首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Scanning electron microscopy and immunohistochemical staining for FMRFamide-like peptides revealed that the stomatogastric nervous system of Galleria mellonella (Lepidoptera : Pyralidae) includes 5 ganglia: the frontal ganglion with 4, the hypocerebral ganglion with 2, the ingluvial ganglion with 2–4, and each of the paired proventricular ganglia with 6–8 immunoreactive perikarya. Immunoreactivity was also found in axons to and within the corpora cardiaca, in the nerves connecting stomatogastric ganglia, as well as in 8 gastric nerves that extend along longitudinal midgut muscles. Adhesion of corpora cardiaca to the hypocerebral ganglion and partial merging and shortening of gastric nerves were the only conspicuous changes of the stomatogastric system that occurred during metamorphosis.  相似文献   

2.
Allatostatin-like immunoreactivity (ALI) is widely distributed in processes and varicosities on the fore-, mid-, and hindgut of the locust, and within midgut open-type endocrine-like cells. ALI is also observed in cells and processes in all ganglia of the central nervous system (CNS) and the stomatogastric nervous system (SNS). Ventral unpaired median neurons (VUMs) contained ALI within abdominal ganglia IV-VII. Neurobiotin retrograde fills of the branches of the 11th sternal nerve that innervate the hindgut revealed 2-4 VUMs in abdominal ganglia IV-VIIth, which also contain ALI. The VIIIth abdominal ganglion contained three ventral medial groups of neurons that filled with neurobiotin and contained ALI. The co-localization of ALI in the identified neurons suggests that these cells are the source of ALI on the hindgut. A retrograde fill of the nerves of the ingluvial ganglia that innervate the foregut revealed numerous neurons within the frontal ganglion and an extensive neuropile in the hypocerebral ganglion, but there seems to be no apparent co-localization of neurobiotin and ALI in these neurons, indicating the source of ALI on the foregut comes via the brain, through the SNS.  相似文献   

3.
Hill SR  Orchard I 《Peptides》2003,24(10):1511-1524
The gut tissues and associated nervous system of the African migratory locust, Locusta migratoria, were found to contain FMRFamide-like immunoreactive (FLI) material throughout the five larval instars and 2 weeks into the adult stage in both males and females. FMRFamide-like immunoreactivity associated with the locust gut was described using camera lucida techniques. FMRFamide-like immunoreactivity is observed in the frontal connectives, recurrent nerve, and oesophageal nerves; projections from the ingluvial ganglion onto the anterior midgut, and from the proctodeal nerve onto the hindgut and posterior midgut; in the neuropils of the frontal ganglion, hypocerebral ganglion and ingluvial ganglia; 30 cell bodies in the frontal ganglion; multipolar sensory cells on the foregut; and endocrine-like cells in the gastric caecae and midgut. Radioimmunoassay (RIA) was used to determine the quantities of FLI material in foreguts, gastric caecae, anterior and posterior midguts, and hindgut of first-fifth instar larvae, 1-3- and 14-17-day male and female adult locusts. As expected, as the tissue size (assessed by total protein content) increases, so does the amount of FLI material in each tissue. Normalizing for tissue size reveals significant differences in FLI content among the stages for each tissue tested. Reversed phase-high pressure liquid chromatography (RP-HPLC) followed by RIA has identified four groups of FLI fractions present in the gut, and different members of these groups are present in the various gut tissues.  相似文献   

4.
The stomatogastric nervous system (SNS) associated with the foregut was studied in 3rd instar larvae of Drosophila melanogaster and Calliphora vicina (blowfly). In both species, the foregut comprises pharynx, esophagus, and proventriculus. Only in Calliphora does the esophagus form a crop. The position of nerves and neurons was investigated with neuronal tracers in both species and GFP expression in Drosophila. The SNS is nearly identical in both species. Neurons are located in the proventricular and the hypocerebral ganglion (HCG), which are connected to each other by the proventricular nerve. Motor neurons for pharyngeal muscles are located in the brain not, as in other insect groups, in the frontal ganglion. The position of the frontal ganglion is taken by a nerve junction devoid of neurons. The junction is composed of four nerves: the frontal connectives that fuse with the antennal nerves (ANs), the frontal nerve innervating the cibarial dilator muscles and the recurrent nerve that innervates the esophagus and projects to the HCG. Differences in the SNS are restricted to a crop nerve only present in Calliphora and an esophageal ganglion that only exists in Drosophila. The ganglia of the dorsal organs give rise to the ANs, which project to the brain. The extensive conformity of the SNS of both species suggests functional parallels. Future electrophysiological studies of the motor circuits in the SNS of Drosophila will profit from parallel studies of the homologous but more accessible structures in Calliphora.  相似文献   

5.
6.
Clark L  Agricola HJ  Lange AB 《Peptides》2006,27(3):549-558
Proctolin-like immunoreactivity (PLI) was widely distributed in the locust, Locusta migratoria, within the central, peripheral and stomatogastric nervous systems, as well as the digestive system and retrocerebral complex. Proctolin-like immunoreactivity was observed in cells and processes of the brain and all ganglia of the ventral nerve cord. Of interest, PLI was found in the lateral neurosecretory cells, which send axons within the paired nervi corporis cardiaci II (NCC II) to the corpus cardiacum (CC). The CC contained extensive processes displaying PLI, which continued on within the paired nervi corporis allata (NCA) to the paired corpora allata (CA) where the axons entered and branched therein. The frontal and hypocerebral ganglia of the stomatogastric nervous system contained PLI within processes, resulting in a brightly staining neuropile. Each region of the gut contained PLI in axons and processes of varying patterns and densities. The paired ingluvial ganglia contained PLI, including an extensively stained neuropile and immunoreactive axons projecting through the nerves to the foregut. The hindgut contained PLI within longitudinal tracts, with lateral projections originating from the 8th abdominal ganglion via the proctodeal nerve. The midgut contained PLI in a regular latticework pattern with many varicosities and blebs. No difference in PLI in cells and processes of the central nervous system (CNS) was found between males and females.  相似文献   

7.
The brain of Glossina morsitans Westwood contains four groups of neurosecretory cells which are stainable with chrome haematozylin and phloxin. The axons of these cells form a pair of nervi corporis cardiaci which pass posteriorly from the brain and innervate the corpora cardiaca and corpus allatum before uniting with a small ganglion posterior to the corpora cardiaca. This ganglion is considered to represent the fusion of the fusion of the hypocerebral and ventricular ganglia which remain separate in other insects.
There is no frontal ganglion in the adult Glossina and the recurrent nerve fuses with one of the nervi corporis cardiaci immediately behind the brain. The oesophageal nerves arising from the fused hypocerebral and ventricular ganglia innervate the oesophagus in the anterior part of the thorax, the proventriculus and the posterior extension of the oesophagus close to the crop. These nerves possess both sensory and motor nerve endings. The differences which exist between Glossina and other cyclorrhaphous Diptera with respect to their neuroendocrine/stomatogastric system are noted and considered in terms of the control of neuroendocrine function.  相似文献   

8.
The anatomy and functionality of the stomatogastric nervous system (SNS) of third-instar larvae of Calliphora vicina was characterised. As in other insects, the Calliphora SNS consists of several peripheral ganglia involved in foregut movement regulation. The frontal ganglion gives rise to the frontal nerve and is connected to the brain via the frontal connectives and antennal nerves (ANs). The recurrent nerve connects the frontal- to the hypocerebral ganglion from which the proventricular nerve runs to the proventricular ganglion. Foregut movements include rhythmic contractions of the cibarial dilator muscles (CDM), wavelike movements of crop and oesophagus and contractions of the proventriculus. Transections of SNS nerves indicate mostly myogenic crop and oesophagus movements and suggest modulatory function of the associated nerves. Neural activity in the ANs, correlating with postsynaptic potentials on the CDM, demonstrates a motor pathway from the brain to CDM. Crop volume is monitored by putative stretch receptors. The respective sensory pathway includes the recurrent nerve and the proventricular nerve. The dorsal organs (DOs) are directly connected to the SNS. Mechanical stimulation of the DOs evokes sensory activity in the AN. This suggests the DOs can provide sensory input for temporal coordination of feeding behaviour.  相似文献   

9.
The insect stomatogastric ganglia control foregut movements. Most previous work on the system has concentrated on the frontal ganglion (FG), including research into the role of the FG in feeding as well as molting-related behavior, mostly in locusts, but also in other insect species. The stomatogastric system exerts its physiological actions by way of careful interaction and coordination between its different neural centers and pattern-generating circuits. One such hitherto unstudied neural center is the hypocerebral ganglion (HG), which is connected to the FG via the recurrent nerve. It sends two pairs of nerves along the esophagus and to the posterior region of the crop, terminating in the paired ingluvial ganglia. Very little is known about the neuroanatomy and neurophysiology of the insect HG. Here we investigate, for the first time, the neuronal composition of the locust HG, as well as its motor output. We identify rhythmic patterns endogenous to the isolated HG, demonstrating the presence of a central pattern-generating network. Our findings suggest interactions between the HG and FG rhythm-generating circuits leading to complex physiological actions of both ganglia. This work will serve as a basis for future investigation into the physiology of the HG and its role in insect behavior.  相似文献   

10.
Silver impregnation of serial histological sections of the tubeworm Chaetopterus variopedatus revealed the presence of a subepidermal nervous system. The anterior nervous system is delimited by the first 11 segments and comprises (1) two dorsolateral cerebral ganglia and lateral instead of ventral nerve cords which are widely separated and thus connected by unusually long commissures, (2) a pharyngeal ganglion in the fourth segment which is connected to the cerebral ganglia by pharyngeal nerves and constitutes along with the pharyngeal plexus a stomatogastric or enteric nervous system, and (3) small, presumably segmental ganglionic swellings along the lateral nerve cords from which emerge commissures and parapodial nerves. No subesophageal ganglion or periesophageal connective could be identified. The lateral nerve cords converge toward the midline in the 12th segment to form the posterior nervous system comprising a pair of ventromedian nerve cords with their repetitive segmental ganglia from which emerge numerous short commissures and three segmental nerves coursing toward the dorsal and ventral regions of parapods and toward the neuropod. Light and electron microscopic investigations of cerebral and segmental ganglia showed an arrangement of inner neuropile and of unipolar neuron somata at the periphery. The neuropile comprises numerous neurites ranging in diameter from 0.5 to 10 μm and making polarized or symmetrical synaptic junctions with each other. The pharyngeal ganglion consists of a similar neuropile and of a large mass of cell bodies which is traversed by an elaborate network of sinuses and harbors three types of neurosecretory cells in addition to the conventional neuron somata. These findings are interpreted in the framework of the highly specialized morphological features and habits of Chaetopterus, and the welldeveloped stomatogastric system is considered to be related to control of the feeding activities.  相似文献   

11.
The innervation pattern of the respiratory gill arches of the carp (Cyprinus carpio) is described. The gill region is innervated by the branchial branches of the glossopharyngeal and vagal nerves. Each branchial nerve divides at the level of or just distal to the epibranchial ganglion into: 1) a pretrematic branch, 2) a dorsal pharyngeal branch, and 3) a posttrematic branch. The dorsal pharyngeal branch innervates the palatal organ in the roof of the buccal cavity. The pretrematic and posttrematic branches innervate the posterior and anterior halves, respectively, of the gill arches bordering a gill slit. Each branch splits into an internal and an external part. The internal bundle innervates the buccal side of the gill arch, including the gill rakers. The external bundle terminates in the gill filaments. The epibranchial motor branch, a small nerve bundle containing only motor fibers, circumvents the ganglion and anastomoses distally with the posttrematic branch. The detailed course and branching patterns of these branches are described.  相似文献   

12.
Summary The nervus corporis cardiaci III (NCC III) of the locust Locust migratoria was investigated with intracellular and extracellular cobalt staining techniques in order to elucidate the morphology of neurons within the suboesophageal ganglion, which send axons into this nerve. Six neurons have many features in common with the dorsal, unpaired, median (DUM) neurons of thoracic and abdominal ganglia. Three other cells have cell bodies contralateral to their axons (contralateral neuron 1–3; CN 1–3). Two of these neurons (CN2 and CN3) appear to degenerate after imaginal ecdysis. CN3 innervates pharyngeal dilator muscles via its anterior axon in the NCC III, and a neck muscle via an additional posterior axon within the intersegmental nerve between the suboesophageal and prothoracic ganglia. A large cell with a ventral posterior cell body is located close to the sagittal plane of the ganglion (ventral, posterior, median neuron; VPMN). Staining of the NCC III towards the periphery reveals that the branching pattern of this nerve is extremely variable. It innervates the retrocerebral glandular complex, the antennal heart and pharyngeal dilator muscles, and has a connection to the frontal ganglion.Abbreviations AH antennal heart - AN antennal nerves - AO aorta - AV antennal vessel - CA corpus allatum - CC corpus cardiacum - CN1, CN2, CN3 contralateral neuron 1–3 - DIT dorsal intermediate tract - DMT dorsal median tract - DUM dorsal, unpaired, median - FC frontal connective - FG frontal ganglion - HG hypocerebral ganglion - LDT lateral dorsal tract - LMN, LSN labral motor and sensory nerves - LN+FC common root of labral nerves and frontal connective - LO lateral ocellus - MDT median dorsal tract - MDVR ventral root of mandibular nerve - MVT median ventral tract - NCA I, II nervus corporis allati I, II - NCC I, II, III nervus corporis cardiaci I, III - NR nervus recurrens - NTD nervus tegumentarius dorsalis - N8 nerve 8 of SOG - OE oesophagus - OEN oesophageal nerve - PH pharynx - SOG suboesophageal ganglion - T tentorium - TVN tritocerebral ventral nerve - VLT ventral lateral tract - VIT ventral intermediate tract - VMT ventral median tract - VPMN ventral, posterior, median neuron - 1–7 peripheral nerves of the SOG - 36, 37, 40–45 pharyngeal dilator muscles  相似文献   

13.
1. Distribution of FMRFamide-like peptide activity was examined in the stomatogastric nervous system of the adult fly, Sarcophaga bullata by the indirect immunofluorescent method.2. The neurons of the hypocerebral ganglion exhibit intense immunoreactivity and extend a thick axon bundle ventrally towards the proventriculus and crop.3. Near the mouth of the stomodeal valve a dense network of radial and circular immunoreactive processes branch off and innervate the proventriculus.4. Beyond the proventriculus, the crop duct and anterior midgut wall are also innervated by the FMRFamide-like immunoreactive processes of the nerve from the hypocerebral ganglion.5. From the pattern of innervation of the gut by FMRFamide-like immunoreactive processes it is suggested that this neuropeptide may regulate feeding activities in the adult fly.  相似文献   

14.
The anatomy of neurons of the stomatogastric nervous system of Ascheta domesticus was studied using heavy metal iontophoresis through cut nerve ends followed by silver intensification. Nineteen categories of neuron are described and compared with neurons known from the stomatogastric nervous system of other insects. Possible functions for the neurons are suggested. Motor neuron candidates are suggested for all parts of the gut served by the stomatogastric nervous system, and axons of sensory neurons of the anterior pharynx are located. There are four neuron types that cannot readily be assigned motor, sensory, or interneuron functions: large dorsal cells of the frontal ganglion; the two neurons of the nervus connectivus, and two categories of neurons in the median neurosecretory cell group of the pars intercerebralis, the axons of which are contained in the stomatogastric nerves.  相似文献   

15.
Gene expression and immunolocalisation studies have determined that the helicostatins are brain-gut peptides in larvae of the lepidopteran, Helicoverpa armigera. Mapping of the distribution of these peptides in the nervous system and alimentary canal has provided evidence for multifunctional regulatory roles. In situ hybridisation studies have shown that the helicostatin precursor gene is expressed in neurones of the central and stomatogastric nervous systems, and endocrine cells of the midgut demonstrating that the helicostatins are true brain-gut peptides. Antisera raised against Leu-callatostatin 3 (ANRYGFGL-NH(2)), a peptide isolated from the blowfly, Calliphora vomitoria was used to map the distribution of allatostatin-like immunoreactive (Ast-ir) material in H. armigera to elucidate possible functions of the helicostatins. In situ hybridisation studies verified that the helicostatin precursor gene is expressed in neurones shown to contain Ast-ir, providing strong evidence that the Ast-ir material is helicostatins. Extensive immunoreactive axonal projections into complex regions of neuropile indicate that the helicostatins may have a neuromodulatory role in the brain and segmental ganglia of the ventral nerve cord. The presence of large amounts of immunoreactive material in axons within the corpora cardiaca (CC) and transverse nerves of the perisympathetic nervous system, two known neurohaemal organs, provides evidence for a neurohormonal role. The corpora allata (CA) were innervated only sparsely by Ast-ir axons suggesting that the CA are not a neurohaemal release site or a target. Thus, it is unlikely that the helicostatins regulate juvenile hormone (JH) biosynthesis or release. Ast-ir axons extended from the frontal ganglion through the recurrent nerve and many branches were closely associated with muscles of the foregut, stomodeal valve, and anterior midgut, implicating helicostatins in regulation of foregut motility. Ast-ir material was also present in nerves associated with muscles of the pyloric valve and rectum, and in endocrine cells of the midgut.  相似文献   

16.
The midgut of the female mosquitoAedes aegypti was studied immunohistologically with antisera to various regulatory peptides. Endocrine cells immunoreactive with antisera to perisulfakinin, RFamide, bovine pancreatic polypeptide, urotensin 1, locustatachykinin 2 and allatostatins A1 and B2 were found in the midgut. Perisulfakinin, RFamide and bovine pancreatic polypeptide all react with the same, about 500 endocrine cells, which were evenly distributed throughout the posterior midgut, with the exception of its most frontal and caudal regions. In addition, these antisera recognized three to five neurons in each ingluvial ganglion and their axons, which ran longitudinally over the anterior midgut, as well as axons innervating the pyloric sphincter. The latter axons appear to be derived from neurons located in the abdominal ganglia. Antisera to two different allatostatins recognized about 70 endocrine cells in the most caudal area of the posterior midgut and axons in the anterior midgut whose cell bodies were probably located in either the brain or the frontal ganglion. Antiserum to locustatachykinin 2 recognized endocrine cells present in the anterior midgut and the most frontal part of the posterior midgut, as well as about 50 cells in the most caudal region of the posterior midgut. Urotensin 1 immunoreactivity was found in endocrine cells in the same region as the perisulfakinin-immunoreactive cells, but no urotensin-immunoreactive axons were found in the midgut. Double labeling experiments showed that the urotensin and perisulfakinin immunoreactivities were located in different cells. Such experiments also showed that the locustatachykinin and allatostatin immunoreactivities in the most caudal area of the posterior midgut were present in different cells. No immunoreactivity was found in the mosquito midgut when using antisera to corazonin, allatotropin or leucokinin IV. Since these peptides have either been isolated from, or can reasonably be expected to be present in mosquitoes, it was concluded that these peptides are not present in the mosquito midgut.  相似文献   

17.
Tyrosine hydroxylase-like immunoreactivity is present in cell bodies and processes in the brain and optic lobes of Locusta migratoria, with processes projecting along the frontal connectives to form a neuropile within the frontal ganglion. Immunoreactive cell bodies and processes are also evident in the hypocerebral and ventricular ganglia with processes extending over the foregut. Tyrosine hydroxylase is the rate-limiting enzyme in dopamine biosynthesis, and high-performance liquid chromatography coupled to electrochemical detection was used to confirm the presence of dopamine in the innervation to the foregut. Spontaneous foregut contractions are under the control of the ventricular ganglia and are absent when these ganglia are removed. Dopamine leads to an inhibition of both the amplitude and frequency of phasic contractions of the foregut that are produced when the ventricular ganglia are left attached. Dopamine has direct effects on the foregut muscle in the absence of the ventricular ganglia, inhibiting a proctolin-induced contraction in a dose-dependent manner.  相似文献   

18.
The enteric nervous system (ENS) of the moth Manduca sexta is organized into two distinct cellular domains: an anterior domain that includes several small ganglia on the surface of the foregut, and a more posterior domain consisting of a branching nerve plexus (the enteric plexus) that spans the foregut-midgut boundary. Previously, we showed that the neurons of the posterior domain, the enteric plexus, are generated from a large placode that invaginates from the caudal lip of the foregut; subsequently, the cells become distributed throughout the enteric plexus by a sequence of active migration. We now demonstrate that the neurons of the anterior domain, the cells of the enteric ganglia, arise via a distinct developmental sequence. Shortly after the foregut has begun to form, three neurogenic zones differentiate within the foregut epithelium and give rise to chains of cells that emerge onto the foregut surface. The three zones are not sites of active mitosis, as indicated by the absence of labelling with a thymidine analogue and by clonal analyses using intracellularly injected dyes. Rather, the zones serve as loci through which epithelial cells are recruited into a sequence of delamination and neuronal differentiation. As they emerge from the epithelium, the cells briefly become mitotically active, each cell dividing once or twice. In this manner, they resemble the midline precursor class of neural progenitors in the insect central nervous system more than neuroblast stem cells. The progeny of these zone-derived precursors then gradually coalesce into the ganglia and nerves of the anterior ENS. Although this reorganization results in some variability in the precise configuration of neurons within the ganglia, the overall morphology of the ganglia is highly stereotyped, consisting of cortical layers of cells that surround a ventral neuropil. In addition, a number of the neurons within the frontal and hypocerebral ganglia express identifiable phenotypes in a manner that is similar to many cells of the insect central nervous system. These observations indicate that the differentiation of the enteric ganglia in Manduca involves an unusual combination of features seen during the formation of other regions of the nervous system and, as such, constitutes a distinct program of neurogenesis.  相似文献   

19.
Ths structure of the stomatogastric neuromuscular system in Panulirus argus, Callinectes sapidus and Homarus americanus has recently been described (Maynard and Dando, 1973). We attempt here to describe the sensory innervation of the foregut in Panulirus argus and, by combining this information with previous published data and less systematic observations on Callinectes and Homarus, to provide in addition a summary of the stomatogastric sensory systems in these types of Decapoda Crustacea (Figure 1, Table I).

Some anatomical problems remain unresolved and there is variation in the structure of the sense organs in different species, but we are able to recognize six major receptor groups in all of the species examined. These are (i) mechanoreceptors which monitor movements of the lower oesophagus and mouth (Receptor reference Nos. 1, 2, 3); (ii) probable chemoreceptors in the higher oesophagus and ventral cardiac sac (Rf. Nos. 6, 9, 11); (iii) cells located in or near the stomatogastric ganglion which monitor movements of the gastric mill (Rf. No. 8); (iv) neurones of the posterior stomach nerve (Rf. No. 15) which monitor movements of the gastric mill; (v) neurones innervating muscles near the cardio‐pyloric valve (Rf. No. 16); (vi) neurones innervating the hepatopancreas duct and the initial part of the intestine (Rf. Nos. 18, 19).

In such a restricted system it should be possible to determine the precise role that the various sensory systems play in the control of the simple movements of the foregut. This research must necessarily involve the investigation, with intracellular techniques, of the central events in the commissural ganglia as these ganglia appear to be the major co‐ordination centres of the stomatogastric nervous system.  相似文献   

20.
The formation of the alimentary canal, nervous system, and of other ectodermal derivatives in the embryo of the primitive moth, Neomicropteryx nipponensis Issiki, is described. The stomodaeum is formed from an invagination in the medioposterior portion of the protocephalon. The proctodaeum arises as an extension of the amnioproctodaeal cavity. The midgut epithelium orginates from anterior and posterior rudiments in blind ends of the stomodaeum and proctodaeum. The decondary dorsal organ is formed in developing midgut. The development of the brain is typical of insects. The ventral nerve cord originates in large part from neuroblasts arising in 3 gnathal, 3 thoracic, and 11 abdominal segments. Intrasegmental median cord cells probably differentiate into both ganglion cells and glial elements of the ventral nerve cord; intersegmental cells appear not to participate in the formation of the nervous system. The stomatogastric nervous system develops from three evaginations in the dorsal wall of the stomodaeum, and consists of the frontal, hypocerebral, and ventricular ganglia, the recurrent nerve, and corpora cardiaca. Five stemmata arise from the epidermis on each side of the head. Five pairs of ectodermal invaginations are formed in the cephalognathal region to produce the tentorium, mandibular apodemes, corpora allata, and silk glands. Prothoracic glands orginate in the prothorax. Mesothoracic spiracles shift anteriorly to the prothorax during development. Oenocytes arise in the first seven abdominal segments. Invaginated pleuropodia are formed in the first abdominal segment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号