首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Extracellular Corynebacterium lipase was produced using a 2.5 L Chemap fermentor using 1300 ml fermentation medium at temperature 33 degrees C, agitator speed 50 rpm, aeration rate 1 VVM having KLa 16.21 hr(-1). Crude lipase was purified by salting out method followed by dialysis and immobilized using calcium alginate gel matrix followed by glutaraldehyde cross linking Purification process increased specific activity of enzyme from 2.76 to 114.7 IU/mg. Activity of immobilized enzyme was 107.31 IU/mg. Optimum temperature for purified and immobilized enzyme activity were 65 degrees and 50 degrees C respectively. Optimum pH was 8.0 in both the cases, Km and Vmax value for purified lipase were 111.1 micromol/min and 14.7% respectively. Ca2+ (5 mM) was found to be stimulator for enzyme activity. Immobilized lipase retained 68.18% of the original activity when stored for 40 days.  相似文献   

2.
A novel extra-cellular lipase from Bacillus coagulans MTCC-6375 was purified 76.4-fold by DEAE anion exchange and Octyl Sepharose chromatography. The purified enzyme was found to be electrophoretically pure by denaturing gel electrophoresis and possessed a molecular mass of approximately 103 kDa. The lipase was optimally active at 45 degrees C and retained approximately 50% of its original activity after 20 min of incubation at 55 degrees C. The enzyme was optimally active at pH 8.5. Mg2+, Cu2+, Ca2+, Hg2+, Al3+, and Fe3+ at 1mM enhanced hydrolytic activity of the lipase. Interestingly, Hg2+ ions resulted in a maximal increase in lipase activity but Zn2+ and Co2+ ions showed an antagonistic effect on this enzyme. EDTA at 150 mM concentration inhibited the activity of lipase but Hg2+ or Al3+ (10mM) restored most of the activity of EDTA-quenched lipase. Phenyl methyl sulfonyl fluoride (PMSF, 15 mM) decreased 98% of original activity of lipase. The lipase was more specific to p-nitrophenyl esters of 8 (pNPC) and 16 (pNPP) carbon chain length esters. The lipase had a Vmax and Km of 0.44 mmol mg(-1)min(-1) and 28 mM for hydrolysis of pNPP, and 0.7 mmol mg(-1)min(-1) and 32 mM for hydrolysis of pNPC, respectively.  相似文献   

3.
从海洋中分离的弧菌QY102褐藻胶裂解酶的纯化和性质研究   总被引:6,自引:1,他引:5  
从马尾藻(Sargassum)表面分离到一株产生高效胞外褐藻胶裂解酶的海洋弧菌(Vibrio sp.) QY102。以褐藻胶为唯一碳源发酵培养后,发酵液上清通过0.22μm滤膜过滤、DEAESepharose离子交换和Superdex75凝胶过滤得到电泳纯的褐藻胶裂解酶。酶的性质研究表明:其分子量约为28.5kD(SDSPAGE),反应最适温度为40℃,最适pH为7.1,Ca2+、Mg2+对酶活有促进作用,而Ni2+、Al3+、Zn2+、Ba2+对酶活有抑制作用。该酶的活性明显高于已报道的褐藻胶裂解酶,pH稳定范围广(5~10),并且对聚甘露糖醛酸的活性高于对聚古罗糖醛酸的活性。  相似文献   

4.
A thermophilic isolate Bacillus coagulans BTS-3 produced an extracellular alkaline lipase, the production of which was substantially enhanced when the type of carbon source, nitrogen source, and the initial pH of culture medium were consecutively optimized. Lipase activity 1.16 U/ml of culture medium was obtained in 48 h at 55 degrees C and pH 8.5 with refined mustard oil as carbon source and a combination of peptone and yeast extract (1:1) as nitrogen sources. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The enzyme showed maximum activity at 55 degrees C and pH 8.5, and was stable between pH 8.0 and 10.5 and at temperatures up to 70 degrees C. The enzyme was found to be inhibited by Al3+, Co2+, Mn2+, and Zn2+ ions while K+, Fe3+, Hg2+, and Mg2+ ions enhanced the enzyme activity; Na+ ions have no effect on enzyme activity. The purified lipase showed a variable specificity/hydrolytic activity towards various 4-nitrophenyl esters.  相似文献   

5.
A lipase from the thermophilic isolate Bacillus coagulans BTS-3 was produced and purified. The enzyme was purified 40-fold to homogeneity by ammonium sulfate precipitation and DEAE-Sepharose column chromatography. Its molecular weight was 31 kDa on SDS-PAGE. The purified lipase was immobilized on silica and its binding efficiency was found to be 60%. The enzyme took 60 min to bind maximally onto the support. The pH and temperature optima of immobilized lipase were same as those of the free enzyme, i.e. 8.5 and 55 degrees C, respectively. The immobilized enzyme had shown marked thermostability on the elevated temperatures of 55, 60, 65 and 70 degrees C. The immobilized enzyme was reused for eigth cycles as it retained almost 80% of its activity. The catalytic activity of immobilized enzyme was enhanced in n-hexane and ethanol. The immobilized enzyme when used for esterification of ethanol and propionic acid showed 96% conversion in n-hexane in 12 h at 55 degrees C.  相似文献   

6.
An extracellular alkaline lipase of a thermo tolerant Bacillus coagulans BTS-3 was immobilized onto glutaraldehyde activated Nylon-6 by covalent binding. Under optimum conditions, the immobilization yielded a protein loading of 228 microg/g of Nylon-6. Immobilized enzyme showed maximum activity at a temperature of 55 degrees C and pH 7.5. The enzyme was stable between pH 7.5-9.5. It retained 88% of its original activity at 55 degrees C for 2h and also retained 85% of its original activity after eight cycles of hydrolysis of p-NPP. Kinetic parameters Km and Vmax were found to be 4mM and 10 micromol/min/ml, respectively. The influence of organic solvents on the catalytic activity of immobilized enzyme was also evaluated. The bound lipase showed enhanced activity when exposed to n-heptane. The substrate specificity of immobilized enzyme revealed more efficient hydrolysis of higher carbon length (C-16) ester than other ones.  相似文献   

7.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

8.
疏绵状嗜热丝孢菌热稳定几丁质酶的纯化及其性质研究   总被引:7,自引:1,他引:6  
采用硫酸铵沉淀、DEAE SepharoseFastFlow阴离子层析、Phenyl Sepharose疏水层析等步骤获得了凝胶电泳均一的疏绵状嗜热丝孢菌 (Thermomyceslanuginosus)几丁质酶。经SDS PAGE和凝胶过滤层析测得纯酶蛋白的分子量在 4 8~ 4 9 .8kD之间。该酶反应的最适温度和最适pH分别为 5 5℃和 4 5 ,在pH4 5条件下 ,该酶在 5 0℃以下稳定 ;6 5℃的半衰期为 2 5min ;70℃保温 2 0min后 ,仍保留 2 4 %的酶活性。其N 端氨基酸序列为AQGYLSVQYFVNWAI。金属离子对几丁质酶的活性影响较大 ,Ca2 、Na 、K 、Ba2 对酶有激活作用 ;Ag 、Fe2 、Cu2 、Hg2 对酶有显著的抑制作用 ;以胶体几丁质为底物的Km 和Vmax值分别为 9 .5 6mg mL和 2 2 . 12 μmol min。抗菌活性显示 ,该酶对供试病原菌有不同程度的抑制作用。  相似文献   

9.
The mature lipase LipA and its 56aa-truncated chaperone DeltaLipBhis (with 6xhis-tag) from Ralstonia sp. M1 were over-expressed in Escherichia coli BL21 under the control of T7 promoter with a high level of 70 and 12mg protein per gram of wet cells, respectively. The simply purified lipase LipA was effectively refolded by Ni-NTA purified chaperone DeltaLipBhis in molar ratio 1:1 at 4 degrees C for 24 hours in H2O. The in vitro refolded lipase LipA had an optimal activity in the temperature range of 50-55 degrees C and was stable up to 45 degrees C with more than 84% activity retention. The maximal activity was observed at pH 10.75 for hydrolysis of olive oil and found to be stable over alkaline pH range 8.0-10.5 with more than 52% activity retention. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine (remaining activity 137-334%), but inhibited by 1-butanol and acetonitrile (40-86%). Metal ions Cu2+, Sn2+, Mn2+, Mg2+, and Ca2+ stimulated the lipase slightly with increase in activity by up to 22%, whereas Zn2+ significantly inhibited the enzyme with the residual activity of 30-65% and Fe3+ to a lesser degree (activity retention of 77-86%). Tween 80, Tween 60, and Tween 40 induced the activation of the lipase LipA (222-330%) and 0.2-1% (w/v) of Triton X-100, X-45, and SDS increased the lipase activity by up to 52%. However, 5% (w/v) of Triton X-100, X-45, and SDS inhibited strongly the activity by 31-89%. The inhibitors including DEPC, EDTA, PMSF, and 2-mercaptoethanol (0.1-10mM) inhibited moderately the lipase with remaining activity of 57-105%. The lipase LipA hydrolyzed a wide range of triglycerides, but preferentially short length acyl chains (C4 and C6). In contrast to the triglycerides, medium length acyl chains (C8 and C14) of p-nitrophenyl (p-NP) esters were preferential substrates of this lipase. The enzyme preferentially catalyzed the hydrolysis of cottonseed oil (317%), cornoil (227%), palm oil (222%), and wheatgerm oil (210%) in comparison to olive oil (100%).  相似文献   

10.
Aminopeptidase B, an arginyl aminopeptidase, was purified from goat brain with a purification factor of ~280 and a yield of 2.7%. It was entrapped in calcium alginate together with bovine serum albumin. The optimal conditions for immobilization for maximum activity yield were 1% CaCl2 and 2.5% alginate. The immobilized enzyme retained ~62% of its initial activity and could be used for five successive batch reactions with retention of 30% of the initial activity. The pH and temperature optima of the free and immobilized enzyme were pH 7.4, 45°C and pH 7.8, 50°C respectively, while the pH and thermal stability as well as the stability of the enzyme in organic solvents were improved significantly after entrapment. The Km value for the immobilized enzyme was about twofold higher than that of the soluble enzyme. Because of this increased stability, the immobilized enzyme may be useful in the meat processing industry.  相似文献   

11.
Silanized palygorskite for lipase immobilization   总被引:2,自引:0,他引:2  
Lipase from Candida lipolytica has been immobilized on 3-aminopropyltriethoxysilane-modified palygorskite support. Scanning electron micrographs proved the covalently immobilization of C. lipolytica lipase on the palygorskite support through glutaraldehyde. Using an optimized immobilization protocol, a high activity of 3300 U/g immobilized lipase was obtained. Immobilized lipase retained activity over wider ranges of temperature and pH than those of the free enzyme. The optimum pH of the immobilized lipase was at pH 7.0–8.0, while the optimum pH of free lipase was at 7.0. The retained activity of the immobilized enzyme was improved both at lower and higher pH in comparison to the free enzyme. The immobilized enzyme retained more than 70% activity at 40 °C, while the free enzyme retained only 30% activity. The immobilization stabilized the enzyme with 81% retention of activity after 10 weeks at 30 °C whereas most of the free enzyme was inactive after a week. The immobilized enzyme retains high activity after eight cycles. The kinetic constants of the immobilized and free lipase were also determined. The Km and Vmax values of immobilized lipase were 0.0117 mg/ml and 4.51 μmol/(mg min), respectively.  相似文献   

12.
耐冷皮壳正青霉一种木聚糖酶的纯化与性质研究   总被引:1,自引:0,他引:1  
研究了耐冷皮壳正青霉Eupenicillium crustaceum一种木聚糖酶的纯化和酶学性质。采用硫酸铵沉淀和阴离子交换层析的方法,从耐冷皮壳正青霉液体发酵液中分离纯化出一种亚基分子量35kDa的木聚糖酶。酶学性质研究表明,酶的最适pH值为5.5,在pH4.5-6.5范围内具有较高的催化活性。最适温度为50℃,20℃下酶活为最高酶活的40%。Ag+和Fe2+大幅度提高木聚糖酶的酶活,而Mn2+和Hg2+强烈抑制木聚糖酶的活性。同时,该木聚糖酶具有严格的底物特异性。  相似文献   

13.
Overexpression and characterization of a lipase from Bacillus subtilis   总被引:5,自引:0,他引:5  
A novel plasmid, pBSR2, was constructed by incorporating a strong lipase promoter and a terminator into the original pBD64. A mature lipase gene from Bacillus subtilis strain IFFI10210, an existing strain for lipase expression, was cloned into the plasmid pBSR2 and transformed into B. subtilis A.S.1.1655. Thus, an overexpression strain, BSL2, was obtained. The yield of lipase is about 8.6 mg protein/g of wet weight of cell mass and 100-fold higher than that in B. subtilis strain IFFI10210. The recombinant lipase was purified in a three-step procedure involving ammonium sulfate fractionation, ion exchange, and gel filtration chromatography. Characterizations of the purified enzyme revealed a molecular mass of 24 kDa in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, maximum activity at 43 degrees C and pH 8.5 for hydrolysis of p-nitrophenyl caprylate. The values of Km and Vm were found to be 0.37 mM and 303 micromol mg-1 min-1, respectively. The substrate specificity study showed that p-nitrophenyl caprylate is a preference of the enzyme. The metal ions Ca2+, K+, and Mg2+ can activate the lipase, whereas Fe2+, Cu2+, and Co2+ inhibited it. The activity of the lipase can be increased about 48% by sodium taurocholate at the concentration of 7 mM and inhibited at concentrations over 10 mM.  相似文献   

14.
An organic solvent tolerant (OST) lipase gene from Bacillus sphaericus 205y was successfully expressed extracellularly. The expressed lipase was purified using two steps purification; ultrafiltration and hydrophobic interaction chromatography (HIC) to 8-fold purity and 32% recovery. The purified 205y lipase revealed homogeneity on denaturing gel electrophoresis and the molecular mass was at approximately 30 kDa. The optimum pH for the purified 205y lipase was 7.0-8.0 and its stability showed a broad range of pH value between pH 5.0 to 13.0 at 37 degrees C. The purified 205y lipase exhibited an optimum temperature of 55 degrees C. The activity of the purified lipase was stimulated in the presence of Ca2+ and Mg2+. Ethylenediaminetetraacetic acid (EDTA) has no effect on its activity; however inhibition was observed with phenylmethane sulfonoyl fluoride (PMSF) a serine hydrolase inhibitor. Organic solvents such as dimethylsulfoxide (DMSO), methanol, p-xylene and n-decane enhanced the activity. Studies on the effect of oil showed that the lipase was most active in the presence of tricaprin (C10). The lipase exhibited 1,3 positional specificity. Keywords: Bacter  相似文献   

15.
Thermostable amylolytic enzymes are currently being investigated to improve industrial processes of starch degradation. A thermostable extracellular glucoamylase (exo-1, 4-alpha-D-glucanohydrolase, E.C.3.2.1.3) from the culture supernatant of a thermophilic fungus Chaetomium thermophilum was purified to sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) homogeneity by using ammonium sulfate fraction, DEAE-Sepharose Fast Flow chromatography, and Phenyl-Sepharose Fast Flow chromatography. SDS-PAGE of the purified enzyme showed a single protein band of molecular weight 64 kDa. The glucoamylase exhibited optimum catalytic activity at pH 4.0 and 65 degrees C. It was thermostable at 50 degrees C and 60 degrees C, and retained 50% activity after 60 min at 65 degrees C. The half-life of the enzyme at 70 degrees C was 20 min. N-terminal amino acid sequencing (15 residues) was AVDSYIERETPIAWN. Different metal ions showed different effects on the glucoamylase activity. Ca2+, Mg2+, Na+, and K+ enhanced the enzyme activity, whereas Fe2+, Ag+, and Hg2+ cause obvious inhibition. These properties make it applicable to other biotechnological purposes.  相似文献   

16.
A psychrotrophic strain 7195 showing extracellular lipolytic activity towards tributyrin was isolated from deep-sea sediment of Prydz Bay and identified as a Psychrobacter species. By screening a genomic DNA library of Psychrobacter sp. 7195, an open reading frame of 954 bp coding for a lipase gene, lipA1, was identified, cloned, and sequenced. The deduced LipA1 consisted of 317 amino acids with a molecular mass of 35,210 kDa. It had one consensus motif, G-N-S-M-G (GXSXG), containing the putative active-site serine, which was conserved in other cold-adapted lipolytic enzymes. The recombinant LipA1 was purified by column chromatography with DEAE Sepharose CL-4B, and Sephadex G-75, and preparative polyacrylamide gel electrophoresis, in sequence. The purified enzyme showed highest activity at 30 degrees C, and was unstable at temperatures higher than 30 degrees C, indicating that it was a typical cold-adapted enzyme. The optimal pH for activity was 9.0, and the enzyme was stable between pH 7.0-10.0 after 24 h incubation at 4 degrees C. The addition of Ca2+ and Mg2+ enhanced the enzyme activity of LipA1, whereas the Cd2, Zn2+, Co2+, Fe3+, Hg2+, Fe2+, Rb2+, and EDTA strongly inhibited the activity. The LipA1 was activated by various detergents, such as Triton X-100, Tween 80, Tween 40, Span 60, Span 40, CHAPS, and SDS, and showed better resistance towards them. Substrate specificity analysis showed that there was a preference for trimyristin and p-nitrophenyl myristate (C14 acyl groups).  相似文献   

17.
黑曲霉F044脂肪酶的分离纯化及酶学性质研究   总被引:9,自引:0,他引:9  
黑曲霉F044脂肪酶发酵上清液经硫酸铵沉淀、透析、DEAESepharoseFastFlow阴离子交换层析和SephadexG-75凝胶过滤层析得到电泳纯的脂肪酶,纯化倍数为73·71倍,活性回收率为34%。对纯化脂肪酶性质研究表明:该脂肪酶分子量约为35~40kD,水解橄榄油的最适温度和最适pH分别为45℃和7·0,在60℃以下和pH2·0~9·0之间有很好的稳定性。该脂肪酶的水解活性对Ca2 表现明显的依赖性,而Mn2 、Fe2 和Zn2 对脂肪酶则有显著的抑制作用。在最适条件下水解pNPP的Km和Vmax分别为7·37mmol/L和25·91μmol/(min·mg)。其N-端的15个氨基酸序列为Ser(Glu/His)-Val-Ser-Thr-Ser-Thr-Leu-Asp-Glu-Leu-Gln-Leu-Phe-Ala-Gln。  相似文献   

18.
Arthrobacter species strain FR-3, isolated from sediments of a swamp, produced a novel serine-type sulfide oxidase. The production of sulfide oxidase was maximal at pH 7.5 and 30 degrees C. Among various carbon and nitrogen sources tested, glucose and yeast extract were found to be the most effective substrates for the secretion of sulfide oxidase. The sulfide oxidase was purified to homogeneity and the molecular weight of the purified enzyme was 43 kDa when estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The purified sulfide oxidase can be effectively immobilized in DEAE (diethylaminoethyl)-cellulose matrix with a yield of 66%. The purified free and immobilized enzyme had optimum activity at pH 7.5 and 6.0, respectively. Immobilization increases the stability of the enzyme with respect to temperature. The half-life of the immobilized enzyme was 30 min at 45 degrees C, longer than that of the free enzyme (10 min). The purified free sulfide oxidase activity was completely inhibited by 1 mM Co2+ and Zn2+ and sulfhydryl group reagents (para-chloromercuribenzoic acid and iodoacetic acid). Catalytic activity was not affected by 1 mM Ca2+, Mg2+, Na+ and metal-chelating agent (EDTA).  相似文献   

19.
Cellulase has been immobilized on hybrid concanavalin A (Con A)-layered calcium alginate–starch beads. Immobilized cellulase retained about 82% of its activity. Con A was extracted from jack bean and the obtained crude protein was characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The immobilized beads showed high mechanical and storage stability; immobilized cellulase retained 100% and 85% activity at 4°C and 30°C, respectively, over one month. The immobilized cellulase retained about 70% of its activity after five cycles of use. The immobilized cellulase retained 70% activity after 120-min exposure to 60°C, whereas the soluble form only retained about 20%, showing that immobilization improved thermal stability. Surface morphology and elemental analysis of immobilized cellulase were examined using scanning electron microscope equipped with energy-dispersive X-ray. Based on the enzyme stability and reuse, this method of immobilization is both convenient and cheap.  相似文献   

20.
Properties of immobilized AMP-aminohydrolase from rabbit muscles are studied. The enzyme retains its activity for a year, is stable under manifold treatment with the substrate or under single treatment with 1 M NaCl which contains 50% ethylene glycol or 10% isopropanol and under treatment with 5 M K2 HPO4 (pH 8.5). The established pH-optimum (6.5-7.0) and the temperature optimum (30-40 degrees C) for immobilized AMP-aminohydrolase as well as inhibition of its activity by Co2+, Cd2+, Zn2+ and n-chloromercury benzoate indicate similarity of its properties with those of the purified enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号