首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Rainbow trout chromosomes were treated with nine restriction endonucleases, stained with Giemsa, and examined for banding patterns. The enzymes AluI, MboI, HaeIII, HinfI (recognizing four base sequences), and PvuII (recognizing a six base sequence) revealed banding patterns similar to the C-bands produced by treatment with barium hydroxide. The PvuII recognition sequence contains an internal sequence of 4 bp identical to the recognition sequence of AluI. Both enzymes produced centromeric and telomeric banding patterns but the interstitial regions stained less intensely after AluI treatment. After digestion with AluI, silver grains were distributed on chromosomes labeled with [3H]thymidine in a pattern like that seen after AluI-digested chromosomes are stained with Giemsa. Similarly, acridine orange (a dye specific for DNA) stained chromosomes digested with AluI or PvuII in patterns resembling those produced with Giemsa stain. These results support the theory that restriction endonucleases produce bands by cutting the DNA at specific base pairs and the subsequent removal of the fragments results in diminished staining by Giemsa. This technique is simple, reproducible, and in rainbow trout produces a more distinct pattern than that obtained with conventional C-banding methods.  相似文献   

2.
Chromosome banding in Amphibia   总被引:5,自引:0,他引:5  
Fixed metaphase chromosomes of several species of Amphibia were treated with various restriction endonucleases and subsequently stained with Giemsa. Metaphases of man and chicken were examined in parallel under the same experimental conditions for comparison. The restriction enzymes always induce subsets of the C-banding patterns present in the amphibian karyotypes. The heterochromatic regions can be either resistant or sensitive to the restriction enzyme. The modified C-banding patterns revealed by different restriction endonucleases in the karyotype of the same species can be either extremely dissimilar or almost completely congruent. Correspondingly, the action of the same restriction enzyme on the karyotypes of different species may vary greatly. There is only rarely a correlation between the type of C-banding patterns produced by different restriction endonucleases and their specific base pair recognition sequences. In contrast to mammalian and avian chromosomes, restriction enzymes induce no multiple G-banding patterns in amphibian chromosomes. This is attributed to the difference in organization of the DNA in the genomes of poikilothermic vertebrates. The possible mechanisms of restriction endonuclease banding and the various uses of this technique for amphibian chromosomes are discussed.  相似文献   

3.
Characterization of human chromosomal constitutive heterochromatin   总被引:2,自引:0,他引:2  
The constitutive heterochromatin of human chromosomes is evaluated by various selective staining techniques, i.e., CBG, G-11, distamycin A plus 4,6-diamidino-2-phenylindole-2-HCl (DA/DAPI), the fluorochrome D287/170, and Giemsa staining following the treatments with restriction endonucleases AluI and HaeIII. It is suggested that the constitutive heterochromatin could be arbitrarily divided into at least seven types depending on the staining profiles expressed by different regions of C-bands. The pericentromeric C-bands of chromosomes 1, 5, 7, 9, 13-18, and 20-22 consist of more than one type of chromatin, of which chromosome 1 presents the highest degree of heterogeneity. Chromosomes 3 and 4 show relatively less consistent heterogeneous fractions in their C-bands. The C-bands of chromosomes 10, 19, and the Y do not have much heterogeneity but have characteristic patterns with other methods using restriction endonucleases. Chromosomes 2, 6, 8, 11, 12, and X have homogeneous bands stained by the CBG technique only. Among the chromosomes with smaller pericentric C-bands, chromosome 18 shows frequent heteromorphic variants for the size and position (inversions) of the AluI resistant fraction of C-band. The analysis of various types of heterochromatin with respect to specific satellite and nonsatellite DNA sequences suggest that the staining profiles are probably related to sequence diversity.  相似文献   

4.
Banding patterns induced by selective DNA extraction with the restriction endonucleases PleI and TfiI reveal the distribution of human satellite DNAs within the major heterochromatic blocks on human metaphase chromosomes. PleI and TfiI are able to discriminate HinfI target sites, depending on the nature of the central base. PleI digestion specifically reveals regions, within major C-bands, that include the major sites of satellite II DNA and permits more precise localization of satellite II domains than does radioactive in situ hybridization. The close correspondence between the cytogenetic results presented here and previously reported molecular data seems to support the idea that the frequency of enzyme target sequences is the main factor in determining the action produced by restriction endonucleases on fixed human chromosomes and that chromatin conformation is not an important factor in limiting enzyme accessibility.  相似文献   

5.
A V Rodionov 《Genetika》1999,35(2):277-290
Specific chromosome banding patterns in different eukaryotic taxons are reviewed. In all eukaryotes, chromosomes are composed of alternating bands, each differing from the adjacent material by the molecular composition and structural characteristics. In minute chromosomes of fungi and Protozoa, these bands are represented by kinetochores (Kt- (Cd-)bands), nucleolus organizers (N-bands), and telomeres as well as the euchromatin. In genomes of most fungi and protists, long clusters of tandem repeats and, consequently, C-bands were not revealed but they are likely to be found out in species with chromosomes visible under a light microscope, which are several tens of million bp in size. Chromosomes of Metazoa are usually larger. Even in Cnidaria, they contain C-bands, which are replicated late in the S phase. In Deuterostomia, chromosome euchromatin regions differ by replication time: bands replicating at the first half of the S phase alternate with bands replicating at the second half of the S phase. Longitudinal differentiation in the replication pattern of euchromatic regions is observed in all classes of Vertebrata beginning with the bony fish although the time when it developed in Deuterostomia is unknown. Apparently, the evolution of early and late replicating subdomains in Vertebrata euchromatin promoted fast accumulation of differences in the molecular composition of nucleoproteid complexes characteristic of early and late replicating bands. As a result, the more contrasting G/R and Q-banding patterns of chromosomes developed especially in Eutheria. The evolution of Protostomia and Plantae followed another path. An increase in chromosome size was not accompanied by the appearance of wide RBE and RBL euchromatin bands. The G/R-like banding within the interstitial chromosome regions observed in some representatives of Invertebrates and higher plants arose independently in different phylogenetic lineages. This banding pattern seems to be closer to that of C-banding than to the typical G/R-banding of the mammalian chromosomes.  相似文献   

6.
Chromosome banding studies were performed in vendace, Coregonus albula. Original data on distribution of early and late replication regions, restriction sites (AluI, DdeI, HinfI and HaeIII) on chromosomes in this coregonid fish have been used to analyse karyotype heterochromatin differentiation. Heterochromatic bands (C-positive and not digested by restriction enzymes) have been identified as late replicating regions. Extra bands produced by the applied methods have permitted the identification of several homologous pairs. The centromeres were differentially digested by the restriction enzymes. The studied population seems to be homogenic regarding karyotype characteristics.  相似文献   

7.
Prometaphase lymphocyte chromosomes from eight adult argentinian Alouatta caraya females were characterized using sequential G-C banding techniques, Ag-NOR bands and bands obtained with the restriction enzymes Hae III, Eco RI, Alu I and Sau 3A. The cytogenetic analysis showed 2n = 52, with four, five, or six NOR chromosomes. Digestion with Hae III and Eco RI produced G-like-bands. Centromere regions and two interstitial C-bands (in chromosomes number 16 and 21) showed intraindividual or interindividual heterochromatic polymorphisms. Alu I digestion produced C-like bands with gaps in the centromere regions, and Sau 3A produced C-like bands. The karyotypes and banding patterns of A. caraya, A. palliata, A. belzebul, and A. seniculus are compared, based on whole chromosome and whole arm homeologies. © 1994 Wiley-Liss, Inc.  相似文献   

8.
The constitutive heterochromatin of the Indian muntjac (Muntiacus muntjak) was examined following digestion with various restriction endonucleases (AluI, HaeIII, HinfI, and MboI), as well as by selective fluorescence staining with distamycin A plus 4'-6-diamidino-2-phenylindole. Distinct areas within the C-bands were found to have characteristic staining patterns which were more conspicuous in the sex chromosomes. Two dot-like structures resistant to AluI were found in the X and Y1 chromosomes in the same position as the nucleolus organizer regions.  相似文献   

9.
Human and mosquito fixed chromosomes were digested with restriction endonucleases that are inhibited by the presence of 5-methylcytosine in their restriction sites (Hha I, Hin PI, Hpa II), and with endonucleases for which cleavage is less dependent on the state of methylation (Taq I, Msp I). Methylation-dependent enzymes extracted low DNA amounts from human chromosomes, while methylation-independent enzymes extracted moderate to high amounts of DNA. After DNA demethylation with 5-azacytidine the isoschizomers Hpa II (methylation-dependent) and Msp I (methylation-independent) extracted 12-fold and 1.4-fold amounts of DNA from human chromosomes, respectively. These findings indicate that human DNA has a high concentration of Hpa II and Msp I restriction sites (CCGG), and that the internal C of this sequence is methylated in most cases, while the external cytosine is methylated less often. All the enzymes tested released moderate amounts of DNA from mosquito chromosomes whether or not the DNA was demethylated with 5-azacytidine. Hpa II induced banding in the centromere chromosome regions. After demethylation with 5-azacytidine this banding disappeared. Mosquito DNA has therefore, moderate to high frequencies of nonmethylated CpG duplets. The only exception is the centromeric DNA, in which the high levels of C methylation present produce cleavage by Hpa II and the appearance of banding. Centromere regions of human chromosomes 1 have a moderately low concentration of Hpa II-Msp I restriction sites.  相似文献   

10.
The goal of the present study was to determine if simple methods, especially hot saline solution (HSS) and MspI and HaeIII restriction endonucleases, which do not require special equipments, may be helpful in studies of genetic variability in the lady beetle, Cycloneda sanguinea. The HSS method extracted the heterochromatin region, suggesting that it is composed mostly of DNA rich in A-T base pairs. However, the X and y chromosomes were resistant to HSS banding. These bands facilitated the identification of each chromosome. In this study, we used the restriction endonucleases with different G-C base target sequences: MspI C/GGC and HaeIII GG/CC. The use of restriction enzyme MspI did not show an effect on the autosomal chromosomes. On the other hand, the sex pair showed a pale staining, to help in the recognition of these chromosomes. HaeIII produced characteristic bands which were identified all along the chromosomes, facilitating the identification of each chromosome. Based on these results, we can consider the heterochromatin being heterogeneous. The findings obtained here, using different chromosomal banding techniques, may be useful in the identification of intraspecific chomosome variability, specifically in Coccinellidae (Coleoptera) chromosomes, even without special equipment.  相似文献   

11.
The mechanism of chromosome banding induced by restriction endonucleases was analyzed by measuring the amount of radioactivity extracted from [14C]thymidine-labeled chromosomes digested first with restriction enzymes and subsequently with proteinase K and DNase I. Restriction enzymes with a high frequency of recognition sites in the DNA produced a large number of short DNA fragments, which were extracted from chromosomes during incubation with the enzyme. This loss of DNA resulted in decreased chromosomal staining, which did not occur in regions resistant to restriction enzyme digestion and thus led to banding. Subsequent digestion of chromosomes with proteinase K produced a further loss of DNA, which probably corresponded to long fragments retained in the chromosome by the proteins of fixed chromatin. Restriction enzymes induce chromatin digestion and banding in G1 and metaphase chromosomes, and they induce digestion and the appearance of chromocenters in interphase nuclei. This suggests that the spatial organization and folding of the chromatin fibril plays little or no role in the mechanism of chromosome banding.It was confirmed that the pattern of chromosome banding induced by AluI, MboI, HaeIII, DdeI, RsaI, and HinfI is characteristic for each endonuclease. Moreover, several restriction banding polymorphisms that were not found by conventional C-banding were detected, indicating that there may be a range of variability in the frequency and distribution of restriction sites in homologous chromosome regions.  相似文献   

12.
小熊猫染色体异染色质的显示   总被引:4,自引:0,他引:4  
以培养的小熊猫外周淋巴细胞为实验材料,结合C-显带技术及CMA3/DA/DAPI三竽荧光杂色的方法,对小熊猫的染色体组型、C-带带型及CMA3/DA/DAPI荧光带带型进行了研究,发现:(1)经C-显带技术处理,可在小熊猫染色体上呈现出一种极为独特的C-带带型。在多数染色体上可见到丰富的插入C-带及端粒C-带。而着丝区仅显示弱阳性C-带;(2)除着丝粒区外,CMA3诱导的大多数强荧光带纹与C-阳性  相似文献   

13.
Endonuclease banding of isolated mammalian metaphase chromosomes   总被引:1,自引:0,他引:1  
Evidence is presented that endonuclease digestion of isolated, unfixed chromosomes results in the production of banding patterns similar to those produced by digestion of fixed, air-dried chromosomes. Mouse L cell chromosomes were isolated under acidic or relatively neutral pH conditions, exposed in situ (as wet mounts on glass slides) or in vitro (in suspension) to micrococcal nuclease, Alu I or Eco RI, treated with a buffered salt solution, and stained with Giemsa. After any of these endonuclease treatments in situ, the centromeric regions of the chromosomes were intensely stained, characteristic of the C-banding observed in fixed chromosomes exposed to the same treatments. Although the fixed chromosomes were morphologically well-preserved after endonuclease digestion, the morphology of chromosomes digested in situ was variable, ranging from normal to swollen to highly distorted chromosomes. In the latter, the endonucleases induced dispersion of non-C-band chromatin; however, C-bands were still apparent as condensed, differentially-stained regions. Exposure of isolated chromosomes to Alu I in vitro also resulted in well-defined C-banding and led to the extraction of about 70% of the chromosomal DNA. From these results, the mechanism of endonuclease-induced C-banding appears to involve the dispersion and extraction of digested chromatin.  相似文献   

14.
Metaphases of Saguinas fuscicollis fuscicollis and Saguinas mystax were subjected to restriction enzyme banding (Alu I, Hae III, Hin fI, Rsa I, Dde I, Mbo I and Msp I) and sequenced C-banding, together with fluorochrome staining (CMA3 and DAPI). Both species showed large C-bands in the pericentromeric regions. S. f. fuscicollis also manifested distal C-bands in both arms of pair 5 and in the short arms of pairs 8-15. In each species the heterochromatin revealed different reactions to the restriction enzymes and fluorochromes. This was related to its location in the genome (centromeric, pericentromeric, distal), making possible the identification of distinct categories of constitutive heterochromatin. In S. f. fuscicollis there were at least five types, namely centromeric in bi-armed chromosomes, centromeric in acrocentrics, pericentromeric, distal, and cryptic bands, detected only with the Alu I. There were three types in S. mystax, viz centromeric in bi-armed chromosomes, centromeric in acrocentric, and pericentromeric chromosomes. Several aspects of their constitution and origin are discussed.  相似文献   

15.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

16.
We present here the first detailed replication banding study of a marsupial species using the BrdU-replication technique. A comparison of the structural and replication bands of the chromosomes of Sminthopsis crassicaudata clearly demonstrates that the replication behavior is the same as the described for the chromosomes of eutherians. The early replicating segments correspond to R-bands, whereas the late-replicating regions tend to be situated within Q- and C-bands. Use of this technique clearly reveals an early and late replicating X chromosome. The very small Y chromosome can be subdivided into two replication segments, but no replication homologies can be demonstrated between the X and Y chromosomes of S. crassicaudata.  相似文献   

17.
J. L. Oud  R. Scholten 《Genetica》1982,58(1):55-63
The staining of male Chinese hamster chromosomes at meiotic prophase with several banding techniques is described. C-banding results only occasionally in well-differentiated pachytene and diakinesis bivalents. Meiotic C-bands are small compared with those in somatic metaphase chromosomes. In mice C-bands mainly consist of highly repetitive satellite DNA, whereas in Chinese hamsters the majority of the DNA in C-bands is not or hardly repetitive. Especially in Chinese hamsters both the degree of chromatin despiralisation and the folding pattern of the chromatin drastically reduce the distinction of C-bands in late meiotic prophasc chromosomes. In contrast to the situation in mice, C-heterochromatin associations are never observed in Chinese hamster spermatocytes. It is assumed that the presence of satellite DNA rather than constitutive heterochromatin is the basis for the associations of the paracentromeric chromosome regions in mice. The location and behaviour of AT- and GC-rich DNA in Chinese hamster primary spermatocytes is studied with base-specific fluorochromes (H 33258 and Chromomycin A3 for AT-and GC-rich DNA respectively), in combination with a pretreatment with base-specific non-fluorescent antibiotics (Actinomycin D and Netropsin for GC-and AT-rich DNA respectively). No indications are found for the clustering of AT-or GC-rich DNA in Chinese hamster pachytene nuclei. A comparison of banding patterns observed in somatic metaphases and in diakinesis gives some information about the partial homology of the X and Y chromosome. The results are conflicting. The short arm of the Y chromosome is homologous with a part of the X chromosome. According to the C-band pattern the long arm of the X chromosome is involved in the pairing with Y, whereas fluorescence banding patterns indicate that it is the short arm of X.  相似文献   

18.
Constitutive heterochromatin of a karyotypically conserved species of harvest mouse was compared to that of three karyotypically derived species of harvest mice by examining banding patterns produced on metaphase chromosomes with three restriction endonucleases (EcoRI, MboI and PstI). Banding patterns produced by two of these restriction endonucleases (EcoRI and MboI) were compared to published G- and C-banded karyotypes and in situ hybridization of a satellite DNA repeat for these taxa. The third restriction endonuclease (PstI) did not produce a detectable pattern of digestion. For the most part, patterns produced by EcoRI and MboI can be related to C-banded chromosomes and in situ hybridization of satellite DNA sequences. Moreover, digestion with EcoRI reveals bands not apparent with these other techniques, suggesting that restriction endonuclease digestion of metaphase chromosomes may provide additional insight into the structure and organization of metaphase chromosomes. The patterns produced by restriction endonuclease digestion are compatible with the chromosomal evolution of these taxa, documenting that in the highly derived taxa not only are the chromosomes rearranged but the abundance of certain sequences is highly variable. However, technical variation and difficulty in producing consistent results even on a single slide with some restriction endonucleases documents the problems associated with this method.  相似文献   

19.
20.
The neotropical primate genus Callithrix comprises two groups of species, jacchus and argentata, which inhabit distinct geographical regions and manifest different fur coloration and constitutive heterochromatin (CH) markers in their karyotypes. In this investigation the CH of a representative of the jacchus group, Callithrix geoffroyi, was analysed using fluorochromes and restriction enzymes in situ. To clarify the source of the constitutive heterochromatin of both groups, the data obtained in the jacchus group were compared with those published in the argentata group obtained by the same techniques. The C-bands of C. geoffroyi (four specimens, 2n = 46) were centromeric in all chromosomes, and distally located in pairs 6 and 22. The Alu I, Hae III, Hin fI, Rsa I, Dde I, Mbo I, and Msp I restriction endonucleases and CMA3 and DAPI fluorochromes produced different bands, which allowed the characterization of four distinct types of constitutive heterochromatin in the C. geoffroyi genome. Several of these types of heterochromatin were present in the ancestor of the two groups of species, jacchus and argentata, while others originated after their cladogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号