首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The UV-absorbing mycosporine-like amino acids (MAAs) are hypothesized to protect organisms against harmful UV radiation (UVR). Since the physiology and metabolism of these compounds are unknown, the induction and kinetics of MAA biosynthesis by various natural radiation conditions were investigated in the marine red alga Chondrus crispus collected from Helgoland, Germany. Three photosynthetically active radiation (PAR, 400–700 nm) treatments without UVR and three UV-A/B (290–400 nm) treatments without PAR were given. Chondrus crispus collected from 4–6 m depth contained only traces of the MAA palythine. After 24 h exposure to 100% ambient PAR, traces of three additional MAAs, shinorine, palythinol and palythene, were detected, and their concentrations increased strongly during a one-week exposure to all PAR treatments. The concentration of all MAAs varied directly with PAR dose, with palythine and shinorine being four- to sevenfold higher than palythinol and palythene. Likewise, naturally high doses of both UV-A and UV-B resulted in a strong accumulation of all MAAs, in particular shinorine. While shinorine accumulation was much more stimulated by UVR, the content of all other MAAs was more affected by high PAR, indicating an MAA-specific induction triggered by UVR or PAR. Received: 24 September 1997 / Accepted: 17 December 1997  相似文献   

2.
The induction of UV-absorbing compounds known as mycosporine-like amino acids (MAAs) by red, green, blue, and white light (43% ambient radiation greater than 390 nm) was examined in sublittoral Chondrus crispus Stackh. Fresh collections or long-term cultures of sublittoral thalli, collected from Helgoland, North Sea, Germany, and containing no measurable amounts of MAAs, were exposed to filtered natural radiation for up to 40 days. The MAA palythine (λmax 320 nm) was synthesized in thalli in blue light to the same extent observed in control samples in white light. In contrast, thalli in green or red light contained only trace amounts of MAAs. After the growth and synthesis period, the photosynthetic performance of thalli in each treatment, measured as pulse amplitude modulated chlorophyll fluorescence, was assessed after a defined UV dose in the laboratory. Thalli with MAAs were more resistant to UV than those without, and exposure to UV-A+B was more damaging than UV-A in that optimal (Fv/Fm) and effective (φII) quantum yields were lower and a greater proportion of the primary electron acceptor of PSII, Q, became reduced at saturating irradiance. However, blue light-grown thalli were generally more sensitive than white light control samples to UV-A despite having similar amounts of MAAs. The most sensitive thalli were those grown in red light, which had significantly greater reductions in Fv/Fm and φII and greater Q reduction. Growth under UV radiation alone had been shown previously to lead to the synthesis of the MAA shinorine (λmax 334 nm) rather than palythine. In further experiments, we found that preexposure to blue light followed by growth in natural UV-A led to a 7-fold increase in the synthesis of shinorine, compared with growth in UV-A or UV-A+B without blue light pretreatment. We hypothesize that there are two photoreceptors for MAA synthesis in C. crispus, one for blue light and one for UV-A, which can act synergistically. This system would predispose C. crispus to efficiently synthesize UV protective compounds when radiation levels are rising, for example, on a seasonal basis. However, because the UV-B increase associated with artificial ozone reduction will not be accompanied by an increase in blue light, this triggering mechanism will have little additional adaptive value in the face of global change unless a global UV-B increase positively affects water column clarity.  相似文献   

3.
In field studies conducted at the Kongsfjord (Spitsbergen), the effect of filtered natural radiation conditions (solar without ulraviolet [UV]-A+UV-B, solar without UV-B, solar) on photosynthesis and the metabolism of UV-absorbing mycosporine-like amino acids (MAAs) in the marine red alga Devaleraea ramentacea have been studied. While solar treatment without UV-A+UV-B did not affect photosynthesis during the course of a day, solar without UV-B and the full solar spectrum led to a strong inhibition. However, after offset of the various radiation conditions, all algae fully recovered. Isolates collected from different depths were exposed in the laboratory to artificial fluence rates of photosynthetic active radiation (PAR), PAR+UV-A, and PAR+UV-A+UV-B. The photosynthetic capacity was affected in accordance with the original sampling depth, i.e. shallow-water isolates were more resistant than algae from deeper waters, indicating that D. ramentacea is able to acclimate to changes in irradiance. Seven different UV-absorbing MAAs were detected in this alga, namely mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330, palythinol, and palythene. The total amount of MAAs continuously decreased with increasing collecting depth when sampled in mid June, and algae taken in late August from the same depths contained on average 30–45% higher MAA concentrations, indicating a seasonal effect as well. The presence of increasing MAA contents with decreasing depth correlated with a more insensitive photosynthetic capacity under both UV-A and UV-B treatments. Populations of D. ramentacea collected from 1 m depth, with one fully exposed to solar radiation and the other growing protected as understorey vegetation underneath the kelp Laminaria saccharina, exhibited quantitatively different MAA compositions in the apices. The exposed seaweeds contained 2.5-fold higher MAA values compared with the more shaded algae. Moreover, the exposed isolates showed a strong tissue gradient in MAAs, pigments, and proteins. The green apices contained 5-fold higher MAA contents than the red bases. Transplantation of D. ramentacea from 2 m depth to the surface induced the formation and accumulation of MAAs after 1 week exposure to the full solar spectrum. Control samples which were treated with the solar spectrum without UV-A+B or with solar without UV-B showed unchanged MAA contents, indicating a strong UV-B effect on MAA metabolism. All data well supported the suggested physiological function of MAAs as natural UV sunscreens in macroalgae.  相似文献   

4.
A survey of 54 species of symbiotic cnidarians that included hydrozoan corals, anemones, gorgonians and scleractinian corals was conducted in the Mexican Caribbean for the presence of mycosporine-like amino acids (MAAs) in the host as well as the Symbiodinium fractions. The host fractions contained relatively simple MAA profiles, all harbouring between one and three MAAs, principally mycosporine-glycine followed by shinorine and porphyra-334 in smaller amounts. Symbiodinium populations were identified to sub-generic levels using PCR-DGGE analysis of the Internal Transcribed Spacer 2 (ITS2) region. Regardless of clade identity, all Symbiodinium extracts contained MAAs, in contrast to the pattern that has been found in cultures of Symbiodinium, where clade A symbionts produced MAAs whereas clade B, C, D, and E symbionts did not. Under natural conditions between one and four MAAs were identified in the symbiont fractions, mycosporine-glycine (λmax = 310 nm), shinorine (λmax = 334 nm), porphyra-334 (λmax = 334 nm) and palythine (λmax = 320 nm). One sample also contained mycosporine-2-glycine (λmax = 331 nm). These data suggest that Symbiodinium is restricted to producing five MAAs and there also appears to be a defined order of appearance of these MAAs: mycosporine-glycine followed by shinorine (in one case mycosporine-2-glycine), then porphyra-334 and palythine. Overall, mycosporine-glycine was found in highest concentrations in the host and symbiont extracts. This MAA, unlike many other MAAs, absorbs within the ultraviolet-B range (UVB, 280-320 nm) and is also known for moderate antioxidant properties thus potentially providing protection against the direct and indirect effects of UVR. No depth-dependent changes could be identified due to a high variability of MAA concentrations when all species were included in the analysis. The presence of at least one MAA in all symbiont and host fractions analyzed serves to highlight the importance of MAAs, and in particular the role of mycosporine-glycine, as photoprotectants in the coral reef environment.  相似文献   

5.
The induction and protective role of the UV-absorbing compounds known as mycosporine-like amino acids (MAAs) were examined in sublittoral Chondrus crispus Stackh. transplanted for 2 weeks in the spring and summer to shallow water under three irradiance conditions: PAR (photosynthetically active radiation; 400–700 nm), PAR + UVA (PAR + 320– 400 nm), PAR + UVA + UVB (PAR + UVA + 280– 320 nm). Sublittoral thalli collected around Helgoland, North Sea, Germany, from 6 m below the mean low water of spring tides contained less than 0.1 mg·g−1 dry weight (DW) total MAAs, whereas eulittoral samples contained over 1 mg·g−1 DW. Transplantation to shallow water led to the immediate synthesis of three MAAs in the following temporal order: shinorine (λmax 334 nm), asterina (λmax 330 nm), and palythine (λmax 320 nm), with the shinorine content peaking and then declining after 2 days (exposure to 100 mol photons·m−2). Maximum total MAA content (2 mg·g−1 DW) also occurred after 2 days of induction, exceeding the content normally found in eulittoral samples. Furthermore, the relative proportion of the different MAAs at this time was different than that in eulittoral samples. After 2 days the total content declined to the eulittoral value, with palythine as the principal MAA. Similar data were obtained for all treatments, indicating that MAA synthesis in C. crispus was induced by PAR and not especially stimulated by UV radiation. The ability of photosystem II (PSII) to resist damage by UVB was tested periodically during the acclimation period by exposing samples to a defined UVB dose in the lab. Changes in chlorophyll fluorescence (Fv/Fm and effective quantum yield, φII) indicated that PSII function was inhibited during the initial stage of acclimation but gradually improved with time. No difference among screening treatments was detected except in spring for the samples acclimating to PAR + UVA + UVB. In this treatment Fv/Fm and φII were significantly lower than in the other treatments. During the first week of each experiment, growth rates were also significantly reduced by UVB. The reductions occurred despite maximum MAA content, indicating an incomplete protection of photosynthetic and growth-related processes.  相似文献   

6.
Although mycosporine-like amino acids (MAAs) have been extensively investigated in reef-building corals, the sources of these MAAs and the process of their interconversion remain a topic of interest. Here we examined ontogenetic change in the abundance of MAAs in planula larvae of the spawning scleractinian coral Goniastrea retiformis in the absence of zooxanthellae and other dietary input. In order to examine the potential contribution of prokaryotes in the synthesis of MAAs in animal tissue, one group of larvae were treated with the antibiotic rifampicin. High concentrations of MAAs (mycosporine-glycine, shinorine, palythinol, asterina-330), were present in the asymbiotic eggs and adults; however, no MAAs were present in the endosymbiotic zooxanthellae. We documented a steady decline in the total MAA concentrations through time in larvae treated with rifampicin; however, in the absence of antibiotic there was a significant increase in the concentration of MAAs, driven by a sharp increase in the abundance of shinorine and palythinol between day 3 and 7. Our results suggest that MAA synthesis and conversion in G. retiformis larvae occurred in the absence of symbiotic zooxanthellae, and indicate a possible contribution of prokaryotes associated with the animal tissue to these processes.  相似文献   

7.
UV-absorbing mycosporine-like amino acid compounds (MAA) were identified and quantified in 13 macroalgal Chlorophyceae, six Phaeophyceae and 28 Rhodophy-ceae collected in the intertidal zone from the tropical island Hainan, People's Republic of China, as well as from tropical mangrove locations in America, Africa, Australia and Japan. All of these habitats receive naturally high solar ultraviolet (UV) irradiances. The study revealed that all Rhodophyceae contained several MAA, which are assumed to function as natural UV sunscreens. Within all species investigated eight distinct compounds were found, seven of which were identified as mycosporine-glycine, shinorine, porphyra-334, pal-ythine, asterina-330, palythinol and palythene. The unknown substance had an absorption spectrum with a maximum at 357 nm. This compound was restricted to two red algal species from Hainan. In contrast, the Chlorophyceae and Phaeophyceae did not contain MAA or exhibited only trace concentrations. Compared with data from the literature, the amount of all MAA in the tropical Rhodophyceae seemed to be higher than in temperate organisms, probably reflecting acclimation to the stronger solar radiation which is typical for lower latitudes. The data suggest that accumulation of MAA may represent a natural defence system against exposure to biologically harmful UV radiation.  相似文献   

8.
To assess whether vertebrates can acquire, from their diet, ultraviolet radiation-absorbing mycosporine-like amino acids (MAAs), medaka fish and hairless mice were maintained for 150 and 130 days, respectively, on diets either including Mastocarpus stellatus (rich in MAAs) or the same diets without this red alga. In medaka, the MAAs palythine and asterina-330, present in trace quantities in the diet with added M. stellatus, were present in significantly greater quantities in the eyes of fish fed this diet than in the eyes of control fish. Only traces of MAAs were present in the skin of medaka fed the diet containing MAAs. Shinorine, the principal MAA in M. stellatus, was not found in any tissues of medaka, which raises questions about the specificity of transport of MAAs. In hairless mice, no dietary MAAs were found in the tissues of the eyes, skin, or liver after maintenance on the experimental diet. Low concentrations of shinorine were present only in the tissues of the small and large intestines. These results indicate that MAAs are acquired from their diet and translocated to superficial tissues by teleost fish, but that mammals may be incapable of such. Thus, dietary supplementation with MAAs may be useful in aquacultured species of fish, but MAAs as ‘dietary sunscreens' may not be an option for mammals, including humans. Nevertheless, our demonstration of the uptake of shinorine by human skin cancer cells in culture raises evolutionary questions regarding the organ specificity of the capacity for the cellular transport of MAAs.  相似文献   

9.
This study investigated the relationship between seasonal changesin ambient UV-R, and sunscreen concentrations in phytoplanktonand krill. Concentrations of mycosprine-like amino acid (MAA)sunscreens were quantified in phytoplankton communities andin the krill Nyctiphanes australis over a 1-year period offthe Otago Coast, New Zealand. Ambient UV-B and UV-A ranged froma minimum mean daily dose of 2.19 x 104 kJ day–1 and 0.73x 106 kJ day–1 in June, to a maximum in January of 20.19x 104 kJ day–1 and 4.88 x 106 kJ day–1, respectively.Concentrations of MAAs (consisting almost entirely of Mycosporine-glycine)in the phytoplankton community were lowest in August (5.6 nmolµg–1 Chl) when UV-R irradiances were minimal andhighest in January (41.4 nmol µg–1 Chl) when UV-Rirradiances were maximal. Nyctiphanes australis was found tocontain five identified MAAs (mycosporine-glycine, shinorine,Porphyra-334, palythine and palythinol) and several unknownUV-R absorbing compounds. Concentrations ranged from 4.73 to15.51 nmol mg–1 dw, with little indication of a seasonalcycle that could be correlated with changes in either phytoplanktonMAA concentrations or ambient UV-R irradiances. The findingssuggest that krill are neither accumulating MAAs in responseto changes in MAA concentrations in their phytoplankton food,or that MAA concentrations in krill are increased in responseto higher ambient UV-R irradiances. Concentrations of MAAs inkrill body parts (carapace, legs, eyes, antennae, muscle) weresimilar (4.89–5.98 nmol mg–1 dw), with the exceptionof the carapace (2.03 nmol mg–1 dw).  相似文献   

10.
Cyanobacteria are known to biosynthesize mycosporine-like amino acids (MAAs) as photoprotective compounds against ultraviolet radiation. Anabaena sp., isolated from the hot springs of Rajgir, India, produces a single MAA shinorine (retention time = 2.2 min and absorption maximum at 334 nm) as purified by high-performance liquid chromatography. The MAA biosynthesis was under constitutive control in this cyanobacterium; however, PAR + UV-A + UV-B radiation was found to have highest impact on MAA synthesis. MAA biosynthesis is dependent on photosynthesis for the carbon source since the inhibitory effect of DCMU on MAA synthesis was overcome by externally added fructose. Our results suggest that there is no direct involvement of photosystem II dependent linear electron transport in MAA biosynthesis. However, utilization of energy derived from photosystem I dependent cyclic electron transport in MAA biosynthesis cannot be ruled out. This study also reveals that photoheterotrophic growth can support highest MAA biosynthesis under laboratory conditions in comparison with photoautotrophic and photomixotrophic growth. Thus, photoheterotrophic growth condition can be used for the large-scale production of pharmaceutically important MAAs from cyanobacteria for an industrial application.  相似文献   

11.
Chondrus crispus and Mastocarpus stellatus both inhabit the intertidal and upper sublittoral zone of Helgoland, but with C. crispus generally taking a lower position. Measurements of chlorophyll fluorescence, activity of ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO), and content and composition of UV absorbing mycosporine-like amino acids (MAAs) were conducted in the laboratory, to test whether susceptibility to UV radiation may play a role in the vertical distribution of these two species. Effective and maximal quantum yield of photochemistry as well as maximal electron transport rate (ETRmax) in C. crispus were more strongly affected by UV-B radiation than in M. stellatus. In both species, no negative effects of the respective radiation conditions were found on total activity of RubisCO. Total MAA content in M. stellatus was up to 6-fold higher than in C. crispus and the composition of MAAs in the two species was different. The results indicate that, among others, UV-B sensitivity may be a factor restricting C. crispus to the lower intertidal and upper sublittoral zone, whereas M. stellatus is better adapted to UV radiation and is therefore more competitive in the upper intertidal zone. Received: 15 November 1999 / Received in revised form: 28 February 2000 / Accepted: 10 March 2000  相似文献   

12.
In Antarctica ozone depletion is highest during spring, coinciding with the reproduction of many seaweed species. Propagules are the life-stage of an alga most susceptible to environmental perturbations. Therefore, fertile thalli of Iridaea cordata (Turner) Bory (Rhodophyta) were collected in the eulittoral of King George Island (Antarctica) to examine spore susceptibility to ultraviolet radiation (UVR). In the laboratory, freshly released tetraspores were exposed to photosynthetically active radiation (PAR) (400–700 nm), PAR+UV-A (320–700 nm) or PAR+UV-A+UV-B (280–700 nm). Photosynthetic efficiency was measured during 1–8 h of exposure and after 48 h of recovery. Additionally, mycosporine-like amino acids (MAAs) and DNA damage were determined. Saturating irradiance of photosynthesis of freshly released tetraspores was 57 µmol photons m−2 s−1. Exposure to increasing fluence of PAR reduced photosynthetic efficiency. UVR further decreased the photosynthetic efficiencies of the tetraspores but spores were able to recover completely after UVR exposure and 2 days post-cultivation under low PAR. DNA damage was minimal and lesions were effectively repaired under photoreactivating light. Concentrations of the MAAs shinorine and palythine were higher in tetraspores treated with UVR than in spores only exposed to PAR. Generally, the tetraspores show a good UV tolerance. This flexible response of the tetraspores of this species to changing radiation conditions enables the alga to grow along a considerable depth gradient from the sublittoral to the eulittoral where they can be exposed to enhanced UVBR under conditions of stratospheric ozone depletion.  相似文献   

13.
We investigated the interaction of diet and accumulation of UV-absorbing mycosporine-like amino acids (MAAs) in body tissues and spawn of the sea hare Aplysia dactylomela to determine if MAA accumulation reflects type and level of dietary intake. Food sources were the red algae Acanthophora spicifera, Centroceras clavulatum, and Laurencia sp., and the green alga, Ulva lactuca. Adults were maintained on these foods for 40 days, after which feces were collected and tissues separated by dissection. Field animals were similarly sampled at this time. All spawn from experimental and field animals was collected over the study period. Samples, including seaweed foods, were analysed for six MAAs. Overnight consumption experiments using a variety of common seaweeds and one seagrass from A. dactylomela's habitat showed that the four seaweeds selected as foods were among those best-eaten by Aplysia. After 40 days levels of specific MAAs in the tissues of experimental animals showed excellent correlation with those in their diets, suggesting that the MAAs were dietarily-derived. Relative MAA contents in spawn from all diet groups correlated well with those in spawn from field animals. Commonest MAAs in spawn were porphyra-334, shinorine, and palythine, in this order. Concentrations of these MAAs were maintained at constant levels over time in spawn from all diet groups eating red algae and from field animals. Spawn from the Ulva dietary group showed an initial significant decline in MAA concentrations, but levels stabilized after the first 2 weeks. Skin was rich in porphyra-334 and shinorine, and levels of these in experimental animals correlated well with comparable levels in the skin of field animals. Digestive glands contained high levels of asterina-330, particularly those of the Centroceras dietary group, where concentrations reached a maximum of 21 mg dry g(-1).  相似文献   

14.
1. Mycosporine‐like amino acids (MAAs) are a family of secondary metabolites known to protect organisms exposed to solar UV radiation. We tested their distribution among several planktonic ciliates bearing Chlorella isolated from an oligo‐mesotrophic lake in Tyrol, Austria. In order to test the origin of these compounds, the MAAs were assessed by high performance liquid chromatography in both the ciliates and their symbiotic algae. 2. Considering all Chlorella‐bearing ciliates, we found: (i) seven different MAAs (mycosporine‐glycine, palythine, asterina‐330, shinorine, porphyra‐334, usujirene, palythene); (ii) one to several MAAs per species and (iii) qualitative and quantitative seasonal changes in the MAAs (e.g. in Pelagodileptus trachelioides). In all species tested, concentrations of MAAs were always <1% of ciliate dry weight. 3. Several MAAs were also identified in the Chlorella isolated from the ciliates, thus providing initial evidence for their symbiotic origin. In Uroleptus sp., however, we found evidence for a dietary source of MAAs. 4. Our results suggest that accumulation of MAAs in Chlorella‐bearing ciliates represents an additional benefit of this symbiosis and an adaptation for survival in sunlit, UV‐exposed waters.  相似文献   

15.
Several standard in vitro assays were performed in order to determine the potential antioxidant capabilities of purified aqueous extracts of the mycosporine-like amino acids (MAAs), porphyra-334 plus shinorine (P-334 + SH), isolated from the red alga Porphyra rosengurttii, asterina-330 plus palythine (AS-330 + PNE), from the red alga Gelidium corneum, shinorine (SH), from the red alga Ahnfeltiopsis devoniensis, and mycosporine -glycine (M-Gly), isolated from the marine lichen Lichina pygmaea. The scavenging potential of hydrosoluble radicals (ABTS+ decolorization method), the antioxidant activity in lipid medium (β-carotene/ linoleate bleaching method) and the scavenging capacity of superoxide radicals (pyrogallol autooxidation assay) were evaluated. In terms of scavenging of hydrosoluble radicals, the antioxidant activity of all MAAs studied was dose-dependent and it increased with the alkalinity of the medium (pH 6 to 8.5). M-Gly presented the highest activity in all pH tested; at pH 8.5 its IC50 was 8-fold that of L-ascorbic acid (L-ASC) followed by AS-330 + PNE while P-334 + SH and SH showed scarce activity of scavenging of hydrosoluble free radicals. AS-330 + PNE showed high activity for inhibition of β-carotene oxidation relative to vitamin E and superoxide radical scavenging whilst the activity of P-334 +SH and SH were moderate. According to these results, the potential of MAAs in photoprotection can be considered high due to a double function: (1) UV chemical screening with high efficiency for UVB and UVA regions of the solar spectrum, and (2) their antioxidant capacity.  相似文献   

16.
Ultraviolet sunscreen compounds in epiphytic red algae from mangroves   总被引:3,自引:0,他引:3  
Karsten  Ulf  Sawall  Thomas  West  John  Wiencke  Christian 《Hydrobiologia》2000,432(1-3):159-171
Epiphytic red algae of the order Ceramiales from mangroves and salt marshes (nine species from Bostrychia, three from Stictosiphonia and four from Caloglossa) produce varying levels of the UV-absorbing compounds mycosporine-glycine, shinorine, porphyra-334, palythine, asterina-330 and palythinol, a suite of substances chemically assigned as mycosporine-like amino acids (MAAs). Mean MAA levels varied from 0.02 to 12.8 mg g–1 DW in field-collected and laboratory cultured specimens. While in field samples of Bostrychia montagneiHarvey, Bostrychia radicans (Montagne) Montagne and Caloglossa apomeiotica J.West et G.Zuccarello MAA concentrations were generally higher compared to cultured plants of the same taxa, Bostrychia tenella(Lamouroux) J.Agardh did not show such a difference. Catenella caespitosa (Withering) L.Irvine, Catenella impudica (Montagne) J.Agardh and Catenella nipae Zanardini (Gigartinales, Caulacanthaceae) produce two novel UV-absorbing compounds: MAA-1 (1.4–4.3 mg g –1 DW) and MAA-2 (0.1–1.0 mg g–1 DW), which absorb at 334 nm and 320 nm, respectively. In laboratory culture of Bostrychia moritziana when photosynthetically active radiation (PAR) was increased from 20 to 40 mol photons m–2 s–1, the total level of palythinol increased by 85% (from 2.0 to 3.7 mg g–1 DW). In a culture of Caloglossa leprieurii when PAR was increased from 40 to 80 mol m–2 s–1the porphyra-334 content increased by 77% (from 3.1 to 5.5 mg g–1 DW). Extremely high MAA contents of >30 mg g–1 DW were detected in mature tetrasporangial sori prepared from two isolates of laboratory-cultured reproductive Caloglossa apomeiotica compared to vegetative plants (about 10 mg MAAs g–1 DW) indicating tetraspores loaded up with UV-sunscreens. All data demonstrate that mangrove red algae contain high MAA concentrations, particularly the reproductive structures, and hence these compounds may act as biochemical photoprotectants against exposure to UV-radiation.  相似文献   

17.
The present study examined the effect of UV andphotosynthetically active radiation (PAR) onphotoinhibition and recovery in the Phaeophyte Macrocystis pyrifera, the Rhodophyte Chondruscrispus and the Chlorophyte Ulva lactuca underoutdoor culture conditions. There was an increase inphotoinhibition as a consequence of high exposure toUV-B radiation in M. pyrifera, however, highlevels of PAR accounted for most of thephotoinhibition in C. crispus and U.lactuca. Photodamage by UV-A, UV-B and PAR wascompletely repaired within 5 h and effective quantumyield reached pretreatment values in the three speciesstudied. Species were less susceptible tophotoinhibition after being incubated for 5 d underhigh exposures of natural irradiance suggesting aphotoadaptive process. The recovery of the effectivequantum yield was impaired by long exposure to highlevels of UV-B in C. crispus and UV-A, UV-B andPAR in M. pyrifera. This suggests a differentkind of damage by UV-A and PAR radiation, one to thephotosynthetic apparatus and another which affects therepair mechanism of some species. There was anincrease in UV-absorption ( 330 nm) in M. pyrifera and C. crispus within four days ofthe initiation of the experiment suggesting that thesespecies photoprotect their photosynthetic system whenexposed to elevated UV and PAR levels.  相似文献   

18.
The seasonal patterns of daylength and ultraviolet radiation (UVB and UVA) at Williamstown, Victoria, Australia were measured (October 1995-May 1996) and are considered in relation to levels of heterosides (soluble sugar compounds: D-isofloridoside, floridoside and L-isofloridoside) and sun-screen compounds (mycosporine-like amino acids: MAAs) in the intertidal red alga Bangia atropurpurea. UVB peaked in December-January at 2.2-2.4 W m(-2) and UVA also peaked at 70 W m(-2) in the same period. Total heteroside concentrations were highest (1230-1900 mmol kg(-1) dry weight) during November-December with floridoside and D-isofloridoside being 90% of the total. In late February through mid-April total heteroside contents were lower (315-905 mmol kg(-1) dry weight) with L-floridoside being as much as 34% of the total indicating a seasonal effect. Total MAAs varied from 3.4 to 7.1 mg g(-1) dry weight (mean 4.9 mg g(-1) dry weight) with both highest and lowest levels occurring in February. Porphyra-334 constituted 83 to 97% of this total with asterina-330, palythine and palythinol being 3-17%. Although maximum MAA concentrations did not show any significant parallel with the peak UV values, the quantitative data point to Bangia cells over the course of the seasons always loaded up with these photoprotective compounds.  相似文献   

19.
Caliothrips phaseoli, a phytophagous insect, detects and responds to solar ultraviolet-B radiation (UV-B; λ ≤ 315 nm) under field conditions. A highly specific mechanism must be present in the thrips visual system in order to detect this narrow band of solar radiation, which is at least 30 times less abundant than the UV-A (315–400 nm), to which many insects are sensitive. We constructed an action spectrum of thrips responses to light by studying their behavioural reactions to monochromatic irradiation under confinement conditions. Thrips were maximally sensitive to wavelengths between 290 and 330 nm; human-visible wavelengths (λ ≥ 400 nm) failed to elicit any response. All but six ommatidia of the thrips compound eye were highly fluorescent when exposed to UV-A of wavelengths longer than 330 nm. We hypothesized that the fluorescent compound acts as an internal filter, preventing radiation with λ > 330 nm from reaching the photoreceptor cells. Calculations based on the putative filter transmittance and a visual pigment template of λmax = 360 nm produced a sensitivity spectrum that was strikingly similar to the action spectrum of UV-induced behavioural response. These results suggest that specific UV-B vision in thrips is achieved by a standard UV-A photoreceptor and a sharp cut-off internal filter that blocks longer UV wavelengths in the majority of the ommatidia.  相似文献   

20.
Singh SP  Sinha RP  Klisch M  Häder DP 《Planta》2008,229(1):225-233
The mycosporine-like amino acid (MAA) profile of a rice-field cyanobacterium, Anabaena doliolum, was studied under PAR and PAR + UVR conditions. The high-performance liquid chromatographic analysis of water-soluble compounds reveals the biosynthesis of three MAAs, mycosporine-glycine (lambda (max) = 310 nm), porphyra-334 (lambda (max) = 334 nm) and shinorine (lambda (max) = 334 nm), with retention times of 4.1, 3.5 and 2.3 min, respectively. This is the first report for the occurrence of mycosporine-glycine and porphyra-334 in addition to shinorine in Anabaena strains studied so far. The results indicate that mycosporine-glycine (monosubstituted) acts as a precursor for the biosynthesis of the bisubstituted MAAs shinorine and porphyra-334. Mycosporine-glycine was under constitutive control while porphyra-334 and shinorine were induced by UV-B radiation, indicating the involvement of UV-regulated enzymes in the biotransformation of MAAs. It seems that A. doliolum is able to protect its cell machinery from UVR by synthesizing a complex set of MAAs and thus is able to survive successfully during the summer in its natural brightly lit habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号