首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
The production of succinoglycan by Sinorhizobium meliloti Rm1021 is required for successful nodule invasion by the bacterium of its host plant, alfalfa. Rm1021 produces succinoglycan, an acidic exopolysaccharide composed of an octasaccharide repeating unit modified with acetyl, succinyl, and pyruvyl moieties, in both low- and high-molecular-weight forms. Low-molecular-weight (LMW) succinoglycan, previously thought to consist of monomers, trimers, and tetramers of the repeating unit, has been reported as being capable of promoting the formation of nitrogen-fixing nodules by succinoglycan-deficient derivatives of strain Rm1021. We have determined that the three size classes of LMW succinoglycan species are in fact monomers, dimers, and trimers of the repeating unit and that the trimer is the species active in promoting nodule invasion. A detailed structural analysis of the components of LMW succinoglycan by using various chromatographic techniques, along with nuclear magnetic resonance analyses, has revealed that there is considerable heterogeneity within the LMW succinoglycan oligomers in terms of noncarbohydrate substitutions, and we have determined the structural basis of this heterogeneity.  相似文献   

2.
Jones KM 《Journal of bacteriology》2012,194(16):4322-4331
The nitrogen-fixing rhizobial symbiont Sinorhizobium meliloti 1021 produces acidic symbiotic exopolysaccharides that enable it to initiate and maintain infection thread formation on host legume plants. The exopolysaccharide that is most efficient in mediating this process is succinoglycan (exopolysaccharide I [EPSI]), a polysaccharide composed of octasaccharide repeating units of 1 galactose and 7 glucose residues, modified with succinyl, acetyl, and pyruvyl substituents. Previous studies had shown that S. meliloti 1021 mutants that produce increased levels of succinoglycan, such as exoR mutants, are defective in symbiosis with host plants, leading to the hypothesis that high levels of succinoglycan production might be detrimental to symbiotic development. This study demonstrates that increased succinoglycan production itself is not detrimental to symbiotic development and, in fact, enhances the symbiotic productivity of S. meliloti 1021 with the host plant Medicago truncatula cv. Jemalong A17. Increased succinoglycan production was engineered by overexpression of the exoY gene, which encodes the enzyme responsible for the first step in succinoglycan biosynthesis. These results suggest that the level of symbiotic exopolysaccharide produced by a rhizobial species is one of the factors involved in optimizing the interaction with plant hosts.  相似文献   

3.
It is thought that in the gram-negative soil bacterium Sinorhizobium meliloti the protein ExoP is involved in biosynthesis of the acidic exopolysaccharide succinoglycan (EPS I). The amounts and compositions of EPS I produced by mutants expressing ExoP proteins characterized by specific amino acid substitutions in the C-terminal cytoplasmic domain were analyzed. The cytoplasmic domain of the ExoP protein was shown to have ATPase activity. Mutations in the highly conserved Walker A ATP-binding motif prevented ATPase activity of the ExoP protein. Phenotypically, these mutations resulted in much lower levels of succinoglycan which consisted only of monomers of the octasaccharide repeating unit. The ExoP protein has similarities to proteins with autophosphorylating protein tyrosine kinase activity. We found that ExoP was phosphorylated on tyrosine and that site-directed mutagenesis of specific tyrosine residues in the cytoplasmic domain of ExoP resulted in an altered ratio of low-molecular-weight succinoglycan to high-molecular-weight succinoglycan.  相似文献   

4.
In Rhizobium meliloti (Sinorhizobium meliloti) cultures, the endo-1,3-1,4-β-glycanases ExoK and ExsH depolymerize nascent high-molecular-weight (HMW) succinoglycan to yield low-molecular-weight (LMW) succinoglycan. We report here that the succinyl and acetyl modifications of succinoglycan influence the susceptibility of succinoglycan to cleavage by these glycanases. It was previously shown that exoH mutants, which are blocked in the succinylation of succinoglycan, exhibit a defect in the production of LMW succinoglycan. We have determined that exoZ mutants, which are blocked in the acetylation of succinoglycan, exhibit an increase in production of LMW succinoglycan. For both wild-type and exoZ mutant strains, production of LMW succinoglycan is dependent on the exoK+ and exsH+ genes, implying that the ExoK and ExsH glycanases cleave HMW succinoglycan to yield LMW succinoglycan. By supplementing cultures of glycanase-deficient strains with exogenously added ExoK or ExsH, we have demonstrated directly that the absence of the acetyl group increases the susceptibility of succinoglycan to cleavage by ExoK and ExsH, that the absence of the succinyl group decreases the susceptibility of succinoglycan to cleavage, and that the succinyl effect outweighs the acetyl effect for succinoglycan lacking both modifications. Strikingly, nonsuccinylated succinoglycan actually can be cleaved by ExoK and ExsH to yield LMW succinoglycan, but only when the glycanases are added to cultures at greater than physiologically relevant concentrations. Thus, we conclude that the molecular weight distribution of succinoglycan in R. meliloti cultures is determined by both the levels of ExoK and ExsH glycanase expression and the susceptibility of succinoglycan to cleavage.  相似文献   

5.
Molecular signals, including Nod factors and succinoglycan, are necessary for the establishment of nitrogen-fixing nodules (Fix+) in Medicago truncatula-Sinorhizobium meliloti symbiosis. This report shows that M. truncatula-S. meliloti interactions involve ecotype-strain specificity, as S. meliloti Rm41 and NRG247 are Fix+ (compatible) on M. truncatula A20 and Fix- (incompatible) on M. truncatula A17, the Fix phenotypes are reversed with S. meliloti NRG185 and NRG34, and there is a correlation between the host specificity and succinoglycan oligosaccharide structure. S. meliloti NRG185 produces oligosaccharides that are almost fully succinylated, with two succinate groups per subunit, whereas the oligosaccharides produced by S. meliloti Rm41 include many nonsuccinylated subunits, as well as subunits with a single succinate group and others with malate. The results of this study demonstrated the following: (i) incompatibility is not a consequence of an avirulence factor or lack of Nod factor activity; (ii) the Fix+ phenotypes are succinoglycan dependent; (iii) there is structural variability in the succinoglycan oligosaccharide populations between S. meliloti strains; (iv) the structural nature of the succinoglycan oligosaccharides is correlated to compatibility; most importantly, (v) an S. meliloti Rm41 derivative, carrying exo genes from an M. truncatula A17-compatible strain, produced a modified population of succinoglycan oligosaccharides (similar to the donor strain) and was Fix+ on A17.  相似文献   

6.
We have identified acridinyl derivatives as potent aspartic protease inhibitors by virtual screening of in-house library of synthetic compounds. Enzyme inhibition experiments showed that both compounds inhibit human cathepsin D and Plasmodium falciparum plasmepsin-II in nanomolar ranges. The IC50 values against cathepsin D and plasmepsin-II of compound-Nar103 were found to be 9.0 ± 2.0 and 4.0 ± 1.0 nM and of compound-Nar110 were 0.5 ± 0.05 and 0.13 ± 0.03 nM, respectively. Ligand docking predicted the binding of acridinyl derivatives at the substrate-binding cleft, where hydrazide part of the inhibitors interact with the S1–S1′ subsite residues including catalytic aspartates. The phenyl ring and acridinyl moiety of the inhibitors were predicted to interact with S2/S3 and S2′/S3′ subsite residues.  相似文献   

7.
Kwon C  Lee S  Jung S 《Carbohydrate research》2011,(14):4071-2314
Low-molecular-weight (LMW) succinoglycans (monomers, dimers, and trimers) were isolated from Sinorhizobium meliloti 1021 and have been firstly investigated by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) using 2,4,6-trihydroxyacetophenone (THAP) as an optimal matrix in the negative ion mode. The main fractions of LMW succinoglycans contain molecules assembled of octasaccharide subunits. MALDI-TOF mass spectra of the LMW succinoglycan monomers, the dimers, and the trimers showed the daughter ions resulting from the losses of the terminal galactose residues at the reducing ends, clearly indicating that the galactosyl linkages are more labile than the other glucosyl linkages. Furthermore, the losses of the acetyl groups as substituents rather than the succinyl and pyruvyl ester linkages by prompt fragmentation primarily occurred during MALDI-TOF analysis, suggesting the greater instability of acetyl linkages compared to pyruvyl and succinyl linkages.  相似文献   

8.
The formation of nitrogen‐fixing nodules on legume hosts is a finely tuned process involving many components of both symbiotic partners. Production of the exopolysaccharide succinoglycan by the nitrogen‐fixing bacterium Sinorhizobium meliloti 1021 is needed for an effective symbiosis with Medicago spp., and the succinyl modification to this polysaccharide is critical. However, it is not known when succinoglycan intervenes in the symbiotic process, and it is not known whether the plant lysin‐motif receptor‐like kinase MtLYK10 intervenes in recognition of succinoglycan, as might be inferred from work on the Lotus japonicus MtLYK10 ortholog, LjEPR3. We studied the symbiotic infection phenotypes of S. meliloti mutants deficient in succinoglycan production or producing modified succinoglycan, in wild‐type Medicago truncatula plants and in Mtlyk10 mutant plants. On wild‐type plants, S. meliloti strains producing no succinoglycan or only unsuccinylated succinoglycan still induced nodule primordia and epidermal infections, but further progression of the symbiotic process was blocked. These S. meliloti mutants induced a more severe infection phenotype on Mtlyk10 mutant plants. Nodulation by succinoglycan‐defective strains was achieved by in trans rescue with a Nod factor‐deficient S. meliloti mutant. While the Nod factor‐deficient strain was always more abundant inside nodules, the succinoglycan‐deficient strain was more efficient than the strain producing only unsuccinylated succinoglycan. Together, these data show that succinylated succinoglycan is essential for infection thread formation in M. truncatula, and that MtLYK10 plays an important, but different role in this symbiotic process. These data also suggest that succinoglycan is more important than Nod factors for bacterial survival inside nodules.  相似文献   

9.
Sinorhizobium meliloti is a gram-negative soil bacterium capable of forming a symbiotic nitrogen-fixing relationship with its plant host, Medicago sativa. Various bacterially produced factors are essential for successful nodulation. For example, at least one of two exopolysaccharides produced by S. meliloti (succinoglycan or EPS II) is required for nodule invasion. Both of these polymers are produced in high- and low-molecular-weight (HMW and LMW, respectively) fractions; however, only the LMW forms of either succinoglycan or EPS II are active in nodule invasion. The production of LMW succinoglycan can be generated by direct synthesis or through the depolymerization of HMW products by the action of two specific endoglycanases, ExsH and ExoK. Here, we show that the ExpR/Sin quorum-sensing system in S. meliloti is involved in the regulation of genes responsible for succinoglycan biosynthesis as well as in the production of LMW succinoglycan. Therefore, quorum sensing, which has been shown to regulate the production of EPS II, also plays an important role in succinoglycan biosynthesis.  相似文献   

10.
Arginine 56 in the β subunit (βArg56) of the iron-containing nitrile hydratase (NHase), one of the strongly conserved residues within the NHase family, is known to form hydrogen bonds to the sulfinyl (–SO2H) and sulfenyl (–SOH) groups of the post-translationally modified cysteine residues in the catalytic center. βArg56 was substituted by tyrosine, glutamate or lysine, respectively, and the respective mutant enzymes generated by reconstitution were characterized. The βR56K mutant complex exhibited about 1% of the enzymatic activity of native NHase, while the others were totally inactive. The kinetic analysis of the βR56K mutant complex exhibited a drastic decrease in turnover number and decreases in kinetic constants for substrate and inhibitors as compared to the native NHase. Changes in UV–visible absorption and light-induced Fourier transform infrared difference spectra suggest that βArg56 is involved in the positioning of the –SO2H and –SOH groups of the modified Cys residues in the catalytic center so as to fine tune the electronic state of the iron center suitable for catalysis. Thus, βArg56 is essential for catalysis.  相似文献   

11.
Thermally induced order-disorder conformational transition in succinoglycan was studied using the method of high-sensitivity differential scanning microcalorimetry within the range of polysaccharide concentrations from 0.1 to 3.5 mg mL−1 at NaCl concentrations 0, 0.01, and 0.1M. The positions and shapes of the excess heat capacity curves depended substantially on both the NaCl and polysaccharide concentrations. At low polysaccharide concentrations in salt-free solution the experimental curves were closely approximated by the two-state model suggesting the transition mechanism to be of the single helix-coil type. With increasing polysaccharide and/or NaCl concentration, the experimental curves changed significantly in symmetry, which indicated a changing transition mechanism. At high polysaccharide concentrations or in the presence of the salt, the order-disorder transition of succinoglycan was shown to include two stages: the cooperative dissociation of the helix dimer and subsequent two-state melting of the helix monomer. The dependence of thermodynamic parameters for the dissociation and melting of helix structures in succinoglycan on NaCl and polysaccharide concentrations was obtained by fitting the experimental excess heat capacity curves. The cooperativity parameter σ for the single helix-coil transition as well as the average length of the helix segment of succinoglycan were calculated. Some features of succinoglycan ordering in solution are discussed. © 1996 John Wiley & Sons, Inc.  相似文献   

12.
Enzymatic glycosylation of D-glucal was conducted by homogeneous endo-β-1,3-glucanase GA from Cellulomonas cellulans in an aqueous environment. Water-soluble β-1,3-glucan (laminarin) was used as a polymeric donor of glycosyl residues. The single reaction product appeared to be monoglucosylated D-glucal as confirmed by FAB MS and MALDI MS analysis. The structure of the reaction product was determined to be D-laminarabial by comparison with CI MS spectra of two other possible regioisomers of β-monoglucosylated D-glucal and their peracetylated derivatives.  相似文献   

13.
During fermentation, the mutant strain Rhizobium mefliloti M5N1 CS, which induces nodule formation on alfalfa roots, produces a partially acetylated (1 → 4)-β-d-glucuronan. In addition to this exopolysaccharide of high molecular weight, the mutant strain produces oligoglucoronates and cyclic (1 → 2)-β-d-glucans with degrees of polymerization from 17 to 30. Under the conditions applied, magnesium has no effect on cyclic glucan production by the mutant strain, but the succinoglycan production by the wild-type strain Rhizobium meliloti M5N1 increases.  相似文献   

14.
ExoM is a beta(1-4)-glucosyltransferase involved in the assembly of the repeat unit of the exopolysaccharide succinoglycan from Sinorhizobium meliloti. By comparing the sequence of ExoM to those of other members of the Pfam Glyco Domain 2 family, most notably SpsA (Bacillus subtilis) for whom the three-dimensional structure has been resolved, three potentially important aspartic acid residues of ExoM were identified. Single substitutions of each of the Asp amino acids at positions 44, 96, and 187 with Ala resulted in the loss of mutant recombinant protein activity in vitro as well as the loss of succinoglycan production in an in vivo rescue assay. Mutants harboring Glu instead of Asp-44 or Asp-96 possessed no in vitro activity but could restore succinoglycan production in vivo. However, replacement of Asp-187 with Glu completely inactivated ExoM as judged by both the in vitro and in vivo assays. These results indicate that Asp-44, Asp-96, and Asp-187 are essential for the activity of ExoM. Furthermore, these data are consistent with the functions proposed for each of the analogous aspartic acids of SpsA based on the SpsA-UDP structure, namely, that Asp-44 and Asp-96 are involved in UDP substrate binding and that Asp-187 is the catalytic base in the glycosyltransferase reaction.  相似文献   

15.
Rhizobium meliloti produces an acidic exopolysaccharide, termed succinoglycan or EPS I, that is important for invasion of the nodules that it elicits on its host, Medicago sativa. Succinoglycan is a high-molecular-weight polymer composed of repeating octasaccharide subunits. These subunits are synthesized on membrane-bound isoprenoid lipid carriers, beginning with a galactose residue followed by seven glucose residues, and modified by the addition of acetate, succinate, and pyruvate. Biochemical characterizations of lipid-linked succinoglycan biosynthetic intermediates from previously identified exo mutant strains have been carried out in our laboratory (T. L. Reuber and G. C. Walker, Cell 74:269-280, 1993) to determine where each mutation blocks the biosynthetic pathway. We have carried out a fine structure genetic analysis of a portion of the cluster of exo genes present on the second symbiotic megaplasmid of R. meliloti and have identified several new genes. In addition, the DNA sequence of 16 kb of the exo cluster was determined and the genetic map was correlated with the DNA sequence. In this paper we present the sequence of a family of glycosyl transferases required for the synthesis of succinoglycan and discuss their functions.  相似文献   

16.
The major acidic exopolysaccharide of Rhizobium meliloti, termed succinoglycan, is required for nodule invasion and possibly nodule development. Succinoglycan is a polymer of octasaccharide subunits composed of one galactose residue, seven glucose residues, and acetyl, succinyl, and pyruvyl modifications, which is synthesized on an isoprenoid lipid carrier. A cluster of exo genes in R. meliloti are required for succinoglycan production, and the biosynthetic roles of their gene products have recently been determined (T.L. Reuber and G. C. Walker, Cell 74:269-280, 1993). Our sequencing of 16 kb of this cluster of exo genes and further genetic analysis of this region resulted in the discovery of several new exo genes and has allowed a correlation of the genetic map with the DNA sequence. In this paper we present the sequences of genes that are required for the addition of the succinyl and pyruvyl modifications to the lipid-linked intermediate and genes required for the polymerization of the octasaccharide subunits or the export of succinoglycan. In addition, on the basis of homologies to known proteins, we suggest that ExoN is a uridine diphosphoglucose pyrophosphorylase and that ExoK is a beta(1,3)-beta (1,4)-glucanase. We propose a model for succinoglycan biosynthesis and processing which assigns roles to the products of nineteen exo genes.  相似文献   

17.
A screening method based on differential staining of the wild type and exopolysaccharide-deficient mutants of Rhizobium (Sinorhizobium) meliloti by the lipophilic dye Sudan Black B is described. Mutants defective in the production of either succinoglycan or EPS II (galactoglucan) were isolated by using this method, which might also prove useful for isolating exopolysaccharide-defective derivatives of other bacteria.  相似文献   

18.
The exopolysaccharide succinoglycan is produced mainly by a large number of soil microbes of Agrobacterium, Rhizobium or Pseudomonas genera etc. Structural properties of succinoglycan are unique in terms of its thermal stability and superior viscosifying property. Unlike the other highly commercialized bacterial exopolysaccharides like dextran or xanthan, mass scale application of succinoglycan has not been that much broadly explored yet. Bacterial succinoglycan is found suitable as a viscosifying and emulsifying agent in food industry, in gravel packing or fluid-loss control agent etc. In this present review, the key aspects of succinoglycan study, in particular, developments in structural characterizations, exo/exs operon system involved in biosynthesis pathway, commercial applications in food and other industries and patenting trends have been discussed.  相似文献   

19.
Rhizobium meliloti Rm1021 must be able to synthesize succinoglycan in order to invade successfully the nodules which it elicits on alfalfa and to establish an effective nitrogen-fixing symbiosis. Using R. meliloti cells that express green fluorescent protein (GFP), we have examined the nature of the symbiotic deficiency of exo mutants that are defective or altered in succinoglycan production. Our observations indicate that an exoY mutant, which does not produce succinoglycan, is symbiotically defective because it cannot initiate the formation of infection threads. An exoZ mutant, which produces succinoglycan without the acetyl modification, forms nitrogen-fixing nodules on plants, but it exhibits a reduced efficiency in the initiation and elongation of infection threads. An exoH mutant, which produces symbiotically nonfunctional high-molecular-weight succinoglycan that lacks the succinyl modification, cannot form extended infection threads. Infection threads initiate at a reduced rate and then abort before they reach the base of the root hairs. Overproduction of succinoglycan by the exoS96::Tn5 mutant does not reduce the efficiency of infection thread initiation and elongation, but it does significantly reduce the ability of this mutant to colonize the curled root hairs, which is the first step of the invasion process. The exoR95::Tn5 mutant, which overproduces succinoglycan to an even greater extent than the exoS96::Tn5 mutant, has completely lost its ability to colonize the curled root hairs. These new observations lead us to propose that succinoglycan is required for both the initiation and elongation of infection threads during nodule invasion and that excess production of succinoglycan interferes with the ability of the rhizobia to colonize curled root hairs.  相似文献   

20.
The suitability of the reductive-cleavage method for analysis of the linkage positions in d-fructofuranosyl residues of d-fructans was examined by using sucrose, chicory-root inulin, and Aerobacter levanicum levan as models. Permethylation, and reductive cleavage with triethylsilane in the presence of either boron trifluoride etherate or trimethylsilyl trifluoromethanesulfonate, gave the expected methylated derivatives of 2,5-anhydro-d-mannitol and 2,5-anhydro-d-glucitol. With either catalyst, nonreducing (terminal) d-fructofuranosyl groups and d-fructofuranosyl residues linked at O-1 gave derivatives having the manno configuration as the major product, whereas d-fructofuranosyl residues linked at O-6, and at both O-1 and O-6, gave derivatives having the gluco configuration as the major product. The independent synthesis, and n.m.r.- and mass-spectral characterization, of the methylated 2,5-anhydro-d-mannitol and 2,5-anhydro-d-glucitol derivatives formed from these residues by reductive cleavage are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号