首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Copper is an essential micronutrient, especially for photosynthetic organisms, but can be toxic at high concentrations. In the past years, coastal waters have been exposed to an increase in copper concentration due to anthropogenic inputs. One well known case is the Chañaral area (Easter South Pacific coast), where a long term coastal copper enrichment event has occurred. That event strongly affected benthic marine diversity, including microbial communities. In this work, microcosm experiments were carried out to address the changes on picophytoplankton community composition of the disturbed area, when challenged to copper additions. Eukaryotic picophytoplankton communities from two areas were analyzed: one in the most copper‐perturbed area and another at the north edge of the perturbed area. Flow cytometry data showed that 25 μg L?1 of copper addition exerted a positive effect in the growth kinetics on part of the eukaryotic picophytoplankton communities, independently of the site. 16S‐plastid terminal restriction fragment length polymorphisms analysis suggested that eukaryotic picophytoplankton display a short and directional response to high copper levels. Members of the Prasinophyceae class, a Coscinodiscophyceae diatom, as well as Phaeocystis, respond in a short time to the environmental disturbance, making them excellent candidates for further studies to evaluate phytoplanktonic species as sentinels for copper disturbances in coastal marine ecosystems.  相似文献   

2.
The Response of Experimental Rocky Shore Communities to Nutrient Additions   总被引:2,自引:0,他引:2  
The aim of this study was to determine whether the experimental nutrient enrichment of littoral rocky shore communities would be followed by a predicted accumulation of fast-growing opportunistic algae and a subsequent loss of perennial benthic vegetation. Inorganic nitrogen (N) and potassium (P) was added to eight concrete mesocosms inhabited by established littoral communities dominated by fucoids. The response to nutrient enrichment was followed for almost 2 1/2 years. Fast-growing opportunistic algae (periphyton and ephemeral green algae) grew significantly faster in response to nutrient enrichment, but the growth of red filamentous algae and large perennial brown algae was unaffected. However, these changes were not followed by comparable changes in the biomass and composition of the macroalgae. The biomass of opportunistic algae was stimulated only marginally by the nutrient enrichment, and perennial brown algae (fucoids) remained dominant in the mesocosm regardless of nutrient treatment level. Established rocky shore communities thus seem able to resist the effects of heavy nutrient loading. We found that the combined effects of the heavy competition for space and light imposed by canopy-forming algae, preferential grazing on opportunistic algae by herbivores, and physical disturbance, succeeded by a marked export of detached opportunistic algae, prevented the fast-growing algae from becoming dominant. However, recruitment studies showed that the opportunistic algae would become dominant when free space was available under conditions of high nutrient loading and low grazing pressure. These results show that established communities of perennial algae and associated fauna in rocky shore environments can prevent or delay the accumulation of bloom-forming opportunistic algae and that the replacement of long-lived macroalgae by opportunistic species at high nutrient loading may be a slow process. Nutrient enrichment may not, in itself, be enough to stimulate structural changes in rocky shore communities.  相似文献   

3.
Bokn  Tor 《Hydrobiologia》1990,204(1):197-203
Titanium dioxide wastes are suspected to be toxic to rocky shore communities in an estuary in southeast Norway. An experimental project lasting two years examined whether titanium dioxide wastes affected recolonization by rocky shore organisms. The experiments were performed in situ in six tanks (each with 9 m3 brackish water) at two different levels of salinity. Three different concentrations of industrial waste water were used. The growth season in 1986 was dry and sunny compared to 1987, causing reduction of growth on exposed granite chips compared to controls. At the two highest waste concentrations in the tanks, Fucus serratus was observed with necrotic tissue both years, and in 1986 benthic diatoms were scarce.  相似文献   

4.
Coastal eutrophication may alter the dominance patterns of marine macroalgae, with potential consequences for the associated fauna and the entire ecosystem. Benthic macroalgae and animals in control and nutrient-enriched mesocosms were monitored to investigate eutrophication-induced changes in rocky shore communities. During a 3-year project, nutrient addition had only minor effects on the community structure, such as increased cover and biomass of green Ulva spp. and increased abundance of certain animal species at high nutrient levels. This study is a 4-year extension of a previously reported project, with 2 extra years of effect studies (altogether 5 years) and a subsequent 2 years for recovery. During the 4th year of nutrient enrichment, the cover of Fucus vesiculosus and Fucus serratus started to decline. In the 5th year, these canopy species crashed and there was an evident take-over by green algae at high nutrient addition levels. The previously observed abundance stimulation for fauna disappeared later in the time series, probably due to the loss of the macroalgal canopy. After less than 2 years on regular seawater, the algal and animal communities had returned to within the range of normal variability. The results indicate that established rocky shore communities of perennial algae with associated fauna are able to persist for several years, even at very high nutrient levels, but that community shifts may suddenly occur if eutrophication continues. They also indicate that rocky shore communities have the ability to return rapidly to natural undisturbed conditions after the termination of nutrient enhancement.  相似文献   

5.
A flow-through microcosm facility using unfiltered ocean source water is described. “Stagnation” cleaning has proven to be a simple and effective way of maintaining seawater distribution systems free of fouling organisms and is recommended. A valveless system for regulating water flow is also recommended. The microcosm facility has been used experimentally as an extension of field surveys being conducted in Hawaiian harbors. Examples of two essentially different types of microcosm experiments are presented to illustrate this interactive approach to environmental research. One approach disturbs an established microcosm community with specific environmental perturbants and follows both the community response and recovery over prolonged time periods. Examples of perturbation by elevated nutrients and by elevated copper concentrations are given. The ability of reef flat communities to trap and retain phosphorus even in a flow-through system is demonstrated. Added copper is shown to result in a number of responses not seen in the legislatively-preferred copper toxicity tests. The second approach involves transferring substrates from the field into the microcosm and following response with time. Again, two examples are given—one involving the transfer of fouling panels, the other, of sediments. Profound changes are seen when fouling panels are transferred from a high-nutrient into a low-nutrient environment. Nutrient-rich sediments, however, are shown not to influence water-column nutrient concentrations in the microcosms, but do acquire increased infaunal populations over a 3-month period. Finally, an example of how the findings of the microcosm experiments are applied in the field is provided. The case is made that although this approach necessarily involves multivariate experimental preparations which sometimes lack precision, it is nevertheless a required and fruitful procedure in the search for better understanding of the environmental dynamics of harbor communities.  相似文献   

6.
Plastic pollution is an increasing worldwide problem urgently requiring a solution. While recycling rates are increasing globally, only 9% of all plastic waste has been recycled, and with the cost and limited downstream uses of recycled plastic, an alternative is needed. Here, we found that expanded polystyrene (EPS) promoted high levels of bacterial biofilm formation and sought out environmental EPS waste to characterize these native communities. We demonstrated that the EPS attached communities had limited plastic degrading activity. We then performed a long-term enrichment experiment where we placed a robust selection pressure on these communities by limiting carbon availability such that the waste plastic was the only carbon source. Seven of the resulting enriched bacterial communities had increased plastic degrading activity compared to the starting bacterial communities. Pseudomonas stutzeri was predominantly identified in six of the seven enriched communities as the strongest polyester degrader. Sequencing of one isolate of P. stutzeri revealed two putative polyesterases and one putative MHETase. This indicates that waste plastic-associated biofilms are a source for bacteria that have plastic-degrading potential, and that this potential can be unlocked through selective pressure and further in vitro enrichment experiments, resulting in biodegradative communities that are better than nature.  相似文献   

7.
The implementation of directives such as the European Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD) has promoted the development of several tools and methods for assessing the ecological health of marine ecosystems. Within the scope of the WFD and in terms of rocky shores, several multimetric tools were developed based on the macroalgae biological quality element (BQE), in addition to those based on macroinvertebrates.The WFD requires member states to assess each BQE separately. The present work aimed to test the ability of ecological indices to distinguish sites within anthropogenic disturbance gradients caused by organic enrichment, using macroinvertebrate communities on intertidal rocky shores. Owing to the lack of more specific indices (for rocky shore), indices based on abundance, diversity and/or taxonomic composition were selected from several widely used indices in ecological studies and/or developed for soft-bottom macroinvertebrate communities.Present findings reveal several indices based on diversity and/or taxonomic composition able to distinguish sites within the disturbance gradients, showing increasing quality from the site nearest the source of organic enrichment to that farthest from it, especially indices calculated using biomass data, and in the summer season. Such results open good perspectives for the use of intertidal macroinvertebrate communities from rocky shores, and also help add the perspective of this biological quality element in the ecological quality assessment of coastal waters.  相似文献   

8.
AIMS: To study the effect that copper residues exert on bacterial communities and the ability of bacteria to colonize different microhabitats in abandoned tailing dumps. METHODS AND RESULTS: We used the terminal-restriction fragment length polymorphism technique, a culture-independent molecular approach based on PCR amplification of ribosomal genes, to compare the structure of the bacterial communities from samples taken at two nearby located abandoned tailing dumps found in the Mediterranean-climate area of central Chile. Our results show that elevated available copper content in tailings has a strong effect on the bacterial community composition, but that other factors like pH and organic matter content also play an important role in the structure of these communities. We also found that the number of abundant bacteria in these samples was significantly lower than in soils not exposed to metal pollution. CONCLUSIONS: In addition to bioavailable copper, bacterial communities found in copper-tailings dumps are also affected by several other environmental factors. SIGNIFICANCE AND IMPACT OF THE STUDY: This first report on environmental factors influencing microbial communities in copper-tailings dumps will help to devise appropriate restoration procedures in this type of polluted habitat.  相似文献   

9.
Measurements of microbial biomass, bacterial numbers, and microbial production were determined for three small woodland streams located in the Adirondack Mountain region of New York State, USA. These streams exhibited spatial and temporal gradients in water pH ranging from a high of 7.0 to a low of 4.5. Twelve sites along these streams were used for comparative analyses of the effects of pH and related water chemistry parameters on the planktonic, sedimentary, and epilithic bacterial communities. The planktonic bacterial communities were not influenced by water pH or related water chemistry parameters. For sedimentary populations, the organic content of the sediment was more important than the chemistry of the overlying water. The epilithic bacterial communities, however, were influenced significantly by the pH of the water column, showing decreased bacterial production at lower pH.  相似文献   

10.
Nelson CE  Carlson CA 《PloS one》2011,6(3):e18320
Nutrient enrichment of high-elevation freshwater ecosystems by atmospheric deposition is increasing worldwide, and bacteria are a key conduit for the metabolism of organic matter in these oligotrophic environments. We conducted two distinct in situ microcosm experiments in a high-elevation lake (Emerald Lake, Sierra Nevada, California, USA) to evaluate responses in bacterioplankton growth, carbon utilization, and community structure to short-term enrichment by nitrate and phosphate. The first experiment, conducted just following ice-off, employed dark dilution culture to directly assess the impact of nutrients on bacterioplankton growth and consumption of terrigenous dissolved organic matter during snowmelt. The second experiment, conducted in transparent microcosms during autumn overturn, examined how bacterioplankton in unmanipulated microbial communities responded to nutrients concomitant with increasing phytoplankton-derived organic matter. In both experiments, phosphate enrichment (but not nitrate) caused significant increases in bacterioplankton growth, changed particulate organic stoichiometry, and induced shifts in bacterial community composition, including consistent declines in the relative abundance of Actinobacteria. The dark dilution culture showed a significant increase in dissolved organic carbon removal in response to phosphate enrichment. In transparent microcosms nutrient enrichment had no effect on concentrations of chlorophyll, carbon, or the fluorescence characteristics of dissolved organic matter, suggesting that bacterioplankton responses were independent of phytoplankton responses. These results demonstrate that bacterioplankton communities in unproductive high-elevation habitats can rapidly alter their taxonomic composition and metabolism in response to short-term phosphate enrichment. Our results reinforce the key role that phosphorus plays in oligotrophic lake ecosystems, clarify the nature of bacterioplankton nutrient limitation, and emphasize that evaluation of eutrophication in these habitats should incorporate heterotrophic microbial communities and processes.  相似文献   

11.
This study reports on the factors involved in regulating the composition and structure of bacterial communities epiphytic on intertidal macroalgae, exploring their temporal variability and the role of copper pollution. Culture-independent, molecular approaches were chosen for this purpose and three host species were used as models: the ephemeral Ulva spp. (Chlorophyceae) and Scytosiphon lomentaria (Phaeophyceae) and the long-living Lessonia nigrescens (Phaeophyceae). The algae were collected from two coastal areas in Northern Chile, where the main contrast was the concentration of copper in the seawater column resulting from copper-mine waste disposals. We found a clear and strong effect in the structure of the bacterial communities associated with the algal species serving as host. The structure of the bacterial communities also varied through time. The effect of copper on the structure of the epiphytic bacterial communities was significant in Ulva spp., but not on L. nigrescens. The use of 16S rRNA gene library analysis to compare bacterial communities in Ulva revealed that they were composed of five phyla and six classes, with approximately 35 bacterial species, dominated by members of Bacteroidetes (Cytophaga-Flavobacteria-Bacteroides) and α-Proteobacteria, in both non-polluted and polluted sites. Less common groups, such as the Verrucomicrobiae, were exclusively found in polluted sites. This work shows that the structure of bacterial communities epiphytic on macroalgae is hierarchically determined by algal species > temporal changes > copper levels.  相似文献   

12.
Bacteria and fungi naturally coexist in various environments including forest ecosystems. While the role of saprotrophic basidiomycetes in wood decomposition is well established, the influence of these fungi on the functional diversity of the wood-associated bacterial communities has received much less attention. Based on a microcosm experiment, we tested the hypothesis that both the presence of the white-rot fungus Phanerochaete chrysosporium and the wood, as a growth substrate, impacted the functional diversity of these bacterial communities. Microcosms containing sterile sawdust were inoculated with a microbial inoculum extracted from a forest soil, in presence or in absence of P. chrysosporium and subsequently, three enrichment steps were performed. First, bacterial strains were isolated from different microcosms previously analyzed by 16S rRNA gene-based pyrosequencing. Strains isolated from P. chrysosporium mycosphere showed less antagonism against this fungus compared to the strains isolated from the initial forest soil inoculum, suggesting a selection by the fungus of less inhibitory bacterial communities. Moreover, the presence of the fungus in wood resulted in a selection of cellulolytic and xylanolytic bacterial strains, highlighting the role of mycospheric bacteria in wood decomposition. Additionally, the proportion of siderophore-producing bacteria increased along the enrichment steps, suggesting an important role of bacteria in iron mobilization in decaying-wood. Finally, taxonomic identification of 311 bacterial isolates revealed, at the family level, strong similarities with the high-throughput sequencing data as well as with other studies in terms of taxonomic composition of the wood-associated bacterial community, highlighting that the isolated strains are representative of the wood-associated bacterial communities.  相似文献   

13.
The effects of Cu amendment on indigenous soil microorganisms were investigated in two soils, a calcareous silty clay (Ep) and a sandy soil (Au), by means of a 1-year field experiment and a two-month microcosm incubation. Cu was added as 'Bordeaux mixture' [CuSO(4), Ca(OH)(2)] at the standard rate used in viticulture (B1=16 kg Cu kg(-1) soil) and at a higher level of contamination (B3=48 kg Cu ha(-1) soil). More extractable Cu was observed in sandy soil (Au) than in silty soil (Ep). Furthermore, total Cu and Cu-EDTA declined with time in Au soil, whereas they remained stable in Ep soil. Quantitative modifications of the microflora were assessed by C-biomass measurements and qualitative modifications were assessed by the characterization of the genetic structure of bacterial and fungal communities from DNA directly extracted from the soil, using B- and F-ARISA (bacterial and fungal automated ribosomal intergenic spacer analysis). In the field study, no significant modifications were observed in C-biomass whereas microcosm incubation showed a decrease in B3 contamination only. ARISA fingerprinting showed slight but significant modifications of bacterial and fungal communities in field and microcosm incubation. These modifications were transient in all cases, suggesting a short-term effect of Cu stress. Microcosm experiments detected the microbial community modifications with greater precision in the short-term, while field experiments showed that the biological effects of Cu contamination may be overcome or hidden by pedo-climatic variations.  相似文献   

14.
Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50?% of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35?% of the total sequences matched at <95?% identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than previously thought.  相似文献   

15.
1. Spring‐fed streams, with temperatures ranging from 7.1 to 21.6 °C, in an alpine geothermal area in SW Iceland were chosen to test hypotheses on the effects of nutrients and temperature on stream primary producers. Ammonium nitrate was dripped into the lower reaches of eight streams, with higher reaches being used as controls, during the summers of 2006 and 2007. Dry mass of larger primary producers, epilithic chlorophyll a and biovolumes of epilithic algae were measured. 2. Bryophyte communities were dominated by Fontinalis antipyretica, and biomass was greatest in the warmest streams. Jungermannia exsertifolia, a liverwort, was found in low densities in few samples from cold streams but this species was absent from the warmest streams. 3. Nutrient enrichment increased the biomass of bryophytes significantly in warm streams. No effects of the nutrient addition were detected on vascular plants. The biomass of larger filamentous algae (mainly Cladophora spp.) was significantly increased by nutrient enrichment in cold streams but reduced by nutrients in warm streams. Thalloid cyanobacteria (Nostoc spp.) were not affected by nutrients in cold streams but decreased with nutrient addition in warm streams. Epilithic algal chlorophyll a was increased by nutrients in all streams and to a greater extent in 2007 than in 2006. Nutrient addition did not affect the epilithic chlorophyll a differently in streams of different temperatures. 4. There were small differential effects of nutrients, influenced by pH and conductivity, on different epilithic algal groups. 5. As global temperatures increase, animal husbandry and perhaps crop agriculture are likely to increase in Iceland. Temperature will directly influence the stream communities, but its secondary effects, manifested through agricultural eutrophication, are likely to be much greater.  相似文献   

16.
Human alteration of nutrient cycling and the densities of important consumers have intensified the importance of understanding how nutrients and consumers influence the structure of ecological systems. We examined the effects of both grazing and nutrient enrichment on algal abundance and diversity in a high-intertidal limpet-macroalgal community on the South Island of New Zealand, a relatively nutrient-poor environment. We used a fully factorial design with three levels each of grazing (manipulations of limpet and snail densities) and nutrients (nutrient-diffusers attached to the rock). Top-down control by grazers appears to be the driving organizing mechanism for algal communities in this system, with strong negative effects of grazing on algal diversity and abundance across all levels of nutrient enrichment. However, in contrast to the conclusions drawn from the analysis of the whole algal community, there was an interactive effect of grazing and enrichment on foliose algae, an important component of the algal system. When herbivory was reduced to very low levels, enrichment generated increases in the abundance and biomass of foliose algae. As expected, top-down control was the primary determinant of algal community structure in this system, controlling abundance and diversity of macrophytes on the upper shore. Contrary to expectations, however, increased nutrients had no community-wide effects, although foliose algal abundance increases were greatest with high nutrients and reduced grazing. It seems likely that most of the corticated algal species have limited capacity to respond to nutrient pulses in this nutrient-poor environment.  相似文献   

17.
Grube M  Schmid F  Berg G 《Fungal biology》2011,115(10):978-986
In this study we investigate bacterial communities in association with an enriched black-fungal community in the plant phyllosphere to test whether these fungi create an environment for specific bacteria. Under organic conditions of agriculture, grapevine plants (Vitis vinifera) display an increased occurrence of the black fungi Aureobasidium pullulans and Epicoccum nigrum. Their enrichment agrees with the tolerance of these fungi to copper and sulphate, both used as main fungicides in organic viticulture. Both fungi also intrude the plant material to grow endophytically. Bacterial communities associated with black fungi of the plant surface and endosphere showed no differences compared to those found in conventionally managed V. vinifera plants. This suggests that despite an increase of these black fungi in organic practice, they do not shape bacterial diversity in grapevine plants. Nevertheless, dual cultures revealed a negative effect of Aureobasidium on the growth of certain bacilli, whereas growth of Aureobasidium was impeded by one Pseudomonas strain. Such singular effects are either not apparent in the natural black-fungal--bacterial community of the grape phyllosphere or are of rather localized effect.  相似文献   

18.
Grassland management regimens influence the structure of archaeal communities in upland pasture soils, which appear to be dominated by as yet uncultivated non-thermophilic Crenarchaeota. In an attempt to determine which grassland management factors select for particular crenarchaeal community structures, soil microcosm experiments were performed examining the effect of increased pH, application of inorganic fertilizer (ammonium nitrate) and sheep urine deposition on both archaeal and bacterial communities in unmanaged grassland soil. As grassland management typically increases pH, a further experiment examined the effect of a reduction in pH, to that typical of unimproved grassland soils, on archaeal and bacterial communities. The RT-PCR amplification of 16S rRNA followed by denaturing gradient gel electrophoresis analysis demonstrated a distinct and reproducible effect on bacterial communities after incubation for 28 or 30 days. In contrast, none of the treatments had a significant effect on the structure of the crenarchaeal community, indicating that these factors are not major drivers of crenarchaeal community structures in grassland soils.  相似文献   

19.
Abstract A microcosm using rotating slate discs in a chemostat was used to study bacterial population dynamics and genetic interactions in river epilithon. Populations of all introduced donor and recipient Pseudomonas spp. decreased with time but all the bacteria survived better on the slate discs than in the liquid phase. Conjugal transfer of an epilithic plasmid encoding mercury resistance (pQM1) occured with transfer frequencies of 1.4 × 10−6 to 3.6 × 10−3 per recipient, which were about 100-fold lower than in standard membrane filter mating experiments.  相似文献   

20.
The responses of epilithic bacterial and algal communities to sewage-treatment-works (STW) effluent were studied in three streams in North Yorkshire, England, using both conventional microbiological techniques and the techniques of molecular genomics. Cod Beck, Thornton Beck and the River Wiske, were visited in May–June 2000 and January 2001 and the epilithic communities on submerged stones were sampled to determine chlorophyll-a, leucine assimilation, bacterial abundance, identity and abundance of microalgae, and epilithon dry and organic weights. Additionally, DNA from the epilithon of stones, collected in March–April and November 2000, was extracted, and samples were amplified using universal primers appropriate, respectively, for bacteria [Muyzer et al., 1993. Applied and Environmental Microbiology 59: 695–700] and microscopic phototrophs [Nübel et al., 1997. Applied and Environmental Microbiology 63: 3327–3332] followed by DGGE (Denaturing Gradient Gel Electrophoresis). Differences in algal community composition and abundance were greater between streams than between sites upstream and downstream of the STW outfalls. DGGE banding profiles of bacterial communities revealed grouping according to stream, and not the formation of communities characteristic of downstream sites; seasonal variation was also evident. Thus the discharge of STW effluent to the streams did not bring about the development of communities that are characteristically associated with organic pollution. Changes in composition and structure of bacterial and micro-algal epilithic communities were detected, but the relatively high quality effluents had only mild effects, not altering the environments sufficiently to override the natural differences between the three streams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号