首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cladistic analysis of nuclear-encoded rRNA sequence data provided us with the basis for some new hypotheses of relationships within the green algal class Ulvophyceae. The orders Ulotrichales and Ulvales are separated from the clade formed by the remaining orders of siphonous and siphonocladous Ulvophyceae (Caulerpales, Siphonocladales /Cladophorales [S/C] complex, and the Dasycladales), by the Chlorophyceae and Pleurastrophyceae. Our results suggest that the Ulvophyceae is not a monophyletic group. Examination of inter- and intra-ordinal relationships within the siphonous and siphonocladous ulvophycean algae revealed that Cladophora, Chaetomorpha, Anadyomene, Microdictyon, Cladophoropsis and Dictyosphaeria form a clade. Thus the hypothesis, based on ultrastructural features, that the Siphonocladales and Cladophorales are closely related is supported. Also, the Caulerpales is a monophyletic group with two lineages; Caulerpa, Halimeda, and Udotea comprise one, and Bryopsis and Codium comprise the other. The Dasycladales (Cymopolia and Batophora) also forms a clade, but this clade is not inferred to be the sister group to the S/C complex as has been proposed. Instead, it is either the sister taxon to the Caulerpales or basal to the Caulerpales and S/C clade The Trentepohliales is also included at the base of the siphonous and siphonocladous ulvophycean clade. The Pleurastrophyceae, which, like the Ulvophyceae, posses a counter-clockwise arrangement of flagellar basal bodies, are more closely related to the Chlorophyceae than to the Ulvophyceae based on rRNA sequences. Thus, the arrangement of basal bodies does not diagnose a monophyletic group. Previously reported hypotheses of phylogenetic relationships of ulvophycean algae were tested. In each case, additional evolutionary steps were required to obtain the proposed relationships. Relationships of ulvophycean algae to other classes of green algae are discussed.  相似文献   

2.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

3.
The three-dimensional structure of the flagellar apparatus in the gonyaulacoid dinoflagellate. Ceratium hirundinella var. furcoïdes (Schröder) Hub.-Pest. was determined using serial section electron microscopy. The flagellar apparatus is quite large and consists of several components. The two basal bodies nearly abut at their proximal ends and are separated by an angle of approximately 120° The broad longitudinal microtubular root extends from the cell's left edge of the longitudinal basal body and bends around the sulcal/cingular depression into the cell's left antapical horn. A transverse striated fibrous root is associated with the transverse basal body and a narrow electron dense extension is present along the anterior edge of the transverse basal body. This study revealed severa1 hitherto unreported fibrous components of the flagellar apparatus that link the various microtubular and fibrous components to themselves and to the two striated collars. A large striated fibrous connective links the two striated collars to one another. This fibrous connective is linked to another striated fibrous connective that originates from the longitudinal basal body and lies perpendicular to the longitudinal microtubular root. The readily identifiable and numerous components of the Ceratium flagellar apparatus are comparable to those of other dinoflagellates. The combined presence of well dpveloped striated collars, a striated collar connective, and a basal body angle of approximately 120° indicates that this flagellar apparatus is most like that described for Peridinioid dinoflagellates. Important similarities are also noticeable between this flagellar apparatus and that of Oxyrrhis marina.  相似文献   

4.
The three-dimensional structure of the flagellar apparatus in Woloszynskia sp. was determined. This recently discovered dinoflagellate possesses two basal bodies that are offset from one another and lie at an angle of approximately 110°. The transverse basal body is associated with a striated fibrous root assemblage that consists of two differently staining fibrous portions with identical striation periodicity. Unlike the transverse striated fibrous roots reported in other dinoflagellates, this assemblage extends to the cell's right beyond the proximal end of the transverse basal body. The striated fibrous root complex is attached to the anterior end of the longitudinal microtubular root by a broad striated fibrous connective. The longitudinal basal body is also associated with the longitudinal microtubular root. The flagellar opening of each emerging axoneme is surrounded by a striated collar. The striated collars are linked to one another by a striated fibrous, striated collar connective. The variations and similarities of the flagellar apparatus and the ventral ridge/striated collar connective in Woloszynskia sp. are compared to similar components in other dinoflagellates.  相似文献   

5.
The tiny jumping flagellate originally described as Pedinomonas mikron Throndsen was isolated into pure culture from Australian waters and its ultrastructure critically examined. Pedinomonas mikron differs in behavior and in features of the flagellar apparatus from P. minor, the type species from freshwater, and is referred to the new genus Resultor. The two genera are closely related and form the new class Pedinophyceae, which is characterized by features of the flagellar apparatus, mitosis, and cytokinesis. The flagella show the 11/5 orientation otherwise characteristic of Ulvophyceae and Pleurastrophyceae, but they are arranged end to end as in the Chlorophyceae. The flagellar root system is asymmetric and includes a rhizoplast that emerges from the base of one flagellum but subsequently associates with a microtubular root from the second basal body. Mitosis studied previously by Pickett-Heaps and Ott in Pedinomonas is closed, unlike in other green algae, and the spindle is persistent. No phycoplast or phragmoplast is formed during cytokinesis. The eyespot of the Pedinophyceae is located at the opposite end of the cell from the flagella and adjacent to the pyrenoid, as in the most primitive members of the Prasinophyceae. Members of the Pedinophyceae lack prasinoxanthin and Mg 2,4D, characteristic of certain other primitive green algae. The primitive green algae include the classes Prasinophyceae and Pedinophyceae. Micromonadophyceae Mattox et Stewart is considered a synonym of Prasinophyceae. Two new orders are established, Pedinomonadales, containing all known members of the Pedinophyceae, and Scourfieldiales, with the single family Scourfieldiaceae fam. nov. and the single genus Scourfieldia.  相似文献   

6.
The chlorococcalean algae Dictyochloris fragrans and Bracteacoccus sp. produce naked zoospores with two unequal flagella and parallel basal bodies. Ultrastructural features of the flagellar apparatus of these zoospores are basically identical and include a banded distal fiber, two proximal fibers, and four cruciately arranged microtubular rootlets with only one microtubule in each dexter rootlet. In D. fragrans, each proximal fiber is composed of two subfibers, one striated and one nonstriated, and each sinister rootlet is composed of five microtubules (4/1), decreasing to four away from the basal bodies. In Bracteacoccus sp., each proximal fiber is a single unit, the sinister rootlets are four (3/1) or rarely five (4/1) microtubules, and each basal body is associated with an unusual curved structure. The basic features of the flagellar apparatus of the zoospores of these two algae resemble those of Heterochlamydomonas rather than most other chlorococcalean algae that have equal length flagella, basal bodies in the V-shape arrangement, and clockwise absolute orientation. It is proposed that these algae with unequal flagella and parallel basal bodies have a shared common ancestry within the green algae.  相似文献   

7.
The fine structure of the flagellar apparatus of 5 species of the green quadriflagellate alga Carteria is described. The 5 species can be morphologically separated into 2 groups on the bases of cell shape and ultrastructure of the pyrenoid and flagellar apparatus. Group I cells are spherical, possess many pyrenoid thylakoids, and retain a flagellar apparatus similar to that of Chlamydomonas reinhardi. The flagellar bases are oriented at approximately 90° to one another, have distal and proximal fibers, and are associated with 4 cruciately arranged microtubule bands. Cells of group II are ellipsoid, possess few pyrenoid thylakoids, and show a complex system of microtubule bands and sigmoid-shaped, electron dense rods which extend between opposite pairs of basal bodies. The basal bodies of group II cells are directed inward in a circular pattern rather than outward as in group I cells. Unlike Chlamydomonas, the distal fiber of the Carteria species is nonstriated. The proximal fiber is striated, and both distal and proximal fibers are composed of 60–80 Å diameter microfibrils.  相似文献   

8.
The flagellar apparatus of the marine dinoflagellate Amphidinium rhynchocephalum Anissimowa was examined using the techniques of rapid freezing/freeze substitution and serial thin section three dimensional reconstruction. The flagellar apparatus is composed of two basal bodies that are offset from one another and lie at an angle of approximately 150° The transverse basal body is associated with two individual microtubules that extend from the proximal end of the basal body toward the flagellar opening. One of these microtubules is closely appressed to a striated fibrous root that also extends from the proximal base of the transverse basal body. The longitudinal basal body is associated with a nine member microtubular root that extends from the proximal end of the basal body toward the posterior of the cell. The longitudinal microtubular root and the transverse striated fiber are connected by a striated connective fiber. In addition to the microtubules associated with the transverse and longitudinal basal bodies, a group of microtubules originates adjacent to one of the transverse flagellar roots and extends into the cytoplasm. Vesicular channels extend from the flagellar openings to the region of the basal bodies where they expand to encompass the various connective structures of the flagellar apparatus. The possible function and evolutionary importance of these structures is discussed.  相似文献   

9.
The flagellar apparatus of Urospora penicilliformis (Roth) Aresch. is unique, or at least very unusual among green algae. The flagellar axonemes are rigid, and contain wing-like projections. There are no central microtubules in the most proximal part of the axoneme. The transition region contains a series of electron dense transverse lamellae rather than a single septum, and lacks a stellate pattern. There is no cartwheel pattern in the proximal part of the basal bodies. The latter are associated with four different types of fibrous elements: ascending striated fibers that attach to an electron dense plate in the papillar center, lateral striated fibers that parallel microtubular roots, fibrous elements that link adjacent basal bodies, and finally two massive striated fibers that descend into the cell, passing closely along the nucleus (system II fibers, or rhizoplasts). Each of the four microtubular flagellar roots is sandwiched between two system I striated structures. The roots are probably equal; they contain proximally four, and distally up to eight microtubules. Based on the zoospore flagellar apparatus, it is concluded that the multinucleate U. penicilliformis is related to the Ulvaphyceae. Finally, a possible explanation in functional terms is given for the peculiar external morphology and behavior of the zoospore.  相似文献   

10.
The flagellar apparatus in male gametes of the siphonaceous green alga, Bryopsis maxima Okamura, was studied and compared with that of other green biflagellate cells. The proximal portions of two basal bodies are connected by a single striated proximal band, unique among the biflagellate reproductive cells of green algae studied. Anterior to the flagellar bases is a pair of distal bands different from the single structure in other biflagellate cells. These bands which arise from the distal portion of each basal body, extend upward in the papilla and curve down toward the lower edges of the basal bodies. They seem to have no direct association with each other. Two pairs of distinct flagellar roots, one consisting of 3–5 microtubules and the other of a partially striated fiber of undetermined numbers of microtubules, diverge from the basal body region and extend towards the cell posterior. Their component microtubules are disorganized into single or smaller groups midway over the cell length. The uniqueness of the flagellar apparatus is briefly discussed.  相似文献   

11.
The detailed structure of the flagellar apparatus has been determined in a small dinoflagellate of the genus Gymnodinium. Although diminutive, this dinoflagellate possesses a complex flagellar apparatus consisting of a posteriorly directed microtubular root, a transverse striated fibrous root, several striated fibrous connectives that attach the basal bodies to one another as well as to the different roots, and a conspicuous non-striated fibrous connective that directly links the posteriorly directded microtubular root with the extended lobe of the nucleus. This represents the second discovery of a nuclear connective linked to the flagellar apparatus in the Dinophyceae but is the first report to elucidate the spatial relationships of the connective with the flagellar apparatus and the cell. A detailed diagrammatic reconstruction is provided and the similarities between these flagellar apparatus features are compared with those known for other dinoflagellates. Additionally, the structure and displacement of the nuclear connective are compared with nuclear connectives described in other protists.  相似文献   

12.
Spermatozoids of the siphonous green alga Dichotomosiphon tuberosus (A. Br.) Ernst are specialized gametes which differ in many respects from other green algal motile cells, but whose microanatomy nevertheless indicates its chlorophycean affinities. Each cell is anteriorly biflagellate and contains an irregularly shaped nucleus attached to the flagellar bases by a complex support apparatus. There is a single reduced chloroplast in each spermatozoid and numerous (50–100) minute spherical mitochondria, only 0.3 μm diam. These move vigorously in the living cell and when viewed with the light microscope they bear a striking resemblance to bacteria. Rather unexpectedly, no contractile vacuoles could be detected, even though the gametes are naked freshwater cells. Daring spermatogenesis the nucleoli of the vegetative cells disperse and are replaced by a large dense body presumably formed from either nucleolar material or condensed chromatin. The flagellar apparatus includes a cruciate flagellar root system, a feature now known to be characteristic of most green algae, exceptions being those putative ancestors of the higher plants and bryophytes. Discharge of spermatozoids from the antheridia is extremely rapid and the whole process may be finished in 30 sec. The antheridium lacks a pore apparatus, but at maturity bursts open explosively at the apex. Phyletic affinities are discussed and it is concluded that the ultrastructure of the motile cells does not, at this time, support the separation of the siphonous green algae from other green algae into a separate class.  相似文献   

13.
The three-dimensional structure of the flagellar apparatus in the dinoflagellate Oxyrrhis marina has been reinvestigated and found to consist of several previously unknown components and component combinations that appear strikingly similar to those of some gymnodinoid taxa. The flagellar apparatus of this dinoflagellate is asymmetric and extremely complex consisting of a longitudinal and a transverse basal body that gives rise to eight structurally different components. The only posteriorly directed component is the large microtubular root that consists of 45–50 microtubules at its origin and is attached proximally to a perpendicularly oriented striated fibrous component. Arising from each basal body, two striated fibrous roots with different periodicities extend to the cell's left. A single stranded microtubular root with associated electron dense material emanates from the transverse basal body and also extends to the cell's left. A striated fibrous connective arises from the longitudinal basal body and extends toward the cell's right ventral surface and terminates near the sub-thecal microtubular system. A compound root consisting of microtubules and electron dense material also originates from the longitudinal basal body and extends ventrally into the anterior region of the tentacle. Structural similarities between the parallel striated fibrous roots of Oxyrrhis and Polykrikos are discussed as are flagellar apparatus similarities among other gymnodinoid dinoflagellates. A diagrammatic reconstruction of the Oxyrrhis flagellar apparatus is also presented.  相似文献   

14.
The flagellar apparatus of the biflagellate zoospores from Blastophysa rhizopus Reinke has 180° rotational symmetry of the major components and counterclockwise absolute orientation. The basal bodies are connected anteriorly by a prominent striated distal fiber and posteriorly by two proximal striated bands. The C microtubules in the basal bodies terminate proximal to the transition region. Terminal caps and well-defined proximal sheaths are absent. The four microtubular rootlets diverge at a very small angle from the basal bodies. Six to eight (usually seven) microtubules are present in the s rootlets and two microtubules in the d rootlets. Rootlet 1s is associated with the eyespot. Each d rootlet is subtended by a coarsely striated fiber. Rootlet Id also has a finely striated fiber, roughly opposite the coarsely striated fiber, associated with it. Rhizoplasts and mating structures were not observed. Ultrastructural features of B. rhizopus zoospores are essentially identical with those found in examined members of the Siphonocladales sensu lato (= Siphonocladadales/Cladophorales complex) and Dasycladales, and have relatively few features in common with motile cells of caulerpalean algae. Blastophysa rhizopus probably does not represent an intermediate between the Siphonocladadales and the Caulerpales. Its evolutionary history is different from that of other algae placed in the siphonocladalean family Chaetosiphonaceae. Whether or not Blastophysa is representative of the ancestor to the Siphonodadales and Dasycladales is unclear.  相似文献   

15.
Pterosperma cristatum Schiller, a member of the Pra-sinophyceae, was examined with light and electron microscopy with special attention on the absolute configuration of flagellar apparatus components and associated structures. This alga is characterized by asymmetrically arranged basal bodies, connecting fibers and microtubular roots. The microtubular root system is homologous with the cruciate root system, the so-called X-2-X-2 root system typical of non-charophycean green algae. Two ducts are associated with microtubular roots. A similar flagellar apparatus and duct system was found in two other prasinophyte genera, Pyramimonas and Halosphaera. The close phylogenetic affinity of these three genera is discussed.  相似文献   

16.
We have examined the motile cell ultrastructural features of several green algal species having filamentous or foliose thallus morphology and probable affinities with the Ulvophyceae, and compared them with the structural, reproductive, and life history features known for these taxa. We separate the algae studied into the orders Ulotrichales and Ulvales on the basis of consistent variations in terminal cap and proximal sheath structure that correlate well with life history patterns and certain features of sporangial and gametangial structure and development. Body scales are present only in certain members of the Ulotrichales. Both orders encompass a variety of thallus forms, demonstrating parallel evolution of thallus morphology. Flagellar apparatus features common to all the motile cells examined include 180° rotational symmetry, counterclockwise absolute orientation, the positioning of the basal bodies in an apical papilla, and the presence of one or more sets of striated bands associated with the X rootlets. Additional features that are usually present include basal body overlap and orientation roughly perpendicular to the long axis of the cell during forward swimming, striated distal fibers, and a single, striated, microtuble-associated component underlying each two-membered rootlet. These similarities indicate to us that the two groups are closely related members of the Ulvophyceae. We suggest that the Ulotrichales is the most primitive ulvophyceous assemblage known, but that all groups studied have advanced features relative to those supposed to have been present in the ancestral members of the Ulvophyceae.  相似文献   

17.
Gymnodinium acidotum Nygaard is a freshwater dinoflagellate that is known to harbor a cryptomonad endosymbiont whose chloroplasls give the organism an overall blue-green color. The ultrastructure of G. acidotum was examined with particular attention being given to the three dimensional nature of the flagellar apparatus. The fiagellar apparatus is composed of two functional basal bodies that are slightly offset and lie at an angle of approximately 90° to one another. As in other dinoflagellates the transverse basal body is associated with a striated, fibrous root that extends from the proximal end of the basal body to the transverse flagellar opening. At least one microtubular root extends from the proximal end of the transverse basal body, and a multi-membered longitudinal microtubular root is associated with the longitudinal basal body. The most striking feature of the flagellar apparatus of G. acidotum is the large fibrous connective that extends from the region of the proximal ends of the basal bodies to the cingulum on the dorsal side of the cell. A similar structure has been reported from only one other dinoflagellate, Amphidinium cryophilum Wedemayer, Wilcox, and Graham. The presence of this structure as well as similarities in external morphology suggest thai these two species may be more closely related to each other than either is to other gymnodinioid taxa. The taxonomic importance of dinoflagellate flagellar apparatus components is discussed.  相似文献   

18.
The fine structure of the male and female gametes of Pseudobryopsis, particularly that of the flagellar apparatus, is compared with that of swarmers of other green algae. There is general similarity, with differences in detail, to the Ulvales and other green siphons that have been studied. The similarities include overlapping basal bodies, the capping plate type of connective between basal bodies, terminal caps, and system II fibrous roots (rhizoplasts). The capping plate of the female gamete differs from that in other green siphons and the Ulvales in form and in the presence of a faint striation. A diagram illustrating the actual arrangement of the components of the flagellar apparatus is given, along with a discussion of the fact that the mirror image of the true arrangement has been given in some reports on ulvaphycean algae.  相似文献   

19.
The ultrastructure of the siphonous green alga Dichotomosiphon tuberosus (A. Br.) Ernst is compared with that of other siphonous plants. There is a characteristic association between the Golgi bodies and endoplasmic reticulum, but. the mitochondria are not involved in the association as they are in Vaucheria and the phycomycete Saprolegnia. An unusual structure and arrangement of the chloroplasts is described as well as a previously unreported type of “striated tubule” which occurs in most if not all chloroplasts, and amyloplasts. The structure of these tubules is compared with that of other tubules recently found in green algae and higher plants. In addition, cytoplasmic microtubules arranged in the longitudinal direction of the siphon suggest a function in cytoplasmic streaming.  相似文献   

20.
Absolute configurational analyses of flagellar apparatus components were performed on the motile cells produced by three species of Cladophora, Cl. dalmatica Kütz., Cl. flexuosa (Dillw.) Harv., and Cl. glomerata (L.) Kütz., and by Chaetomorpha aerea (Dillw.) Kütz. There was little variation among the species. All of the flagellar apparatuses demonstrated the ulvophyceous features of 180° rotational symmetry, counterclockwise absolute orientation, and basal body overlap, as well as the alignment of the basal bodies perpendicular to the long axis of the cell. Diagnostic features included the nearly complete absence of C tubules from the basal bodies and the presence of a coarsely striated component dorsal to the two-membered rootlets in all cells, as well as, in quadriflagellate cells, a tetralobate distal fiber, the coaxial arrangement of the lowermost pair of basal bodies, and the presence of a characteristic array of basal-body-associated striated bands. The distal fiber architecture, the presence of a “wing” in the X-membered rootlets, and the “flattening” of the flagellar apparatus components suggests a close relationship of the Cladophoraceae to the Dasycladales, and indicates that these two groups may have shared a common ancestor, possibly ancient in terms of the geological time scale but relatively recent in the context of ulvophyceous evolution. A sizeable phylogenetic gap exists between the Cladophoraceae and uninucleate-celled, presumably primitive members of the Ulvophyceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号