首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The anatomy and functionality of the stomatogastric nervous system (SNS) of third-instar larvae of Calliphora vicina was characterised. As in other insects, the Calliphora SNS consists of several peripheral ganglia involved in foregut movement regulation. The frontal ganglion gives rise to the frontal nerve and is connected to the brain via the frontal connectives and antennal nerves (ANs). The recurrent nerve connects the frontal- to the hypocerebral ganglion from which the proventricular nerve runs to the proventricular ganglion. Foregut movements include rhythmic contractions of the cibarial dilator muscles (CDM), wavelike movements of crop and oesophagus and contractions of the proventriculus. Transections of SNS nerves indicate mostly myogenic crop and oesophagus movements and suggest modulatory function of the associated nerves. Neural activity in the ANs, correlating with postsynaptic potentials on the CDM, demonstrates a motor pathway from the brain to CDM. Crop volume is monitored by putative stretch receptors. The respective sensory pathway includes the recurrent nerve and the proventricular nerve. The dorsal organs (DOs) are directly connected to the SNS. Mechanical stimulation of the DOs evokes sensory activity in the AN. This suggests the DOs can provide sensory input for temporal coordination of feeding behaviour.  相似文献   

2.
Two types of rhythmic foregut movements are described in fifth instar larvae of the moth, Manduca sexta. These consist of posteriorly-directed waves of peristalsis which move food toward the midgut, and synchronous constrictions of the esophageal region, which appear to retain food within the crop. We describe these movements and the muscles of the foregut that generate them.The firing patterns of a subset of these muscles, including a constrictor and dilator pair from both the esophageal and buccal regions of the foregut, are described for both types of foregut movement.The motor patterns for the foregut muscles require innervation by the frontal ganglion (FG), which lies anterior to the brain and contains about 35 neurons. Eliminating the ventral nerve cord, leaving the brain and FG intact, did not affect the muscle firing patterns in most cases. Eliminating both the brain and the ventral nerve cord, leaving only the FG to innervate the foregut, generally resulted in an increased period for both gut movements and muscle bursts. This manipulation also produced increases in burst durations for most muscles, and had variable effects on the phasing of muscle activity. Despite these changes, the foregut muscles still maintained a rhythmic firing pattern when innervated by the FG alone.Two nerves exit the FG to innervate the foregut musculature: the anteriorly-projecting frontal nerve, and the posteriorly-directed recurrent nerve. Cutting the frontal nerve immediately and irreversibly stopped all muscle activity in the buccal region, while cutting the recurrent nerve immediately stopped all muscle activity in the pharyngeal and esophageal regions. Recordings from the cut nerves leaving the FG showed that the ganglion was spontaneously active, with rhythmic activity continuing within the nerves. These observations indicate that all of the foregut muscle motoneurons are located within the FG, and the FG in isolation produces a rhythmic firing pattern in the motoneurons. We have identified several motoneurons within the FG, by cobalt backfills and/or simultaneous intracellular recordings and fills from putative motoneurons and their muscles.Abbreviations BC Buccal Constrictor - BC1 buccal constrictor motoneuron 1 - BC2 buccal constrictor motoneuron 2 - BD Buccal Dilator - BD1 buccal dilator motoneuron 1 - EC Esophageal Dilator - EC1 esophageal dilator motoneuron 1 - EC2 esophageal dilator motoneuron 2 - EC3 esophageal dilator motoneuron 3 - ejp excitatory junction potential - FG frontal ganglion - psp postsynaptic potential  相似文献   

3.
The distribution of the ganglia and nerves of the stomatogastric nervous system and the innervation of the extrinsic and intrinsic muscles are described. Median unpaired frontal and hypocerebral ganglia and paired ingluvial ganglia are present. The anterior pharynx is innervated by branches of the frontal nerve and by the anterior and posterior pharyngeal nerves, originating from the frontal ganglion. The posterior pharyngeal nerves are linked to nerves innervating the posterior part of the pharynx which have their origin in the hypocerebral ganglion, the anterior portion of which has previously been regarded as part of the recurrent nerve. Paired esophageal nerves run the length of the esophagus and crop between the hypocerebral and and ingluvial ganglia, innervating the muscularis by serial side branches. From each ingluvial ganglion runs an ingluvial nerve which innervates the gizzard and a cecal nerve which innervates the midgut and its ceca. At the posterior end of the midgut there is a poorly developed nerve ring. Nerves running posteriorly from this nerve ring link the stomatogastric nervous system with the proctodeal innervation from the terminal abdominal ganglion. Multipolar peripheral neurons are present on the muscularis of the whole of the foregut, rather randomly distributed on the crop and gizzard but forming fairly definite groupings at some points on the pharynx. Though of varied appearance, these cells could not be divided into discrete morphological categories. Peripheral neurons on the midgut are of different and characteristic morphology, though a few cells of the same appearance as those of the foregut occur at the midgut-hindgut boundary. Nerve fibers on the gut almost invariably terminate on the fibers of the muscularis.  相似文献   

4.
5.
Allatostatin-like immunoreactivity (ALI) is widely distributed in processes and varicosities on the fore-, mid-, and hindgut of the locust, and within midgut open-type endocrine-like cells. ALI is also observed in cells and processes in all ganglia of the central nervous system (CNS) and the stomatogastric nervous system (SNS). Ventral unpaired median neurons (VUMs) contained ALI within abdominal ganglia IV-VII. Neurobiotin retrograde fills of the branches of the 11th sternal nerve that innervate the hindgut revealed 2-4 VUMs in abdominal ganglia IV-VIIth, which also contain ALI. The VIIIth abdominal ganglion contained three ventral medial groups of neurons that filled with neurobiotin and contained ALI. The co-localization of ALI in the identified neurons suggests that these cells are the source of ALI on the hindgut. A retrograde fill of the nerves of the ingluvial ganglia that innervate the foregut revealed numerous neurons within the frontal ganglion and an extensive neuropile in the hypocerebral ganglion, but there seems to be no apparent co-localization of neurobiotin and ALI in these neurons, indicating the source of ALI on the foregut comes via the brain, through the SNS.  相似文献   

6.
The locust frontal ganglion (FG) constitutes a major source of innervation to the foregut dilator muscles and thus plays a key role in control of foregut movements. This paper reviews our recent studies on the generation and characteristics of FG motor outputs in two distinct and fundamental locust behaviors: feeding and molting. In an in vitro preparation, isolated from all descending and sensory inputs, the FG was spontaneously active and generated rhythmic multi-unit bursts of action potentials, which could be recorded from all efferent nerves. Thus the FG motor pattern is generated by a central pattern generator within the ganglion. Intracellular recordings suggest that only a small fraction (10-20%) of the FG 100 neurons demonstrate rhythmic activity. The FG motor output in vivo was relatively complex, and strongly dependent on the locust's physiological and behavioral state. Rhythmic activity of the foregut was found to depend on the amount of food present in the crop; animals with full crop demonstrated higher FG burst frequency than those with empty crop. At the molt, the FG generates a distinct motor pattern that could be related to air-swallowing behavior.  相似文献   

7.
We analyzed the anatomy of two diffuse neurohemal systems for serotonin in the head of the Colorado potato beetle Leptinotarsa decemlineata by means of immunohistochemistry. One system is formed by axons from two bilateral pairs of neurons in the frontal margin of the suboesophageal ganglion that enter the ipsilateral mandibular nerve, emerge from this nerve at some distance from the suboesophageal ganglion, and cover all branches of the mandibular nerve with a dense plexus of immunoreactive axon swellings. The other system is formed by axons from two large neurons in the frontal ganglion that enter the ipsilateral frontal connectives, emerge from these connectives, and form a network of axon swellings on the labroforntal, pharyngeal, and antennal nerves and on the surface of the frontal ganglion. Immunohistochemical electron microscopy demonstrated that the axon swellings are located outside the neural sheaths of the nerves and hence in close contact with the hemolymph. We therefore suggest that these plexuses represent extensive neurohemal systems for serotonin. Most immunoreactive terminals are in direct contact with the hemolymph, and other terminals are closely associated with the muscles of the mandibles, labrum, and anterior pharynx, as well as with the salivary glands, indicating that these organs are under serotoninergic control.  相似文献   

8.
The morphology of the stomodeal nervous system of the adult dragon flies Bradinopyga geminata and Orthetrum chrysis is described. No gastric ganglion or ganglion ingluviale has been found. Instead the oesophageal nerve forks near the junction of the proventriculus and the midgut. The two nerves run on either side of the midline as ingluvial nerves and enter the proventricular ganglionic masses. These ganglionic masses are connected by a transverse nerve, which has been called as the nervus transversus proventriculare. Both bipolar and multipolar types of sensory cells have been found over the surface of the crop. These cell bodies appear to be interconnected by connective tissue. Dendrites of these cells terminate on the longitudinal muscle fibres, surrounding the proventriculus and the midgut. The proximal processes of these cells enter the proventricular ganglionic mass. In methylene blue whole mounts they resemble the stretch receptors, hence it is quite probable that they play some role in the peristaltic movement of the gut. The corpora cardiaca lie dorsal to the pharynx and are connected to the brain by two pairs of nerves, the nervi corporis cardiaci (NCC I, NCC II). Unlike in other insects, the nerve connecting the corpora cardiaca with the corpora allata is slender and arises as a branch of the nerve, nervus corporis allati II. The corpora alata are spherical to ovoid in shape and lie ventral to the nerve cord. Anteriorly they are attached to the inner wall of the hypopharynx and posteriorly to the subesophageal ganglion by a pair of nerves, the nervi corporis allati II.  相似文献   

9.
The insect stomatogastric ganglia control foregut movements. Most previous work on the system has concentrated on the frontal ganglion (FG), including research into the role of the FG in feeding as well as molting-related behavior, mostly in locusts, but also in other insect species. The stomatogastric system exerts its physiological actions by way of careful interaction and coordination between its different neural centers and pattern-generating circuits. One such hitherto unstudied neural center is the hypocerebral ganglion (HG), which is connected to the FG via the recurrent nerve. It sends two pairs of nerves along the esophagus and to the posterior region of the crop, terminating in the paired ingluvial ganglia. Very little is known about the neuroanatomy and neurophysiology of the insect HG. Here we investigate, for the first time, the neuronal composition of the locust HG, as well as its motor output. We identify rhythmic patterns endogenous to the isolated HG, demonstrating the presence of a central pattern-generating network. Our findings suggest interactions between the HG and FG rhythm-generating circuits leading to complex physiological actions of both ganglia. This work will serve as a basis for future investigation into the physiology of the HG and its role in insect behavior.  相似文献   

10.
Gene expression and immunolocalisation studies have determined that the helicostatins are brain-gut peptides in larvae of the lepidopteran, Helicoverpa armigera. Mapping of the distribution of these peptides in the nervous system and alimentary canal has provided evidence for multifunctional regulatory roles. In situ hybridisation studies have shown that the helicostatin precursor gene is expressed in neurones of the central and stomatogastric nervous systems, and endocrine cells of the midgut demonstrating that the helicostatins are true brain-gut peptides. Antisera raised against Leu-callatostatin 3 (ANRYGFGL-NH(2)), a peptide isolated from the blowfly, Calliphora vomitoria was used to map the distribution of allatostatin-like immunoreactive (Ast-ir) material in H. armigera to elucidate possible functions of the helicostatins. In situ hybridisation studies verified that the helicostatin precursor gene is expressed in neurones shown to contain Ast-ir, providing strong evidence that the Ast-ir material is helicostatins. Extensive immunoreactive axonal projections into complex regions of neuropile indicate that the helicostatins may have a neuromodulatory role in the brain and segmental ganglia of the ventral nerve cord. The presence of large amounts of immunoreactive material in axons within the corpora cardiaca (CC) and transverse nerves of the perisympathetic nervous system, two known neurohaemal organs, provides evidence for a neurohormonal role. The corpora allata (CA) were innervated only sparsely by Ast-ir axons suggesting that the CA are not a neurohaemal release site or a target. Thus, it is unlikely that the helicostatins regulate juvenile hormone (JH) biosynthesis or release. Ast-ir axons extended from the frontal ganglion through the recurrent nerve and many branches were closely associated with muscles of the foregut, stomodeal valve, and anterior midgut, implicating helicostatins in regulation of foregut motility. Ast-ir material was also present in nerves associated with muscles of the pyloric valve and rectum, and in endocrine cells of the midgut.  相似文献   

11.
12.
太白蝎蛉消化道形态学与组织学研究   总被引:1,自引:0,他引:1  
刘书宇  花保祯 《昆虫学报》2009,52(7):808-813
利用光学显微镜和扫描电子显微镜, 在形态学和组织学水平上研究了太白蝎蛉Panorpa obtusa Cheng成虫消化道的结构。结果表明: 蝎蛉消化道由前肠、中肠、和后肠组成。前肠包括咽喉、食道、和前胃, 但没有嗉囊,其中咽喉可分为骨化的前咽和附着扩肌的后咽(咽喉唧筒); 前胃壁很厚,内膜上长有许多排列整齐、紧密的棕色胃刺,司过滤、暂时储存和磨碎食物的功能; 前肠末端有6个贲门瓣伸入中肠。中肠较长且膨大,其肠壁细胞由柱状细胞和再生细胞组成; 肠壁细胞外分别为环肌和纵肌,无胃盲囊,也未观察到围食膜。6根棕红色的马氏管位于中、 后肠分界处。后肠分为不对称的“V”字型回肠、环状结肠、以及膨大透明的直肠, 直肠内壁上有6个交替排列的直肠垫。最后简要讨论了蝎蛉消化道的结构与功能,及其在蝎蛉科昆虫分类中的意义。  相似文献   

13.
To establish the existence of a central pattern generator for feeding in the larval central nervous system of two Drosophila species, the gross anatomy of feeding related muscles and their innervation is described, the motor units of the muscles identified and rhythmic motor output recorded from the isolated CNS. The cibarial dilator muscles that mediate food ingestion are innervated by the frontal nerve. Their motor pathway projects from the brain through the antennal nerves, the frontal connectives and the frontal nerve junction. The mouth hook elevator and depressor system is innervated by side branches of the maxillary nerve. The motor units of the two muscle groups differ in amplitude: the elevator is always activated by a small unit, the depressor by a large one. The dorsal protractors span the cephalopharyngeal skeleton and the body wall hence mediating an extension of the CPS. These muscles are innervated by the prothoracic accessory nerve. Rhythmic motor output produced by the isolated central nervous system can simultaneously be recorded from all three nerves. The temporal pattern of the identified motor units resembles the sequence of muscle contractions deduced from natural feeding behavior and is therefore considered as fictive feeding. Phase diagrams show an almost identical fictive feeding pattern is in both species.  相似文献   

14.
The triple co-localisation of peptidergic material immunoreactive to antisera raised against allatostatins of the Y/FXFGL-NH2 type, Manduca sexta allatostatin (Mas-AS), and allatotropin has been demonstrated in a single pair of anterodorsal neurones in the frontal ganglion of the tomato moth, Lacanobia oleracea (Noctuidae). Another pair of posterior neurones contain only Y/FXFGL-NH2-type allatostatin immunoreactivity. The neurites of all four cells trifurcate, and axons project to the brain in the frontal connectives and to the foregut in the recurrent nerve. Axons from the anterior neurones, within the recurrent nerve, have prominent lateral branches supplying muscles of the crop, and axons from both anterior and posterior cells show profuse branching and terminal arborisations in the region of the stomodeal valve. The brain contributes Y/FXFGL-NH2-immunoreactive material, but not allatotropin or Mas-AS, to the recurrent nerve via NCC 1+2 and NCC 3. All three peptides have a reversible effect on the spontaneous (peristaltic) contractions of the foregut (crop) in vitro. Thus, both types of allatostatin are inhibitory at 10(-12) to 10(-7) M, whereas allatotropin is strongly myostimulatory at 10(-14) M. This is the first demonstration of the gut myoinhibitory effects of Mas-AS and, taken together with the effects of Y/FXFGL-NH2-type allatostatins and allatotropin, reveals a different functional aspect to that normally attributed to these three peptides, i.e. control of juvenile hormone synthesis by the corpus allatum.  相似文献   

15.
Stomach cancer is the second most frequent cause of cancer-related death worldwide. Thus, it is important to elucidate the properties of gastric stem cells, including their regulation and transformation. To date, such stem cells have not been identified in Drosophila. Here, using clonal analysis and molecular marker labeling, we identify a multipotent stem-cell pool at the foregut/midgut junction in the cardia (proventriculus). We found that daughter cells migrate upward either to anterior midgut or downward to esophagus and crop. The cardia functions as a gastric valve and the anterior midgut and crop together function as a stomach in Drosophila; therefore, we named the foregut/midgut stem cells as gastric stem cells (GaSC). We further found that JAK-STAT signaling regulates GaSCs'' proliferation, Wingless signaling regulates GaSCs'' self-renewal, and hedgehog signaling regulates GaSCs'' differentiation. The differentiation pattern and genetic control of the Drosophila GaSCs suggest the possible similarity to mouse gastric stem cells. The identification of the multipotent stem cell pool in the gastric gland in Drosophila will facilitate studies of gastric stem cell regulation and transformation in mammal.Key words: gastric stem cells, foregut/midgut junction, cardia, proventriculus, stomach, Drosophila  相似文献   

16.
Summary Neck muscles of Calliphora erythrocephala, situated in the anterior prothorax, are innervated on each side by 8 motor neurons arising in the brain (cervical nerve neurons, CN1–8) and at least 13 motor neurons arising in the prothoracic ganglion (anterior dorsal and frontal nerve neurons, ADN1,2 and FN1-11). Three prominent motor neurons (CN6 and FN1,2) are described in detail with special emphasis on their relationships with giant visual interneurons from the lobula plate, haltere interneurons, and primary afferents from the prosternal organs and halteres. These sensory organs detect head movement and body yaw, respectively. Neuronal relationships indicate that head movement is under multimodal sensory control that includes giant motion-sensitive neurons previously supposed to mediate the optomotor response in flying flies. The described pathways provide anatomical substrates for the control of optokinetic and yaw-incurred head movements that behavioural studies have shown must exist.  相似文献   

17.
Neuromodulators orchestrate complex behavioral routines by their multiple and combined effects on the nervous system. In the desert locust, Schistocerca gregaria, frontal ganglion neurons innervate foregut dilator muscles and play a key role in the control of foregut motor patterns. To further investigate the role of the frontal ganglion in locust behavior, we currently focus on the frontal ganglion central pattern generator as a target for neuromodulation. Application of octopamine, a well-studied insect neuromodulator, generated reversible disruption of frontal ganglion rhythmic activity. The threshold for the modulatory effects of octopamine was 10–6 mol l–1, and 10–4 mol l–1 always abolished the ongoing rhythm. In contrast to this straightforward modulation, allatostatin, previously reported to be a myoinhibitor of insect gut muscles, showed complex, tri-modal, dose-dependent effects on frontal ganglion rhythmic pattern. Using a novel cross-correlation analysis technique, we show that different allatostatin concentrations have very different effects not only on cycle period but also on temporal characteristics of the rhythmic bursts of action potentials. Allatostatin also altered the frontal ganglion rhythm in vivo. The analysis technique we introduce may be instrumental in the study of not fully characterized neural circuits and their modulation. The physiological significance of our results and the role of the modulators in locust behavior are discussed.Abbreviation CPG central pattern generator - FG frontal ganglion - JH juvenile hormone - STNS stomatogastric nervous system  相似文献   

18.
M Hahn  H Jckle 《The EMBO journal》1996,15(12):3077-3084
In vertebrate embryos, the homeobox gene goosecoid (gsc) is expressed in the gastrula organizer region and in later arising embryonic tissues including the foregut anlage. Ectopic expression and loss-of-function studies have demonstrated that Xenopus gsc elicits a dorsalizing activity that contributes to body axis formation. Here we report that the gsc gene is conserved in invertebrates. In Drosophila, D-gsc is expressed most strongly in the foregut anlage, which gives rise to the foregut proper and the stomatogastric nervous system (SNS). D-gsc expression overlaps with one of the three SNS precursor groups invaginating from the foregut anlage. Embryos mutant for D-gsc gastrulate normally but show disrupted invagination in the SNS primordium and lack one specific SNS ganglion. In addition, D-gsc mutant embryos show a less well defined defect in foregut arrangement. Our results indicate that this invertebrate homolog of gsc is not required for gastrulation but plays a role in neurogenesis in post-gastrula Drosophila embryos.  相似文献   

19.
Pigment-dispersing factor (PDF) is a neuropeptide that has been indicated as a likely output signal from the circadian clock neurons in the brain of Drosophila. In addition to these brain neurons, there are PDF-immunoreactive (PDFI) neurons in the abdominal ganglia of Drosophila and other insects; the function of these neurons is not known. We have analyzed PDFI neurons in the abdominal ganglia of the locust Locusta migratoria. These PDFI neurons can first be detected at about 45% embryonic development and have an adult appearance at about 80%. In each of the abdominal ganglia (A3-A7) there is one pair of lateral PDFI neurons and in each of the A5-A7 ganglia there is additionally a pair of median neurons. The lateral neurons supply varicose branches to neurohemal areas of the lateral heart nerves and perisympathetic organs, whereas the median cells form processes in the terminal abdominal ganglion and supply terminals on the hindgut. Because PDF does not influence hindgut contractility, it is possible that also these median neurons release PDF into the circulation. Release from one or both the PDFI neuron types was confirmed by measurements of PDF-immunoreactivity in hemolymph by enzyme immunoassay. PDF applied to the terminal abdominal ganglion triggers firing of action potentials in motoneurons with axons in the genital nerves of males and the 8th ventral nerve of females. Because this action is blocked in calcium-free saline, it is likely that PDF acts via interneurons. Thus, PDF seems to have a modulatory role in central neuronal circuits of the terminal abdominal ganglion that control muscles of genital organs.  相似文献   

20.
Little detailed information exists on the anatomy of the nervous system and the musculature of Entoprocta. Herein we describe the distribution of the neurotransmitters RFamide and serotonin as well as the myo-anatomy of adults and asexually produced budding stages of the solitary entoproct species Loxosomella vivipara and L. parguerensis using immunocytochemistry and epifluorescence as well as confocal microscopy. The development of the RFamidergic and serotonergic nervous system starts in early budding stages. In the adults, RFamide is present in the bilateral symmetric cerebral ganglion, a pair of oral nerves that innervate two pairs of nerve cell clusters in the heel of the foot, a pair of aboral nerves, the paired lateral nerves, the calyx nerves, the atrial ring nerve, the tentacle nerves, the stomach nerves, and the rectal nerves. Serotonin is only found in the cerebral ganglion, the oral nerves, and in the tentacle nerves. Some differences in the distribution of both neurotransmitters were found between L. vivipara and L. parguerensis and are most obvious in the differing number of large serotonergic perikarya associated with the oral nerves. Nerves arising from the cerebral ganglion and running in a ventral direction have not been described for Entoprocta before, and the homology of these to the ventral nerve cords of other Spiralia is considered possible. The body musculature of both Loxosomella species comprises longitudinal and diagonal muscles in the foot, the stalk, and the calyx. We found several circular muscles in the calyx. The stalk and parts of the foot and the calyx are surrounded by a fine outer layer of ring muscles. In addition to the congruent details regarding the myo-anatomy of both species, species-specific muscle structures could be revealed. The comparison of our data with recent findings of the myo-anatomy of two Loxosoma species indicates that longitudinal and diagonal body muscles, atrial ring muscles, tentacle muscles, esophageal and rectal ring muscles, as well as intestinal and anal sphincters are probably part of the ancestral entoproct muscle bauplan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号