首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cytochrome P450RhF from Rhodococcus sp. NCIMB 9784 is a self-sufficient P450 monooxygenase. We report here a simple system for the functional expression of various P450 genes using the reductase domain of this P450RhF, which comprises flavin mononucleotide- and nicotinamide adenine dinucleotide phosphate binding motifs and a [2Fe2S] ferredoxin-like center. Vector pRED was constructed, which carried the T7 promoter, cloning sites for a P450, a linker sequence, and the P450RhF reductase domain, in this order. The known P450 genes, encoding P450cam from Pseudomonas putida (CYP101A) and P450bzo from an environmental metagenome library (CYP203A), were expressed on vector pRED as soluble fusion enzymes with their natural spectral features in Escherichia coli. These E. coli cells expressing the P450cam and P450bzo genes could convert (+)-camphor and 4-hydroxybenzoate into 5-exo-hydroxycamphor and protocatechuate (3,4-dihydroxybenzoate), respectively (the expected products). Using this system, we also succeeded in directly identifying the function of P450 CYP153A as alkane 1-monooxygenase for the first time, i.e., E. coli cells expressing a P450 CYP153A gene named P450balk, which was isolated form Alcanivorax borkumensis SK2, converted octane into 1-octanol with high efficiency (800 mg/l). The system presented here may be applicable to the functional identification of a wide variety of bacterial cytochromes P450.  相似文献   

2.
The catalytic turnover of cytochrome P450 cam from Pseudomonas putida requires two auxiliary reduction partners, putidaredoxin (Pd) and putidaredoxin reductase (PdR). We report the functional expression in Escherichia coli of tricistronic constructs consisting of P450 cam encoded by the first cistron and the auxiliary proteins, Pd and PdR by the second and the third. Transformed bacterial whole cells efficiently oxidized (1R)-(+)-camphor to 5-exo-hydroxycamphor and, interestingly, limonene to (−)-perillyl alcohol. These bioengineered E. coli cells possess a heterologous self-sufficient P450 catalytic system that may have advantages in terms of low cost and high yield for the production of fine chemicals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

3.
Cytochrome P450cam (CYP101) catalyzes the oxidation of D(+)-camphor at the 5 position. The enzyme couples the reduction of dioxygen to the oxidation of the substrate. To transfer electrons from the reductant (NADH) to the cytochrome, two additional proteins are required. These are putidaredoxin (PdX) and putidaredoxin reductase (PdR). We have chemically linked a form of PdX with a histidine tag at the C-terminus to the P450. To accomplish this, we have modified cysteine 334 on P450 with a bipyridinyl group, and co-ordinated the C-terminal histidine tag of PdX by the addition of Ni2+ or Ru3+. The Ru3+ complex was the most stable. The non-linked system gave mostly 5-ketocamphor, a product of two consecutive hydroxylations, and H2O2, a product of 2-electron uncoupling. The Ni2+ complex gave both 5-exo-hydroxycamphor and 5-ketocamphor, but it also uncoupled. The Ru3+ complex gave a single product (5-exo-hydroxycamphor) and did not uncouple at the optimal PdR concentration. Our results are consistent with other studies of this system, in that strong binding of PdX to P450 is crucial for good coupling and for release of 5-exo-hydroxycamphor.  相似文献   

4.

Background  

(+)-Nootkatone (4) is a high added-value compound found in grapefruit juice. Allylic oxidation of the sesquiterpene (+)-valencene (1) provides an attractive route to this sought-after flavoring. So far, chemical methods to produce (+)-nootkatone (4) from (+)-valencene (1) involve unsafe toxic compounds, whereas several biotechnological approaches applied yield large amounts of undesirable byproducts. In the present work 125 cytochrome P450 enzymes from bacteria were tested for regioselective oxidation of (+)-valencene (1) at allylic C2-position to produce (+)-nootkatone (4) via cis- (2) or trans-nootkatol (3). The P450 activity was supported by the co-expression of putidaredoxin reductase (PdR) and putidaredoxin (Pdx) from Pseudomonas putida in Escherichia coli.  相似文献   

5.
Abstract

To clarify the structures of biotransformation products and metabolic pathways, the biotransformation of monoterpenoids, (+)- and (?)-camphorquinone (1a and b), has been investigated using Aspergillus wentii as a biocatalyst. Compound 1a was converted to (?)-(2S)-exo-hydroxycamphor (2a), (?)-(2S)-endo-hydroxycamphor (3a), (?)-(3S)-exo-hydroxycamphor (4a), (?)-(3S)-endo-hydroxycamphor (5a), and (+)-camphoric acid (6a). Compound 1b was converted to (+)-(2R)-exo-hydroxycamphor (2b), (+)-(2R)-endo-hydroxycamphor (3b), (+)-(3R)-exo-hydroxycamphor (4b), (+)-(3R)-endo-hydroxycamphor (5b), and (?)-camphoric acid (6b). Compound 1a mainly produced 2a (65.0%) with stereoselectivity, whereas 1b afforded 3b (84.3%) with high stereoselectivity. These structures were confirmed by gas chromatography–mass spectrometry, infrared, 1H nuclear magnetic resonance (NMR), and 13C NMR spectral data. The products illustrate the marked ability of A. wentii for enzymatic oxidation and ketone reduction.  相似文献   

6.
Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from Novosphingobium aromaticivorans are heme monooxygenases that catalyze the hydroxylation of a range of terpenoid compounds. CYP101D1 and CYP101D2 oxidized camphor to 5-exo-hydroxycamphor. CYP101B1 and CYP101C1 oxidized β-ionone to predominantly 3-R-hydroxy-β-ionone and 4-hydroxy-β-ionone, respectively. CYP111A2 oxidized linalool to 8-hydroxylinalool. Physiologically, these CYP enzymes could receive electrons from Arx, a [2Fe-2S] ferredoxin equivalent to putidaredoxin from the CYP101A1 system from Pseudomonas putida. A putative ferredoxin reductase (ArR) in the N. aromaticivorans genome, with high amino acid sequence homology to putidaredoxin reductase, has been over-produced in Escherichia coli and found to support substrate oxidation by these CYP enzymes via Arx with both high activity and coupling of product formation to NADH consumption. The ArR/Arx electron-transport chain has been co-expressed with the CYP enzymes in an E. coli host to provide in vivo whole-cell substrate oxidation systems that could produce up to 6.0 g L−1 of 5-exo-hydroxycamphor at rates of up to 64 μM (gram of cell dry weight)−1 min−1. These efficient biocatalytic systems have potential uses in preparative scale whole-cell biotransformations.  相似文献   

7.
P450sca-2 is an industrially important enzyme that stereoselectively converts mevastatin into pravastatin. However, little information or engineering efforts have been reported for this enzyme or its redox partner. In this study, we successfully reconstituted the P450sca-2 activity in Escherichia coli by co-expression with putidaredoxin reductase (Pdr) and putidaredoxin (Pdx) from the Pseudomonas putida cytochrome P450cam system. With an HPLC-based screening assay, random mutagenesis was applied to yield a mutant (R8-5C) with a pravastatin yield of the whole-cell biotransformation 4.1-fold that of the wild type. P450sca-2 wild-type and R8-5C were characterized in terms of mevastatin binding and hydroxylation, electron transfer, and circular dichroism spectroscopy. R8-5C showed an active P450 expression level that was 3.8-fold that of the wild type, with relatively smaller changes in the apparent kcat/KM with respect to the substrate mevastatin (1.3-fold) or Pdx (1.5-fold) compared with the wild type. Thus, the increase in the pravastatin yield of the whole-cell biotransformation primarily came from the improved active P450 expression, which has resulted largely from better heme incorporation, although none of the six mutations of R8-5C are located near the heme active site. These results will facilitate further engineering of this P450sca-2 system and provide useful clues for improving other hybrid P450 systems.  相似文献   

8.
In this study, a 3.7-kb DNA fragment was cloned from Rhodococcus sp. ECU0066, and the sequence was analyzed. It was revealed that the largest one (2,361 bp) of this gene fragment encodes a protein consisting of 787 amino acids, with 73% identity to P450RhF (accession number AF45924) from Rhodococcus sp. NCIMB 9784. The gene of this new P450 monooxygenase (named as P450SMO) was successfully expressed in Escherichia coli BL21 (DE3), and the enzyme was also purified and characterized. In the presence of reduced nicotinamide adenine dinucleotide phosphate, the enzyme showed significant sulfoxidation activity towards several sulfides, with (S)-sulfoxides as the predominant product. The p-chlorothioanisole, p-fluorothioanisole, p-tolyl methyl sulfide, and p-methoxythioanisole showed relatively higher activities than the other sulfides, but the stereoselectivity for p-methoxythioanisole was much lower. The optimal activity of the purified enzyme toward p-chlorothioanisole occurred at pH 7.0 and 30°C. The current study is the first to report a recombinant cytochrome P450 enzyme of Rhodococcus sp. which is responsible for the asymmetric oxidation of sulfides. The new enzymatic activity of P450SMO on the above compounds makes it an attractive biocatalyst for asymmetric synthesis of enantiopure sulfoxides.  相似文献   

9.
L-Phenylalanine was converted to optically impure (R)-(+)-2,6-dimethyl-1,5-heptadien-3-ol 2 (19% e.e.) .(R)-(+)-2 (96% e.e.) was prepared by a kinetic resolution of (±)-2. Acetylation of the pure (R)-(+ )- 2 gave the pheromone of the Comstock mealybug ( Pseudococcus comstockii KUWANA) [(R)-(+)-1].  相似文献   

10.
The camphor-degrading microorganism, Pseudomonas putida strain ATCC 17453, is an aerobic, gram-negative soil bacterium that uses camphor as its sole carbon and energy source. The genes responsible for the catabolic degradation of camphor are encoded on the extra-chromosomal CAM plasmid. A monooxygenase, cytochrome P450cam, mediates hydroxylation of camphor to 5-exo-hydroxycamphor as the first and committed step in the camphor degradation pathway, requiring a dioxygen molecule (O2) from air. Under low O2 levels, P450cam catalyzes the production of borneol via an unusual reduction reaction. We have previously shown that borneol downregulates the expression of P450cam. To understand the function of P450cam and the consequences of down-regulation by borneol under low O2 conditions, we have studied chemotaxis of camphor induced and non-induced P. putida strain ATCC 17453. We have tested camphor, borneol, oxidized camphor metabolites and known bacterial attractants (d)-glucose, (d) - and (l)-glutamic acid for their elicitation chemotactic behavior. In addition, we have used 1-phenylimidazole, a P450cam inhibitor, to investigate if P450cam plays a role in the chemotactic ability of P. putida in the presence of camphor. We found that camphor, a chemoattractant, became toxic and chemorepellent when P450cam was inhibited. We have also evaluated the effect of borneol on chemotaxis and found that the bacteria chemotaxed away from camphor in the presence of borneol. This is the first report of the chemotactic behaviour of P. putida ATCC 17453 and the essential role of P450cam in this process.  相似文献   

11.
Cytochrome P-450cam hydroxylates d-camphor, using molecular oxygen and reducing equivalents transferred via putidaredoxin. We constructed mutant genes in which Phe-350 of P-450cam was replaced by Leu, Tyr, or His by site-directed mutagenesis, expressed them in Escherichia coli, purified the mutant proteins, and compared their enzymic properties with those of the wild type P-450cam. NADH oxidation rate of the Tyr mutant in the reconsituted system with putidaredoxin and putidaredoxin reductase was similar to that of the wild type enzyme, while the Leu mutant and the His mutant showed 67% and 17% activity of that of the wild type, respectively. The affinities of these mutant proteins for camphor and the oxidized form of putidaredoxin were much the same as those of the wild type protein. Rate constants for the reduction reaction of P-450cam by reduced putidaredoxin, a physiological electron donor for P-450cam, of Tyr and His mutants were much the same as that of the wild type enzyme, whereas the Leu mutant showed approx. half that of the wild type. Thus, the aromatic ring of Phe-350 of P-450cam probably contributes to enhancing efficiency of the electron transfer yet does not seem to be essential for the reaction.  相似文献   

12.
The properties of the heme, flavin mononucleotide (FMN) and FeS domains of P450 RhF, from Rhodococcus sp. NCIMB 9784, expressed separately and in combination are analysed. The nucleotide preference, imidazole binding and reduction potentials of the heme and FMN domains are unaltered by their separation. The intact enzyme is monomeric and the flavin is confirmed to be FMN. The two one-electron reduction potentials of the FMN are -240 and -270 mV. The spectroscopic and thermodynamic properties of the FeS domain, masked in the intact enzyme, are revealed for the first time, confirming it as a 2Fe-2S ferredoxin with a reduction potential of -214 mV.  相似文献   

13.
Tractable plasmids (pAC-Mv-based plasmids) for Escherichia coli were constructed, which carried a mevalonate-utilizing gene cluster, towards an efficient functional analysis of cytochromes P450 involved in sesquiterpene biosynthesis. They included genes coding for a series of redox partners that transfer the electrons from NAD(P)H to a P450 protein. The redox partners used were ferredoxin reductases (CamA and NsRED) and ferredoxins (CamB and NsFER), which are derived from Pseudomonas putida and cyanobacterium Nostoc sp. strain PCC 7120, respectively, as well as three higher-plant NADPH-P450 reductases, the Arabidopsis thaliana ATR2 and two corresponding enzymes derived from ginger (Zingiber officinale), named ZoRED1 and ZoRED2. We also constructed plasmids for functional analysis of two P450s, α-humulene-8-hydroxylase (CYP71BA1) from shampoo ginger (Zingiber zerumbet) and germacrene A hydroxylase (P450NS; CYP110C1) from Nostoc sp. PCC 7120, and co-transformed E. coli with each of the pAC-Mv-based plasmids. Production levels of 8-hydroxy-α-humulene with recombinant E. coli cells (for CYP71BA1) were 1.5- to 2.3-fold higher than that of a control strain without the mevalonate-pathway genes. Level of the P450NS product with the combination of NsRED and NsFER was 2.9-fold higher than that of the CamA and CamB. The predominant product of P450NS was identified as 1,2,3,5,6,7,8,8a-octahydro-6-isopropenyl-4,8a-dimethylnaphth-1-ol with NMR analyses.  相似文献   

14.
A biotransformation system was designed to co-express CYP107P3 (CSP4), cytochrome P450, from Streptomyces peuceticus, along with CamA (putidaredoxin reductase) and CamB (putidaredoxin) from Pseudomonas putida, the necessary reducing equivalents, in a class I type electron-transfer system in E. coli BL21 (DE3). This was carried out using two plasmids with different selection markers and compatible origins of replication. The study results showed that this biotransformation system was able to mediate the O-dealkylation of 7-ethoxycumarin.  相似文献   

15.
P450cin (CYP176A) is a rare bacterial P450 in that contains an asparagine (Asn242) instead of the conserved threonine that almost all other P450s possess that directs oxygen activation by the heme prosthetic group. However, P450cin does have the neighbouring, conserved acid (Asp241) that is thought to be involved indirectly in the protonation of the dioxygen and affect the lifetime of the ferric-peroxo species produced during oxygen activation. In this study, the P450cin D241N mutant has been produced and found to be analogous to the P450cam D251N mutant. P450cin catalyses the hydroxylation of cineole to give only (1R)-6β-hydroxycineole and is well coupled (NADPH consumed: product produced). The P450cin D241N mutant also hydroxylated cineole to produce only (1R)-6β-hydroxycineole, was moderately well coupled (31 ± 3%) but a significant reduction in the rate of the reaction (2% as compared to wild type) was observed. Catalytic oxidation of a variety of substrates by D241N P450cin were used to examine if typical reactions ascribed to the ferric-peroxo species increased as this intermediate is known to be more persistent in the P450cam D251N mutant. However, little change was observed in the product profiles of each of these substrates between wild type and mutant enzymes and no products consistent with chemistry of the ferric-peroxo species were observed to increase.  相似文献   

16.
Cytochrome P450 (CYP) 147F1 from Streptomyces peucetius is a new CYP subfamily of that has been identified as ω-fatty acid hydroxylase. We describe the identification of CYP147F1 as a fatty acid hydroxylase by screening for the substrate using a substrate binding assay. Screening of substrates resulted in the identification of fatty acid groups of compounds as potential hits for CYP147F1 substrates. Fatty acids from C10:0 to C18:0 all showed type I shift spectra indicating their potential as substrates. Among several fatty acids tested, lauric acid, myrsitic acid, and palmitic acid were used to characterize CYP147F1. CYP147F1 activity was reconstituted using putidaredoxin reductase and putidaredoxin from Pseudomonas putida as surrogate electron transfer partners. Kinetic parameters, including the dissociation constant, Km, NADH consumption assay, production formation rate, and coupling efficiency for CYP147F1 were also determined.  相似文献   

17.
Asymmetric hydrolysis of acetate (10) of (±)-t-2,t-4-dimethyl-r-l-cyclohexanol with Bacillus subtilis var. niger gave (?)-(lS,2S,4S)-2,4-dimethyl-l-cyclohexanol (6a) and (+)-(1R,2R,4R)-acetate (10b) with high optical purities. Optically pure (?) and (+)-alcohols (6a and 6b) were prepared via corresponding 3,5-dinitrobenzoates. Oxidation of alcohols (6a and 6b) with chromic acid gave optically pure (?)-(2S,4S) and (+)-(2R,4R)-2,4-dimethyl-l-cyclohexanones (2a and 2b), respectively.  相似文献   

18.
Cytochrome P450 (CYP) enzymes of the CYP101 and CYP111 families from the oligotrophic bacterium Novosphingobium aromaticivorans DSM12444 are heme monooxygenases that receive electrons from NADH via Arx, a [2Fe-2S] ferredoxin, and ArR, a ferredoxin reductase. These systems show fast NADH turnovers (kcat = 39–91 s−1) that are efficiently coupled to product formation. The three-dimensional structures of ArR, Arx, and CYP101D1, which form a physiological class I P450 electron transfer chain, have been resolved by x-ray crystallography. The general structural features of these proteins are similar to their counterparts in other class I systems such as putidaredoxin reductase (PdR), putidaredoxin (Pdx), and CYP101A1 of the camphor hydroxylase system from Pseudomonas putida, and adrenodoxin (Adx) of the mitochondrial steroidogenic CYP11 and CYP24A1 systems. However, significant differences in the proposed protein-protein interaction surfaces of the ferredoxin reductase, ferredoxin, and P450 enzyme are found. There are regions of positive charge on the likely interaction face of ArR and CYP101D1 and a corresponding negatively charged area on the surface of Arx. The [2Fe-2S] cluster binding loop in Arx also has a neutral, hydrophobic patch on the surface. These surface characteristics are more in common with those of Adx than Pdx. The observed structural features are consistent with the ionic strength dependence of the activity.  相似文献   

19.
In this work, monoterpenoid hydroxylation with Pseudomonas putida GS1 and KT2440 were investigated as host strains, and the cytochrome P450 monooxygenase CYP176A1 (P450cin) and its native redox partner cindoxin (CinC) from Citrobacter braakii were introduced in P. putida to catalyze the stereoselective hydroxylation of 1,8-cineole to (1R)-6β-hydroxy-1,8-cineole. Growth experiments in the presence of 1,8-cineole confirmed pseudomonads’ superior resilience compared to E. coli. Whole-cell P. putida harboring P450cin with and without CinC were capable of hydroxylating 1,8-cineole, whereas coexpression of CinC has been shown to accelerate this bioconversion. Under the same conditions, P. putida GS1 produced more than twice the amount of heterologous P450cin and bioconversion product than P. putida KT2440. A concentration of 1.1 ± 0.1 g/L (1R)-6β-hydroxy-1,8-cineole was obtained within 55 h in shake flasks and 13.3 ± 1.9 g/L in 89 h in a bioreactor, the latter of which corresponds to a yield YP/S of 79 %. To the authors’ knowledge, this is the highest product titer for a P450 based whole-cell monoterpene oxyfunctionalization reported so far. These results show that solvent-tolerant P. putida GS1 can be used as a highly efficient recombinant whole-cell biocatalyst for a P450 monooxygenase-based valorization of monoterpenoids.  相似文献   

20.
Such (+)- and (?)-cis-cycloheximide isomers as isocyclohcximide (1a, 1b), α-epiisocycloheximide (2a, 2b) and neocycloheximide (3a, 3b) were synthesized by aldol condensation of (?)-(2R, 4R)- and (+)-(2S, 4S)-cis-2,4-dimethyl-1-cyclohexanone (5a, 5b). obtained by microbial resolution, with 4-(2-oxoethyl)-2,6-piperidinedione (7). The absolute configuration of the (?)-cis-ketone 5a was confirmed by chemical correlation with natural (2S, 4S, 6S, αR)-cycloheximide (4). The newly synthesized isomer, (?)-α-epiisocycloheximide (2b), showed strong antimicrobial activity against S. cerevisiae andP. oryzae close to that of natural cycloheximide (4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号