首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 40 notochord cells of the ascidian tadpole invariably arise from two different lineages: the primary (A-line) and the secondary (B-line) lineages. It has been shown that the primary notochord cells are induced by presumptive endoderm blastomeres between the 24-cell and the 64-cell stage. Signaling through the fibroblast growth factor (FGF) pathway is required for this induction. We have investigated the role of the bone morphogenetic protein (BMP) pathway in ascidian notochord formation. HrBMPb (the ascidian BMP2/4 homologue) is expressed in the anterior endoderm at the 44-cell stage before the completion of notochord induction. The BMP antagonist Hrchordin is expressed in a complementary manner in all surrounding blastomeres and appears to be a positive target of the BMP pathway. Unexpectedly, chordin overexpression reduced formation of both primary and secondary notochord. Conversely, primary notochord precursors isolated prior to induction formed notochord in presence of BMP-4 protein. While bFGF protein had a similar activity, notochord precursors showed a different time window of competence to respond to BMP-4 and bFGF. Our data are consistent with bFGF acting from the 24-cell stage, while BMP-4 acts during the 44-cell stage. However, active FGF signaling was also required for induction by BMP-4. In the secondary lineage, notochord specification also required two inducing signals: an FGF signal from anterior and posterior endoderm from the 24-cell stage and a BMP signal from anterior endoderm during the 44-cell stage.  相似文献   

2.
Cell lineages during development of ascidian embryos were analyzed by injection of horseradish peroxidase as a tracer enzyme into identified cells at the one-, two-, four-, and eight-cell stages of the ascidians, Halocynthia roretzi, Ciona intestinalis, and Ascidia ahodori. Identical results were obtained with eggs of the three different species examined. The first cleavage furrow coincided with the bilateral symmetry plane of the embryo. The second furrow did not always divide the embryo into anterior and posterior halves as each of the anterior and posterior cell pairs gave rise to different tissues according to their destinies, which became more definitive in the cell pairs at the eight-cell stage. Of the blastomeres constituting the eight-cell stage embryo, the a4.2 pair (the anterior animal blastomeres) differentiated into epidermis, brain, and presumably sense organ and palps. Every descendant cell of the b4.2 pair (the posterior animal blastomeres) has been thought to become epidermis; however, the horseradish peroxidase injection probe revealed that the b4.2 pair gave rise to not only epidermis but also muscle cells at the caudal tip region of the developing tailbud-stage embryos. The A4.1 pair (the anterior vegetal blastomeres) developed into endoderm, notochord, brain stem, spinal cord, and also muscle cells next the caudal tip muscle cells. From the B4.1 pair (the posterior vegetal blastomeres) originated muscle cells of the anterior and middle parts of the tail, mesenchyme, endoderm, endodermal strand, and also notochord at the caudal tip region. These results clearly demonstrate that muscle cells are derived not only from the B4.1 pair, as has hitherto been believed, but also from both the b4.2 and A4.1 pairs.  相似文献   

3.
The tail muscle cells of the ascidian tadpole larva originate from two different lineages, the B- (primary) and A- and b- (secondary) line blastomeres of the eight-cell stage embryo. The primary muscle cells assume muscle fate cell-autonomously with the involvement of a localized muscle determinant, macho-1. On the other hand, fate determination of secondary muscle cells is a non-cell-autonomous process that depends on cellular interactions. In this paper, we investigated the mechanisms underlying fate specification of secondary muscle cells in Halocynthia roretzi. We found that FGF and Wnt5 signals were required. In contrast, the Nodal signal, which is required for specification of A-line muscle cells in another ascidian, Ciona intestinalis, was not necessary for the formation of any secondary muscle cells in Halocynthia embryo. Therefore, Halocynthia and Ciona show distinctly different mechanisms for generation of the secondary lineages, despite the fact that embryogenesis appears very similar between these species. We also found that the mechanisms involved in specification of A- and b-line muscle cells were distinct in that the required timing of the FGF signal for the A-line muscle cells preceded that for the b-line. Moreover, the inducer blastomeres for specification of these two lineages were different. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Animal, vegetal, dorsal and ventral blastomeres of eight-cell embryos of the urodele Pleurodeles waltlii were isolated and cultured for 15 days. The four animal blastomeres produced vesicles delimited by an irregularly shaped epidermis. In all other explants, the formation of mesodermal structures occurred, which can be interpreted as the result of inductive interaction, occurring during segmentation, between the ectodermal animal cap and vegetal yolk mass. Primordial germ cells (PGCs), which formed in 78% of cases when the presumptive ventral half to the embryo was cultured, occurred in only 48% of cases when the two ventral vegetal blastomeres were cultured alone. The absence of PGCs in the explants emanating from the four vegetal blastomeres is thought to have been due to inhibition of differentiation by notochord. This hypothesis has been confirmed by culture experiments in which the addition of presumptive chordomesoderm of young gastrulae prevented the differentiation of PGCs under conditions in which they are normally formed. These observations suggest that, in urodeles, PGCs do not arise from cells segregated as early as the eight-cell stage, but are the product of later inductive interaction between ectoderm and endoderm.  相似文献   

5.
Muscle cells of the ascidian larva originate from three different lines of progenitor cells, the B-line, A-line and b-line. Experiments with 8-cell embryos have indicated that isolated blastomeres of the B-line (primary) muscle lineage show autonomous development of a muscle-specific enzyme, whereas blastomeres of the A-line and b-line (secondary) muscle lineage rarely develop the enzyme in isolation. In order to study the mechanisms by which different lines of progenitors are determined to give rise to muscle, blastomeres were isolated from embryos of Halocynthia roretzi at the later cleavage stages when conspicuous restriction of the developmental fate of blastomeres had already occurred. Partial embryos derived from B-line muscle-lineage cells of the 64-cell embryo (B7.4, B7.5 and B7.8) showed autonomous expression of specific features of muscle cells (acetylcholinesterase, filamentous actin and muscle-specific antigen). In contrast, b-line muscle-lineage cells, even those isolated from the 110-cell embryo (b8.17 and b8.19), did not express any muscle-specific features, even though their developmental fate was mainly restricted to generation of muscle. Isolated A-line cells from the 64-cell embryos (A7.8) did not show any features of muscle differentiation, whereas some isolated A-line cells from the 110-cell embryos (A8.16) developed all three above-mentioned features of muscle cells. This transition was shown to occur during the eighth cell cycle. These results suggest that the mechanism involved in the process of determination of the secondary-lineage muscle cells differs from that of the primary-lineage muscle cells. Interaction with cells of other lineages may be required for the determination of secondary precursors to muscle cells. The presumptive b-line and A-line muscle cells that failed to express muscle-specific features in isolation did not develop into epidermal cells. Thus, although interactions between cells may be required for muscle determination in secondary lineages, the process may represent a permissive type of induction and may differ from the processes of induction of mesoderm in amphibian embryos.  相似文献   

6.
7.
Ascidian tadpole larvae have a similar dorsal tubular nervous system as vertebrates. The induction of brain formation from a4.2-derived (a-line) cells requires signals from the A4.1-derived (A-line) cells. However, little is known about the mechanism underlying the development of the larval peripheral nervous system due to the lack of a suitable molecular marker. Gelsolin, an actin-binding protein, is specifically expressed in epidermal sensory neurons (ESNs) that mainly constitute the entire peripheral nervous system of the ascidian young tadpoles. Here, we address the role of cell interactions in the specification of ESNs using immunostaining with an anti-gelsolin antibody. Animal half (a4.2- and b4.2-derived) embryos did not give rise to any gelsolin-positive neurons, indicating that differentiation of ESNs requires signals from vegetal cells. Cell isolation experiments showed that A4.1 blastomeres induce gelsolin-positive neurons from a-line cells but not from b4.2-derived (b-line) cells. On the other hand, B4.1 blastomeres induce gelsolin-positive neurons both from b-line cells and a-line cells. This is in sharp contrast to the specification of brain cells which is not affected by the ablation of B4.1-derived (B-line) cells. Furthermore, basic fibroblast growth factor (bFGF) induced ESNs from the a-line cells and b-line cells in the absence of vegetal cells. Their competence to form ESNs was lost between the 110-cell stage and the neurula stage. Our results suggested that the specification of the a-line cells and b-line cells into ESNs is controlled by distinct inducing signals from the anterior and posterior vegetal blastomeres. ESNs in the trunk appear to be derived from the a8.26 blastomeres aligning on the edge of presumptive neural region where ascidian homologue of Pax3 is expressed. These findings highlight the close similarity of ascidian ESNs development with that of vertebrate placode and neural crest.  相似文献   

8.
9.
The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.  相似文献   

10.
For testing the autonomic differentiation abilities of dorsal equatorial blastomeres of 32-cell Xenopus embryos, their roles in head formation in normal development and the organizer-inducing capabilities of the dorsal-most vegetal cells, interspecific transplantations were made using Xenopus borealis and X. laevis . When transplanted into the ventral region, the dorsal blastomeres produced descendants that differentiated into prechordal mesoderm, notochord and somites in the recipient according to their fates. They induced formation of the secondary embryo with the head and tail. The prechordal mesoderm and notochord in the secondary structure consisted of progeny of the graft, whereas somites and the CNS were chimeric and the pronephros was composed of host cells. Replacement of the dorsal blastomeres by ventral equatorial cells caused complete arrest of head formation in the recipient. Without exception, the notochord was completely absent or very thin. These results confirm the assumption that the presumptive head organizer in the Xenopus embryo is localized in the dorsal equatorial region at the 32-cell stage and comes into existence not under the inductive influence of the dorsal-most vegetal cells, but owing to allocation of morphogenetic determinants residing in the fertilized egg to the dorsal equatorial blastomeres of the 32-cell embryo.  相似文献   

11.
Ascidians are invertebrate chordates with a larval body plan similar to that of vertebrates. The ascidian larval CNS is divided along the anteroposterior axis into sensory vesicle, neck, visceral ganglion and tail nerve cord. The anterior part of the sensory vesicle comes from the a-line animal blastomeres, whereas the remaining CNS is largely derived from the A-line vegetal blastomeres. We have analysed the role of the Ras/MEK/ERK signalling pathway in the formation of the larval CNS in the ascidian, Ciona intestinalis. We show evidence that this pathway is required, during the cleavage stages, for the acquisition of: (1) neural fates in otherwise epidermal cells (in a-line cells); and (2) the posterior identity of tail nerve cord precursors that otherwise adopt a more anterior neural character (in A-line cells). Altogether, the MEK signalling pathway appears to play evolutionary conserved roles in these processes in ascidians and vertebrates, suggesting that this may represent an ancestral chordate strategy.  相似文献   

12.
Mesodermal determinants were investigated by cytoplasmic transfer and blastomere isolation in the eight-cell stage of Bufo arenarum. Their existence was confirmed by assaying the subequatorial cytoplasm’s ability to respecify the developmental potency of animal quartets. The gray subequatorial cytoplasm, but not animal cytoplasm, is able to divert the ectodermal fate of animal quartets to several mesodermal components. The source of the transplanted cytoplasm was important in determining the category of the resulting structures. Ventral subequatorial cytoplasm from ventrovegetal blastomeres generated ventral derivatives, namely erythrocytes and mesenchyma. Dorsal subequatorial cytoplasm from dorsovegetal blastomeres produced dorsolateral derivatives, such as notochord, muscle, nephric tubules, and coelomic epithelium, including mesenchyma. On the other hand, transfer of vegetal pole cytoplasm to animal quartets resulted in the formation of groups of endoderm-like cells dispersed among epidermal cells. However, the presence of such cells did not cause any mesodermal induction. The present findings suggest the existence of cytoplasmic information responsible for mesodermal specification. The alternative hypothesis that animal blastomeres become mesoderm due to vegetal induction is questioned. Received: 9 October 1998 / Accepted: 10 March 1999  相似文献   

13.
The ascidian larva contains tubular neural tissue, one of the prominent anatomical features of the chordates. The cell-cleavage pattern and cell maps of the nervous system have been described in the ascidian larva in great detail. Cell types in the neural tube, however, have not yet been defined due to the lack of a suitable molecular marker. In the present work, we identified neuronal cells in the caudal neural tube of theHalocynthiaembryo by utilizing a voltage-gated Na+channel gene, TuNa I, as a molecular marker. Microinjection of a lineage tracer revealed that TuNa I-positive neurons in the brain and in the trunk epidermis are derived from the a-line of the eight-cell embryo, which includes cell fates to epidermal and neural tissue. On the other hand, TuNa I-positive cells in the more caudal part of the neural tissue were not stained by microinjection into the a-line. These neurons are derived from the A-line, which contains fates of notochord and muscle, but not of epidermis. Electron microscopic observation confirmed that A-line-derived neurons consist of motor neurons innervating the dorsal and ventral muscle cells. Isolated A-line blastomeres have active membrane excitability distinct from those of the a-line-derived neuronal cells after culture under cleavage arrest, suggesting that the A-line gives rise to a neuronal cell distinct from that of the a-lineage. TuNa I expression in the a-line requires signals from another cell lineage, whereas that in the A-line occurs without tight cell contact. Thus, there are at least two distinct neuronal lineages with distinct cellular behaviors in the ascidian larva: the a-line gives rise to numerous neuronal cells, including sensory cells, controlled by a mechanism similar to vertebrate neural induction, whereas A-line cells give rise to motor neurons and ependymal cells in the caudal neural tube that develop in close association with the notochord or muscle lineage, but not with the epidermal lineage.  相似文献   

14.
The Notch intercellular signalling pathway is important throughout development, and its components are modulated by a variety of cellular and molecular mechanisms. Ligand and receptor trafficking are tightly controlled, although context-specific regulation of this is incompletely understood. We show that during sense organ precursor specification in Drosophila, the cell adhesion molecule Echinoid colocalises extensively with the Notch ligand, Delta, at the cell membrane and in early endosomes. Echinoid facilitates efficient Notch pathway signalling. Cultured cell experiments suggest that Echinoid is associated with the cis-endocytosis of Delta, and is therefore linked to the signalling events that have been shown to require such Delta trafficking. Consistent with this, overexpression of Echinoid protein causes a reduction in Delta level at the membrane and in endosomes. In vivo and cell culture studies suggest that homophilic interaction of Echinoid on adjacent cells is necessary for its function.  相似文献   

15.
Cell lineages during development of ascidian embryos were analyzed by injecting horseradish peroxidase as a tracer enzyme into identified cells of the 16-cell and 32-cell stage embryos of Halocynthia roretzi. Most of the blastomeres of these embryos developed more kinds of tissues than have hitherto been reported, and therefore, the developmental fates of each blastomere are more complex. It has been thought that every blastomere of the 64-cell stage ascidian embryo gives rise to only one kind of tissues, but the finding that the several blastomeres at the 32-cell stage developed into at least three different kinds of tissues, clearly indicates that the stage at which the fates of every blastomere are determined to one tissue is later than the 64-cell stage. The results also clearly demonstrate that muscle cells are derived not only from B-line cells (B5.1, B5.2, B6.3, and B6.4) but also from A-line cells (A5.2 and A6.4) and b-line cells (b5.3 and b6.5). Based on the present analysis as well as other studies, complete cell lineages of muscle cells up to their terminal differentiation have been proposed. In addition, lineages of nervous system, notochord, and epidermis are also discussed.  相似文献   

16.
Summary The 4 animal and 4 vegetal blastomeres of the eight-cell-stage ofTriturus alpestris were isolated and cultured for up to 12 days. Because of the difficulty of obtaining intact animal and vegetal blastomeres of the same embryo, we either cut off the vegetal blastomeres or sucked off the animal blastomeres. The culture of early embryonic amphibian cells is improved by the use of 50% Leibovitz-medium with added fetal calf serum providing a stable pH and optimal osmotic pressure.Isolated animal blastomeres differentiated to irregularly shaped ciliated epidermis. 30% of the cases showed small amounts of myotomes, notochord and neuroid cells in addition to irregular epidermis. The vegetal blastomeres formed trunk and tail structures but only 6% of all cases formed nearly complete head structures in addition.From the results we conclude that the vegetal blastomeres as well as the animal blastomeres of the eight-cell-stage are already determined as to their future fate. The possibility of partial regulation and the influence of asymmetric or irregular cleavage on the further development of isolated blastomeres is discussed.  相似文献   

17.
Patterning along the anteroposterior axis is a critical step during animal embryogenesis. Although mechanisms of anteroposterior patterning in the neural tube have been studied in various chordates, little is known about those of the epidermis. To approach this issue, we investigated patterning mechanisms of the epidermis in the ascidian embryo. First we examined expression of homeobox genes (Hrdll-1, Hroth, HrHox-1 and Hrcad) in the epidermis. Hrdll-1 is expressed in the anterior tip of the epidermis that later forms the adhesive papillae, while Hroth is expressed in the anterior part of the trunk epidermis. HrHox-1 and Hrcad are expressed in middle and posterior parts of the epidermis, respectively. These data suggested that the epidermis of the ascidian embryo is patterned anteroposteriorly. In ascidian embryogenesis, the epidermis is exclusively derived from animal hemisphere cells. To investigate regulation of expression of the four homeobox genes in the epidermis by vegetal hemisphere cells, we next performed hemisphere isolation and cell ablation experiments. We showed that removal of the vegetal cells before the late 16-cell stage results in loss of expression of these homeobox genes in the animal hemisphere cells. Expression of Hrdll-1 and Hroth depends on contact with the anterior-vegetal (the A-line) cells, while expression of HrHox-1 and Hrcad requires contact with the posterior-vegetal (the B-line) cells. We also demonstrated that contact with the vegetal cells until the late 32-cell stage is sufficient for animal cells to express Hrdll-1, Hroth and Hrcad, while longer contact is necessary for HrHox-1 expression. Contact with the A-line cells until the late 32-cell stage is also sufficient for formation of the adhesive papillae. Our data indicate that the epidermis of the ascidian embryo is patterned along the anteroposterior axis by multiple inductive influences from the vegetal hemisphere cells and provide the first insight into mechanisms of epidermis patterning in the chordate embryos.  相似文献   

18.
The canonical Wnt pathway plays a central role in specifying vegetal cell fate in sea urchin embryos. SpKrl has been cloned as a direct target of nuclear β-catenin. Using Hemicentrotus pulcherrimus embryos, here we show that HpKrl controls the specification of secondary mesenchyme cells (SMCs) through both cell-autonomous and non-autonomous means. Like SpKrl, HpKrl was activated in both micromere and macromere progenies. To examine the functions of HpKrl in each blastomere, we constructed chimeric embryos composed of blastomeres from control and morpholino-mediated HpKrl-knockdown embryos and analyzed the phenotypes of the chimeras. Micromere-swapping experiments showed that HpKrl is not involved in micromere specification, while micromere-deprivation assays indicated that macromeres require HpKrl for cell-autonomous specification. Transplantation of normal micromeres into a micromere-less host with morpholino revealed that macromeres are able to receive at least some micromere signals regardless of HpKrl function. From these observations, we propose that two distinct pathways of endomesoderm formation exist in macromeres, a Krl-dependent pathway and a Krl-independent pathway. The Krl-independent pathway may correspond to the Delta/Notch signaling pathway via GataE and Gcm. We suggest that Krl may be a downstream component of nuclear β-catenin required by macromeres for formation of more vegetal tissues, not as a member of the Delta/Notch pathway, but as a parallel effector of the signaling (Krl-dependent pathway).  相似文献   

19.
In the ascidian embryo, the nerve cord and notochord of the tail of tadpole larvae originate from the precursor blastomeres for both tissues in the 32-cell-stage embryo. Each fate is separated into two daughter blastomeres at the next cleavage. We have examined mechanisms that are responsible for nerve cord and notochord specification through experiments involving blastomere isolation, cell dissociation, and treatment with basic fibroblast growth factor (bFGF) and inhibitors for the mitogen-activated protein kinase (MAPK) cascade. It has been shown that inductive cell interaction at the 32-cell stage is required for notochord formation. Our results show that the nerve cord fate is determined autonomously without any cell interaction. Presumptive notochord blastomeres also assume a nerve cord fate when they are isolated before induction is completed. By contrast, not only presumptive notochord blastomeres but also presumptive nerve cord blastomeres forsake their default nerve cord fate and choose the notochord fate when they are treated with bFGF. When the FGF-Ras-MAPK signaling cascade is inhibited, both blastomeres choose the default nerve cord pathway, supporting the results of blastomere isolation. Thus, binary choice of alternative fates and asymmetric division are involved in this nerve cord/notochord fate determination system, mediated by FGF signaling.  相似文献   

20.
Secondary mesenchyme cells (SMCs) of the sea urchin embryo are composed of pigment cells, blastocoelar cells, spicule tip cells, coelomic pouch cells and muscle cells. To learn how and when these five types of SMCs are specified in the veg2 descendants, Notch or Nodal signaling was blocked with γ‐secretase inhibitor or Nodal receptor inhibitor, respectively. All types of SMCs were decreased with DAPT, while sensitivity to this inhibitor varied among them. Pulse‐treatment revealed that five types of SMCs are divided into “early” (pigment cells and blastocoelar cells) and “late” (spicule tip cells, coelomic pouch cells and muscle cells) groups; the “early” group was sensitive to DAPT up to the hatching, and the “late” group was sensitive until the mesenchyme blastula stage. Judging from timing of the shift of Delta‐expressing regions, it was suggested that the “early” group and “late” groups are derived from the lower and the middle tier of veg2 descendants, respectively. Interestingly, numbers of SMCs were also altered with SB431542; blastocoelar cells, coelomic pouch cells and circum‐esophageal muscles decreased, whereas pigment cells and spicule tip cells increased in number. Pulse‐treatment showed that the “early” group was sensitive up to the mesenchyme blastula stage, while the “late” group up to the onset of gastrulation. Thus, it became clear that precursor cells of the “early” and “late” groups, which are located in different regions in the vegetal plate, receive Delta and Nodal signals at different timings, resulting in the diversification of SMCs. Based on the obtained results, the specification processes of five types of SMCs are diagrammatically presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号