards were reproducing, profitability had a pronounced effect on size selection and lizards selected prey larger than average from all taxa except the least profitable ones. As the active season progressed, and with a higher availability of food, the number of prey per stomach decreased and their mean ize increased. The effect of profitability on size selection decreased (June) and eventually vanished (July–August). This variation is probably related to seasonal changes in the ecology of lizards, e.g. time minimization in the breeding season as a means of saving time for nonforaging activities versus movement minimization by selecting fewer (but larger) prey in the postbreeding season. Thus, the hypothesis that maximizing profitability could be just an optional strategy for a terrestrial ectothermic vertebrate was supported by our data.  相似文献   

7.
Determinants of foraging profitability in two nectarivorous butterflies   总被引:1,自引:0,他引:1  
ABSTRACT.
  • 1 I studied flower selection and foraging energetics of Agraulis vanillae L. (Nymphalidae) and Phoebis sennae (Pieridae), two butterfly species common to north central Florida. I identified the major nectar resources exploited by several populations of these butterflies and, for each plant species, measured available nectar volumes and concentrations, corolla lengths, and density. I quantified foraging behaviour of each butterfly species at each nectar source (flower visitation rate and percentage of foraging time in flight), and used these data to estimate the net rate of energy intake of each butterfly species at each nectar source.
  • 2 Estimated mean energy contents of individual flowers of the eleven exploited plant species spanned three orders of magnitude, ranging between 0.015 and 9.27 joules. Mean energy content of individual flowers was strongly correlated with mean foraging profit of both butterfly species.
  • 3 Mean nectar volume strongly influenced energy content and varied widely within and among species, ranging from 0.0076 to 1.853 μ1. Nectar concentration varied between 17.1% and 40.4% sucrose-equivalents. Nectar volume was the best single predictor of foraging profitability (correlation coefficients of 0.994 and 0.984 for Phoebis and Agraulis respectively). Corolla length also strongly affected foraging profitability for both butterfly species; flower species with longer corollas were generally more profitable.
  • 4 Flower density and nectar concentration showed weak or nonsignificant associations with foraging profitability.
  • 5 The usefulness and limitations of these floral characteristics as bases for foraging selectivity, and the selective pressures foraging butterflies might place on the visited plants are discussed.
  相似文献   

8.
Abstract.  1. Honeybees foraging on lavender have been shown to choose inflorescences that are larger and have more flowers. If they are selecting optimally then these inflorescences should yield higher net rates of energy gain. The number and distribution of flowers within inflorescences is a complex function of age, however, which might itself influence nectar quality and availability.
2. Sampling of the overnight nectar secretion of visited and unvisited inflorescences showed that younger inflorescences with more flowers produced more sugar per flower and had fewer unproductive flowers than other inflorescences, but the size of the inflorescence had no effects.
3. Overall display size attracted bees to inspect inflorescences, as inflorescences that were inspected but rejected were larger and/or had larger or more bracts than those that were ignored. Bees, however, accepted more productive inflorescences based on different cues: inflorescence age and number of flowers.
4. Inflorescence choice thus appeared to reflect a two-stage decision process based on different morphological criteria at each stage.  相似文献   

9.
An aspect of the round dance, called RATE, was used as quantification of 15 honey bees' (Apis mellifera) perceptions of caloric costs and intakes experienced while foraging at artificial flowers. Caloric intake per floral visit (CALGAIN) was manipulated by varying sucrose concentration. Both flight and handling costs per floral visit (CALCOST) were manipulated. Multiple linear regression analysis was used to quantify the relationship between the dependent variable, RATE, and the two energy variables. There was significant variation among bees in dance behaviour. However, the absolute magnitude of the CLACOST coefficients tended to be larger than CALGAIN coefficients; bees may weight perceptions of costs in relation to intakes. Honey bees were presented with a series of binary choices between yellow or blue tubular artificial flowers in order to assess how cost-intake information is used to make choices among flowers. In eight experiments the 2 flowers had different combinations of volume of sucrose (intake) and tube depth (handling cost). Results are consistent with an assessment of rate of net caloric intake, although they are likely consistent with other possible assessments.  相似文献   

10.
Male and female nectar robbers may show significantly different behaviour on host plants and thus have different impacts on reproductive fitness of the plants. A 4-year study in natural populations of Glechoma longituba has shown that male carpenter bees (Xylocopa sinensis) are responsible for most of the nectar robbing from these flowers, while female bees account for little nectar robbing, demonstrating distinct behavioural differentiation between male and female bees in visiting flowers. The smaller male bee spends less time visiting a single flower than the larger female bee, consequently, the male bee is capable of visiting more flowers per unit time and has a higher foraging efficiency. Moreover, the robbing behaviour of female carpenter bees is more destructive and affects flower structures (ovules and nectaries) and floral life-span more than that of the male bee. According to the energy trade-off hypothesis, the net energy gain for male bees during nectar robbing greatly surpasses energy payout (17.72 versus 2.43 J), while the female bee net energy gain is barely adequate to meet energy payout per unit time (3.78 versus 2.39 J). The differences in net energy gain for male and female bees per unit time in nectar robbing are the likely cause of observed behavioural differences between the sexes. The differences in food resource preference between male and female bees constitute an optimal resource allocation pattern that enables the visitors to utilise floral resources more efficiently.  相似文献   

11.
1. Honeybees Apis mellifera ligustica were trained to work on a patch with artificial rewarding and non-rewarding flowers, coupled to an air extractor. The perceptual colour distance between the rewarding and the non-rewarding flowers was varied and the flower choice and the repellent scent-marking behaviour of the bees were recorded. 2. The discrimination between rewarding and non-rewarding flowers depended on their colour distance, improving with a greater colour difference. This task was guided thus visually and was not affected by activating the air extractor. 3. The scent-marking activity was only observable when the colour information of both groups of flowers was the same or very similar. This thus represents the first reported case of a modulation of an olfactory activity through the visual input provided by colour distances. When the air extractor was activated, rejections associated with the scent-marking behaviour disappeared, thus confirming the olfactory nature of this behaviour. 4. Honeybees are thus capable of using one or more sensory cues to enhance their foraging efficiency, according to the environmental situation. This great plasticity allows them to attain an enhanced efficiency while foraging. 5. We successfully applied the model of colour choice behaviour of the honeybee. Since the original theory was developed for Apis mellifera carnica, this work also constitutes the first attempt to describe the behaviour of the honeybee race, Apis mellifera ligustica, using the postulated model, and reaffirms thus its generality.  相似文献   

12.
Although many studies have been published on avian fruit selection, few have addressed the effects of fruit scarcity on the patterns of fruit choice. Here, we compared the consumption of seven bird species for six simultaneously present maturation stages of Goupia glabra fruits. Ripe G. glabra fruits contain more lipids, carbohydrates and energy, and fewer phenols, than unripe fruits. All bird species selected from among ripening stages and removed a higher proportion of ripe fruits than of intermediate or unripe fruits. Importantly, however, fruit choice was flexible in all species. Whether birds preferred or avoided fruits of intermediate ripeness depended on the overall fruit supply. When ripe fruits were scarce, birds showed a higher acceptance of fruits of intermediate ripeness, but still rejected the least ripe fruit stages. In a foraging bout, most birds fed on fruits of the same ripeness. By doing so, birds maximised instantaneous energy gain per time, because search time was longer for riper fruits while energy intake was lower for less ripe fruits. The results suggest that birds select fruits based on fine-scale differences in profitability, but accept less profitable fruits during low fruit abundance. If environmental factors such as overall fruit availability influence avian fruit choice, we suggest that the potential for directional selective pressures on fruit compounds is restricted.  相似文献   

13.
Patch Choice Decisions among Ifaluk Fishers   总被引:2,自引:0,他引:2  
Studies of patch choice decisions among human foragers have failed to explain why foragers do not exclusively exploit the patch with the highest mean profitability. One possible explanation is that profitability rankings are likely to vary daily; however, this instability is not captured when profitabilities are calculated as a sampled average over a longer time span. Here I present data on the patch choice decisions of Ifaluk fishers to evaluate whether men are responding to daily variation in the profitability of their primary fishing patch. Results show that men choose to fish most frequently in the patch with the highest mean profitability. Men fish in alternative patches (alternative from the most profitable patch) when, on that morning or the previous day, return rates in the most profitable patch are lower than the overall mean per capita return rate of alternative patches. Results also indicate that when fishers pursue alternative patches after fishing in the patch with the highest profitability, their mean per capita return rates are generally higher in the alternative patches exploited. However, variance in the profitability of the most profitable patch cannot explain why men exploit two patches, the Nine-mile reef and the dogtoothed tuna patch, which on average have very low profitability. These results and directions for future research are discussed. [Keywords: human behavioral ecology, patch choice decisions, Micronesia]  相似文献   

14.
We examined the effects of floral reward level and spatial arrangement on the propensity of bumble bees to exhibit flower constancy. In three separate experiments, we compared the flower constancy of bees on dimorphic arrays of blue and yellow flowers that differed either in reward concentration, reward volume, or inter‐flower distance. Overall, flower choice patterns varied among bees, ranging from random selection to complete constancy. When flowers contained greater reward volumes and were spaced farther apart, bees showed less flower constancy and more moves to closely neighbouring flowers. Changes in reward concentration had no effect on flower constancy; however, more dilute rewards produced shorter flight times between flowers. In addition, there was a strong positive relationship between degree of flower constancy and net rate of energy gain when flowers were spaced farther apart, indicating that constant bees were more economic foragers than inconstant bees. Together, these results support the view that the flower constancy of pollinators reflects an economic foraging decision.  相似文献   

15.
Summary Pollen-collecting bumble bees (Bombus spp.) detect differences between individual flowers in pollen availability and alter their behavior to capitalize on rewarding flowers. Specific responses by bees to increased pollen availability included: longer visits to flowers; visits to more flowers within an inflorescence, including an increased frequency of revisits; an increased likelihood of grooming while the bee flow between flowers within the inflorescence; and more protracted inter-flower flights, probably because of longer grooming bouts. The particular suite of responses that a bee adopted depended on the pollen-dispensing mechanism of the plant species involved. Bees buzzed previously-unvisited Dode-catheon flowers longer than empty flowers. In contrast, pollen availability did not significantly affect the duration of visits to Lupinus flowers, which control the amount of pollen that can be removed during a single visit. Simulation results indicate that the observed movement patterns of bumble bees on Lupinus inflorescences would return the most pollen per unit of expended energy. The increased foraging efficiency resulting from facultative responses by bees to variation in pollen availability, especially changes in the frequency and intensity of grooming, could correspondingly decrease pollen dispersal between plants.  相似文献   

16.
According to the energy maximization premise an animal shouldchoose its diet to maximize its net energy gain per unit handlingtime (E/Tb). Previous studies on adult marine gastropods haveshown this index of profitability to be a monotonicaUy increasingfunction of prey size, yet they select smaller, apparently sub-optimalprey. Laboratory experiments were used to investigate the profitabilityof different sized mussels, as prey, to juvenile Nucella lapillususing two separate criteria. First the ability to promote growthand second the more usual energy gain per unit handling time. The major difference between the two measures of prey valuewas that E/Th predicted an optimum prey size larger than thegrowth rate model. Selection experiments were used to comparepreferences exhibited by developing Nucella with the spectraof profitability defined from the two models. In general thewhelks' choice of prey size was best predicted by the growthrate model of prey value. Field studies illustrated a functionalrelationship between size of mussel eaten and size of whelk,the mean size of mussel eaten again conformed more closely tomaximization of growth rate. The energetic return in the E/Th model is generally taken asthe amount of food ingested, however gross growth efficiencywas found to be a decreasing function of ingestion rate. Sinceingestion rate was an increasing function of prey size, theE/Th model overestimated the value of large prey by ignoringthe efficiency with which food is used by the predator.  相似文献   

17.
This study assessed the cannibalistic behaviour of juvenile barramundi Lates calcarifer and examined the relationship between prey size selection and energy gain of cannibals. Prey handling time and capture success by cannibals were used to estimate the ratio of energy gain to energy cost in prey selection. Cannibals selected smaller prey despite its capability of ingesting larger prey individuals. In behavioural analysis, prey handling time significantly increased with prey size, but it was not significantly affected by cannibal size. Conversely, capture success significantly decreased with the increase of both prey and cannibal sizes. The profitability indices showed that the smaller prey provides the most energy return for cannibals of all size classes. These results indicate that L. calcarifer cannibals select smaller prey for more profitable return. The behavioural analysis, however, indicates that L. calcarifer cannibals attack prey of all size at a similar rate but ingest smaller prey more often, suggesting that prey size selection is passively orientated rather than at the predator's choice. The increase of prey escape ability and morphological constraint contribute to the reduction of intracohort cannibalism as fish grow larger. This study contributes to the understanding of intracohort cannibalism and development of strategies to reduce fish cannibalistic mortalities.  相似文献   

18.
To test the effects of food value on the flower choice, individual honeybees (Apis mellifera) were offered a choice of 25 % sucrose solution (SS) and 1 of 6 different SSs, ranging from 5 % to 50 % SS, at either a low or a high flower density. Artificial flowers were filled with each SS. The honeybees showed a stronger preference for a concentrated SS to a diluted SS at a high than at a low flower density, and the degree of preference was positively correlated to the difference in the sucrose concentration between paired SSs. These foraging patterns were consistent with qualitative predictions from optimal foraging theory. Furthermore, it was found that experience in feeding on a concentrated SS lowered the foraging motivation for a diluted SS at the high flower density, but not at the low flower density. I discuss the effects of food density, food profitability and experience on the foraging behaviour of honeybees.  相似文献   

19.
Summary Observations of the foraging behavior of six captive dark-eyed juncos (Junco hyemalis) are used to test the assumptions and predictions of optimal diet choice models (Pyke et al. 1977) that include nutrients (Pulliam 1975). The birds sequentially encountered single seeds of niger thistle (Guizotia abyssinica) and of canary grass (Phalaris canariensis) on an artificial substrate in the laboratory. Niger thistle seeds were preferred by all birds although their profitability in terms of energy intake (J/s) was less than the profitability of canary grass seeds. Of four nutritional components used to calculate profitabilities (mg/s) lipid content was the only characteristic that could explain the junco's seed preference. As predicted by optimal diet theory the probability of consuming niger thistle seeds was independent of seed abundance. However, the consumption of 71–84% rather than 100% of the seeds encountered is not consistent with the prediction of all-or-nothing selection. Canary grass seeds were consumed at a constant rate (no./s) independent of the number of seeds encountered. This consumption pattern invalidates a model that assumes strict maximization. However, it is consistent with the assumption that canary grass seeds contain a nutrient which is required in minimum amounts to meet physiological demands (Pulliam 1975). These experiments emphasize the importance of incorporating nutrients into optimal foraging models and of combining seed preference studies with studies of the metabolic requirements of consumers.  相似文献   

20.
Summary The foraging behaviour of non-flying nectar feeding mammals has been examined rarely. The exudivorous yellow-bellied glider (Petaurus australis) was observed to feed extensively (70% of the total feeding observation time) on the nectar of all species of Eucalyptus present at a site in southeastern Australia. Gliders harvested nectar, and presumably pollen also, whenever eucalypt flowers were available and selected trees with 2–3 times as many flowers as that on trees randomly selected along a transect. The abundance of flowering trees varied temporally and, at times when few flowering trees were present, gliders chose trees with fewer flowers than at times when flowering trees were abundant. When flowering trees were superabundant or scarce, there was no relationship between the number of flowers in a tree and the duration of visits by gliders. However, at intermediate levels of abundance, the amount of time a glider spent in a tree was related to the number of flowers in a tree. Gliders devoted 90% of the time outside their dens to foraging and the above relationship is suggested to reflect two foraging options which maximize net energy gain for different abundances of flowering trees. Although gliders spent considerable lengths of time in individual trees feeding, initial deposition of cross pollen when gliders first arrive in a tree may be substantial and thus, may provide significant amounts of outcrossing for these eucalypts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号