首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overall appearance of the flagellar apparatus in the isogametes of Batophora oerstedii. J. Ag. is most like that which occurs in motile cells of the Ulvophyceae. Like other Ulvophyceae, the basal bodies overlap and are arranged in the 11/5 configuration, microtubular roots are arranged in a cruciate pattern and system II striated fibers are present. The basal body connective which generally lacks striation in the Ulvophyceae is clearly different in Batophora, being composed of two large non-striated halves which connect to the anterior surface of each basal body and are then connected to one another by a distinctly fibrous centrally striated region. This variation in the basal body connective and the presence of two posteriorly directed system II striated fibers is clearly different from homologous structures reported in siphonous green algae of the Caulerpales. Based upon these variations and similarities among flagellar apparatus components in siphonous green algae, it is suggested that the Dasycladales and Siphonodadales are more closely related to one another than to the Caulerpales.  相似文献   

2.
Molecular phylogenetic analyses have had a major impact on the classification of the green algal class Chlorophyceae, corroborating some previous evolutionary hypotheses, but primarily promoting new interpretations of morphological evolution. One set of morphological traits that feature prominently in green algal systematics is the absolute orientation of the flagellar apparatus in motile cells, which correlates strongly with taxonomic classes and orders. The order Sphaeropleales includes diverse green algae sharing the directly opposite (DO) flagellar apparatus orientation of their biflagellate motile cells. However, algae across sphaeroplealean families differ in specific components of the DO flagellar apparatus, and molecular phylogenetic studies often have failed to provide strong support for the monophyly of the order. To test the monophyly of Sphaeropleales and of taxa with the DO flagellar apparatus, we conducted a molecular phylogenetic study of 16 accessions representing all known families and diverse affiliated lineages within the order, with data from four plastid genes (psaA, psaB, psbC, rbcL) and one nuclear ribosomal gene (18S). Although single‐gene analyses varied in topology and support values, analysis of combined data strongly supported a monophyletic Sphaeropleales. Our results also corroborated previous phylogenetic hypotheses that were based on chloroplast genome data from relatively few taxa. Specifically, our data resolved Volvocales, algae possessing predominantly biflagellate motile cells with clockwise (CW) flagellar orientation, as the monophyletic sister lineage to Sphaeropleales, and an alliance of Chaetopeltidales, Chaetophorales, and Oedogoniales, orders having multiflagellate motile cells with distinct flagellar orientations involving the DO and CW forms.  相似文献   

3.
Transmission electron microscopy of pre-release and post-release biflagellate gametes of Cephaleuros virescens has produced comparative data on these cells and on the detailed absolute arrangement of the flagellar apparatus. In all major respects including the presence of two multilayered structures (MLS's) the closely compacted, non-motile but mature pre-release gametes are similar to the mature, free swimming post-release gametes. The elongated shape of the free-swimming gametes differs from the more compact form of the pre-release gametes, but does not reflect a major difference in the arrangement of internal components. The flagella are bilaterally keeled and each keel contains a cylindrical element. Each flagellar base is encircled by a densely staining collar of modified plasmalemma at the point of entry into the apical papilla. The equal anterior flagella enter the papilla from opposite sides; their basal bodies are parallel and overlapping. Each terminates in a densely staining terminal cap. No capping plate is present. Each basal body is associated both with a three-layered MLS, the anterior layer of which becomes a lateral microtubular spline of 2 to 8 microtubules, and with an additional medial compound root of two layers of microtubules (2 over 4 or 5). Both the compound microtubule root and the spline may acquire additional microtubules as they extend distally in close proximity to mitochondria and the plasmalemma. No striated roots, or rhizoplasts, have been observed. Two densely staining plaques are associated with the plasma membrane at specific anterior sites and may be comparable to the presumptive mating structures seen in other green algal motile cells. The reversed bilateral symmetry of the cells produces two possible arrangements of the flagellar apparatus, namely, a 11/5 (or left-handed) arrangement or a 1/7 (or right-handed) arrangement. Only 11/5 cells have been found. Despite the presence of distinct multilayered structures, some aspects of the gametes of Cephaleuros quite closely resemble the cruciate motile cells of algae now regarded by some authors as typical of Ulvophyceae, sensu Stewart and Mattox.  相似文献   

4.
The flagellar apparatus in male gametes of the siphonaceous green alga, Bryopsis maxima Okamura, was studied and compared with that of other green biflagellate cells. The proximal portions of two basal bodies are connected by a single striated proximal band, unique among the biflagellate reproductive cells of green algae studied. Anterior to the flagellar bases is a pair of distal bands different from the single structure in other biflagellate cells. These bands which arise from the distal portion of each basal body, extend upward in the papilla and curve down toward the lower edges of the basal bodies. They seem to have no direct association with each other. Two pairs of distinct flagellar roots, one consisting of 3–5 microtubules and the other of a partially striated fiber of undetermined numbers of microtubules, diverge from the basal body region and extend towards the cell posterior. Their component microtubules are disorganized into single or smaller groups midway over the cell length. The uniqueness of the flagellar apparatus is briefly discussed.  相似文献   

5.
The evolutionary affinities of Heterochlamydomonas Cox and Deason and Dictyochloris Vischer ex Starr were investigated using phylogenetic analyses of a combined data set of 18S and 28S rDNA sequences with those from 38 additional green algae. Previous ultrastructural studies have shown that motile cells of Heterochlamydomonas and Dictyochloris have an unusual flagellar apparatus organization in that the two flagella are of unequal length and the basal bodies are persistently parallel. Because of this similarity these taxa, along with Bracteacoccus Tereg, a third taxon with this same flagellar apparatus arrangement, are hypothesized to be closely related. We show, with maximum parsimony and Bayesian analyses, that the parallel basal bodies are not homologous in the three genera. Rather, Heterochlamydomonas is most closely related to Chlamydomonas baca in the clockwise flagellar apparatus clade, and Dictyochloris and Bracteacoccus are nested within the Sphaeropleales, which has the directly opposite flagellar absolute orientation. Surprisingly, Dictyochloris and Bracteacoccus are not supported as closest relatives. These relationships are supported by morphological features such as the presence or absence of a walled motile cell but not by the orientation of the basal bodies. In addition, our data are derived from multiple isolates of each study genera, and the analyses show that Heterochlamydomonas and Dictyochloris are each monophyletic.  相似文献   

6.
An ultrastructural study of motile cell development in the green alga Trentepohlia aurea has revealed the presence of multilayered structures (MLS) associated With flagellar bases. These MLS are ultrastructurally similar to MLS described in pteridophyte and bryophyte sperm and in the zoospore of the green algae Coleochaete and Klebsormidium. However, 2 MLS are found in each biflagellate motile cell of T. aurea, while other previously described MLS occur singly in biflagellate motile cells. In addition, the MLS of T. aurea consist of fewer microtubules and are structurally simpler than most other MLS described. The MLS of Trentepohlia may represent a stage in the evolutionary development of the MLS of land plants. The presence or absence of the MLS in motile cells of green algae may be a useful character in phylogenetic studies.  相似文献   

7.
The fine structure of the male and female gametes of Pseudobryopsis, particularly that of the flagellar apparatus, is compared with that of swarmers of other green algae. There is general similarity, with differences in detail, to the Ulvales and other green siphons that have been studied. The similarities include overlapping basal bodies, the capping plate type of connective between basal bodies, terminal caps, and system II fibrous roots (rhizoplasts). The capping plate of the female gamete differs from that in other green siphons and the Ulvales in form and in the presence of a faint striation. A diagram illustrating the actual arrangement of the components of the flagellar apparatus is given, along with a discussion of the fact that the mirror image of the true arrangement has been given in some reports on ulvaphycean algae.  相似文献   

8.
Sequence data from the nuclear small-subunit ribosomal RNA gene was obtained for nine strains of Bracteacoccus Tereg, representing at least five morphological species and four distinct geographic locations. These, along with sequence data from two additional chlorophycean taxa, Spongiochloris spongiosa Starr and Ascochloris multinucleata Bold et MacEntee, and 48 published sequences from green algal taxa, were used to determine the phylogenetic placement of Bracteacoccus with respect to other chlorophycean green algae. Results support the monophyly of Bracteacoccus strains, contrasting with patterns observed so far for many other coccoid green algae. The range of variation among Bracteacoccus strains is similar to that of other congeners. Basal body orientation in Bracteacoccus has been interpreted as clockwise; however, the 18S data point to a relationship between Bracteacoccus and taxa with the directly opposed configuration of the flagellar apparatus. No close relationship was found to the multinucleated green coccoids with clockwise orientation of basal bodies, such as Spongiochloris, or to those with parallel basal bodies, such as Spermatozopsis. However, 18S data confirm that the motile and vegetative cells of Bracteacoccus are structurally distinct from the representatives of sphaeroplealean families currently studied. It is premature to reclassify Bracteacoccus until 18S comparisons can be made with additional sphaeroplealean taxa and with algae with similar flagellar structure such as Dictyochloris and Heterochlamydomonas.  相似文献   

9.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

10.
Cladistic analysis of nuclear-encoded rRNA sequence data provided us with the basis for some new hypotheses of relationships within the green algal class Ulvophyceae. The orders Ulotrichales and Ulvales are separated from the clade formed by the remaining orders of siphonous and siphonocladous Ulvophyceae (Caulerpales, Siphonocladales /Cladophorales [S/C] complex, and the Dasycladales), by the Chlorophyceae and Pleurastrophyceae. Our results suggest that the Ulvophyceae is not a monophyletic group. Examination of inter- and intra-ordinal relationships within the siphonous and siphonocladous ulvophycean algae revealed that Cladophora, Chaetomorpha, Anadyomene, Microdictyon, Cladophoropsis and Dictyosphaeria form a clade. Thus the hypothesis, based on ultrastructural features, that the Siphonocladales and Cladophorales are closely related is supported. Also, the Caulerpales is a monophyletic group with two lineages; Caulerpa, Halimeda, and Udotea comprise one, and Bryopsis and Codium comprise the other. The Dasycladales (Cymopolia and Batophora) also forms a clade, but this clade is not inferred to be the sister group to the S/C complex as has been proposed. Instead, it is either the sister taxon to the Caulerpales or basal to the Caulerpales and S/C clade The Trentepohliales is also included at the base of the siphonous and siphonocladous ulvophycean clade. The Pleurastrophyceae, which, like the Ulvophyceae, posses a counter-clockwise arrangement of flagellar basal bodies, are more closely related to the Chlorophyceae than to the Ulvophyceae based on rRNA sequences. Thus, the arrangement of basal bodies does not diagnose a monophyletic group. Previously reported hypotheses of phylogenetic relationships of ulvophycean algae were tested. In each case, additional evolutionary steps were required to obtain the proposed relationships. Relationships of ulvophycean algae to other classes of green algae are discussed.  相似文献   

11.
Many naked gametes are produced in each fusiform, male gametangium of Atractomorpha echinata Hoffman and are liberated through irregularly shaped pores in the gametangial wall. They are typically biflagellate, pyriform or fusiform in shape, 6-11 μm long, and only a few micrometers wide. A mature male gamete is characterized by: (i) a nucleus with condensed chromatin and no nucleoli, (ii) a reduced, starch filled chloroplast occupying a posterior position, and (iii) a cup shaped eyespot consisting of a single layer of plastoglobuli. The flagellar apparatus includes two types of flagellar roots alternating in a cruciate pattern. One type consists of two microtubules, while the other consists of microtubules of varying number, usually eight or nine, but rarely as many as eleven. The paired basal bodies are connected anteriorly by a broad, striated distal fiber; there is no dense apical cap as reported in Sphaeroplea sperm. A unique structure, consisting of three layers of small subunits (6–8 nm diameter) arranged in a paracrystalline array, is positioned beneath each basal body. Based on the structure of its male gametes, Atractomorpha clearly demonstrates affinity with the chlorophycean rather than the ulvaphycean line of evolution. Moreover, if phylogenetic affinities for the Sphaeropleaceae are to be sought among other groups of green algae, the Chlorococcales appears the most promising candidate.  相似文献   

12.
The zoospores and isogametes ofUlvaria obscura var.blyttii, the isogametes ofMonostroma bullosum, and the anisogametes ofM. grevillei have a flagellar apparatus with counterclockwise absolute orientation and terminal caps, and therefore belong to theUlvophyceae. On the basis of the absence or presence of body scales and the morphologies of certain flagellar apparatus components,Ulvaria obscura var.blyttii is retained in theUlvales, whileM. bullosum, M. grevillei andM. oxyspermum are referred to theUlotrichales. Differences in scale morphology, certain flagellar apparatus components, and early thallus ontogeny support the transfer ofM. oxyspermum to the genusGayralia. Mating structures and their positional relationships within the cell are described from the gametes examined. A plasmalemma-associated plaque that may be a degenerate mating structure occurs in someG. oxysperma motile cells.  相似文献   

13.
Summary The two main types of fibrous flagellar roots present in the flagellar apparatus of green algae (system I and system II fibers) are immunologically distinct as indicated by the localization of a Ca2+-modulated contractile protein (centrin) exclusively in one type (system II fibers) but not in the other type (system I fibers). A polyclonal antibody generated against the major protein of the striated flagellar roots (system II fibers) of the quadriflagellate green algaTetraselmis striata was used to localize centrin by immunofluorescence and pre- and postembedding immunogold electron microscopy in the flagellar apparatus ofSpermatozopsis similis, S. exsultans, Chlamydomonas reinhardtii, Dunaliella bioculata, Polytomella parva and gametes ofMonostroma grevillei andEnteromorpha sp. Whereas the antibody recognizes centrin in connecting fibers and system II fibers, no labeling occurs in system I fibers in all taxa investigated. This study presents the first evidence that system I fibers lack centrin and indicates that the two main types of fibrous flagellar roots in green algae are biochemically distinct.  相似文献   

14.
Ultrastructural studies of tetrasporalean green algae have suggested the order is polyphyletic. These features, including the absolute orientation of the flagellar apparatus and the bi- versus quadriflagellated motile cell morphology, suggest that Chaetopeltis as well as a number of others, may be ancestral to a group that includes Tetraspora. In this study, we examine the phylogenetic relationships of selected tetrasporalean taxa based on analysis of 18S ribosomal RNA gene sequences. Results show that the tetrasporalean taxa are polyphyletic. Biflagellated genera group with biflagellated volvocalean taxa, whereas the quadriflagellated species compose a distinct monophyletic clade not closely related to the biflagellated taxa. In addition, tetrasporalean taxa group with other chlorophycean algal species with similar flagellar apparatus absolute orientation, but the quadriflagellated Tetrasporales do not appear to be ancestral to the entire Chlorophyceae. These results are concordant with previous conclusions drawn from ultrastructural data and further confirm the utility of (small-subunit) ribosomal RNA gene sequences to discern green algal evolutionary relationships.  相似文献   

15.
The tiny jumping flagellate originally described as Pedinomonas mikron Throndsen was isolated into pure culture from Australian waters and its ultrastructure critically examined. Pedinomonas mikron differs in behavior and in features of the flagellar apparatus from P. minor, the type species from freshwater, and is referred to the new genus Resultor. The two genera are closely related and form the new class Pedinophyceae, which is characterized by features of the flagellar apparatus, mitosis, and cytokinesis. The flagella show the 11/5 orientation otherwise characteristic of Ulvophyceae and Pleurastrophyceae, but they are arranged end to end as in the Chlorophyceae. The flagellar root system is asymmetric and includes a rhizoplast that emerges from the base of one flagellum but subsequently associates with a microtubular root from the second basal body. Mitosis studied previously by Pickett-Heaps and Ott in Pedinomonas is closed, unlike in other green algae, and the spindle is persistent. No phycoplast or phragmoplast is formed during cytokinesis. The eyespot of the Pedinophyceae is located at the opposite end of the cell from the flagella and adjacent to the pyrenoid, as in the most primitive members of the Prasinophyceae. Members of the Pedinophyceae lack prasinoxanthin and Mg 2,4D, characteristic of certain other primitive green algae. The primitive green algae include the classes Prasinophyceae and Pedinophyceae. Micromonadophyceae Mattox et Stewart is considered a synonym of Prasinophyceae. Two new orders are established, Pedinomonadales, containing all known members of the Pedinophyceae, and Scourfieldiales, with the single family Scourfieldiaceae fam. nov. and the single genus Scourfieldia.  相似文献   

16.
Behaviors of male and female gametes, planozygotes and their microtubular cytoskeletons of a marine green alga Bryopsis maxima Okamura were studied using field emission scanning electron microscopy, high‐speed video microscopy, and anti‐tubulin immunofluorescence microscopy. After fusion of the biflagellate male and female gametes, two sets of basal bodies lay side by side in the planozygote. Four long female microtubular roots extended from the basal bodies to the cell posterior. Four short male roots extended to nearly half the distance to the posterior end. Two flagella, one each from the male and female gametes, become a pair. Specifically, the no. 2 flagellum of the female gamete and one male flagellum point to the right side of the eyespot of the female gamete, which is located at the cell posterior and which is associated with 2s and 2d roots of the female gamete. This spatial relationship of the flagella, microtubular roots, and the eyespot in the planozygote is retained until settlement. During forward swimming, the planozygote swings the flagella backward and moves by flagellar beating. The male and female flagella in the pair usually beat synchronously. The cell withdraws the flagella and becomes round when the planozygote settles to the substratum 20 min after mixing. The axoneme and microtubular roots depolymerize, except for the proximal part and the basal bodies. Subsequently, distinct arrays of cortical microtubules develop in zygotes until 30 min after mixing. These results are discussed with respect to the functional significance of the spatial relationships of flagellar apparatus‐eyespot‐cell fusion sites in the mating gametes and planozygote of green algae.  相似文献   

17.
The ultrastructure of the flagellar apparatus in the biflagellate female gametes of the green algaBryopsis lyngbyei has been studied in detail. In the flagellum and basal body, microtubule septations occur in some of the B-tubules. The transition region of the flagellum is extremely long (260–290 nm), exhibits a stellate pattern in cross section but lacks the transverse diaphragm. The two basal bodies form an angle of 180° and overlap at their proximal ends. They are connected by a compound non-striated capping plate. Terminal caps associated with the capping plate partially close the proximal end of each basal body. A cruciate flagellar root system with three different types of microtubular roots is present, i. e. the flagellar apparatus does not show 180° rotational symmetry. One root type contains 2 microtubules which are connected to an elaborate cylindrical structure, presumably a mating structure. The opposite root exhibits 3 microtubules over its entire length and is not associated with a cylindrical structure. In their proximal parts both roots are linked to an underlying crescent body. The other two microtubular roots are probably identical and consist of 4 (or 5) microtubules which show configurational changes. These two identical roots insert into the capping plate and link to the inner side (i. e. the side adjacent to the other basal body) of each basal body, whereas the other two roots attach to the outer sides of each basal body. System I striated fibres are probably associated with each of the four roots, while system II fibres have not been observed. The flagellar apparatus of female gametes ofB. lyngbyei shows many unique features but in some aspects resembles that of ulvalean algae. Functional and phylogenetic aspects of cruciate flagellar root systems in green algae are discussed.  相似文献   

18.
Spermatozoids and vegetative cells of the green alga Golenkinia minutissima Iyengar et Balakrishnan have been examined by light and electron microscopy. The biflagellate spermatozoids are of a somewhat specialised type, elongated with the nucleus attached to the flagellar bases, and containing a reduced chloroplast without pyrenoid or eyespot. The flagellar apparatus and root system has been examined in detail and is compared with that found in other green algae. The flagella are of a previously unknown type; they contain only one central microtubule—possibly non-functional—but they move in an apparently normal way. Present knowledge about flagellar roots in green algae has been assembled in a table, showing that the cruciate root has now been found in 10 genera, belonging to almost as many families. Exceptions are Oedogonium, which contains a modification of this type, and the Charales, which are very different. During spermatogenesis in Golenkinia each spermatozoid is surrounded by a wall which disappears at maturity. This fact may prove to be of taxonomic value.

The spines on the vegetative cells are composed of regularly arranged longitudinal fibrils, possibly cellulose, attached to the inner part of the two-layered cell wall. The content of the vegetative cell is typically chlorococcalean.  相似文献   

19.
H. angulata is a scale-covered, asymmetrical green unicell with two laterally attached, anisokont flagella. In recent years it has been classified in the Prasinophyceae. The flagellar apparatus replicates, and the cell begins to cleave at the side opposite the flagella before the nucleus can be perceived to be in prophase. The flagellar apparatuses separate, and the extra-nuclear development of the spindle occurs from the regions occupied by rhizoplasts. Rhizoplasts or partial rhizoplasts lie at the flat metaphase spindle poles. By metaphase, the cell has already elongated to the extent that it is nearly twice as long as at interphase. The spindle and the cell itself elongate greatly during anaphase with a concomitant further separation of the flagellar pairs. Although the interzonal spindle persists during cytokinesis as in charophycean algae, H. angulata is similar in flagellar scale morphology and other characteristics to the chlorophycean Platymonas, which has a collapsing interzonal spindle at telophase, a phycoplast, and a wall-like theca, which develops by the fusion of small stellate scales. It is hypothesized that the collapsing telophase spindle and phycoplast evolved in green flagellates similar to Platymonas, in which cell and spindle elongation became restricted by a cell wall that evolved from stellate scales similar to those in Heteromastix. Such walled flagellates are then visualized as having eventually given rise to Chlamydomonas and to the entire range of chlorophycean algae with phycoplasts. It is pointed out that the hypothesis has a number of implications by which its validity could be judged when sufficient information becomes available.  相似文献   

20.
This paper presents a cladistic analysis and classification of the green plants (Viridiplantae). It is intended to be more balanced than previous treatments because more attention is paid to the lower green plants, or green algae. A major dichotomy is reflected by the structure of the flagellar root system of motile cells. Taxonomically, this justifies recognition of two divisions of green plants, viz.Chlorophyta sensu stricto, andAnthocerotophyta. The latter embraces a portion of the green algae plus all embryophytes. From a cladistic viewpoint it is doubtful whether land plants are strictly monophyletic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号