首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The positions of linkage in the d-mannans derived from Saccharomyces cerevisiae X2180 and its mutants, mnn1, mnn2, and mnn4, were established by perethylation and subsequent reductive cleavage with triethylsilane in the presence of boron trifluoride etherate (BF3 · Et2O) or trimethylsilyl trifluoromethanesulfonate. With the latter as the catalyst, all glycosidic carbon-oxygen bonds were cleaved, to produce a mixture of ethylated 1,5-anhydro-d-mannitol derivatives. With BF3 · Et2O as the catalyst, 2-, 3-, and 6-linked residues were incompletely cleaved, and residues linked at both O-2 and O-6 were not cleaved at all. It was concluded that reductive cleavage is an attractive method for determination of the structure of polysaccharides.  相似文献   

2.
The structure of a dextran produced by Leuconostoc mesenteroides NRRL B-1397 has been investigated in relation to its immunological properties. The methylated dextran yielded on acid hydrolysis 2,3,4,6-tetra-, 2,3,4-tri-, 3,4,-di-, and 2,4-di-O-methyl-d-glucose, in the molar ratio of 1.0:3.1:0.7:0.2, together with a trace of 2,4,6-tri-O-methyl-dglucose, indicating that the branches occur mainly at O-2 and the remainder at O-3. A carboxyl-dextran, obtained by catalytic oxidation of the dextran to convert the terminal, non-reducing d-glucose residues d-glucuronic acid residues, was partially hydrolyzed with acid. Fractionation gave 2-O-(α-d-glucopyranosyluronic acid) d-glucose (major), 6-O-(α-d-glucopyranosyluronic acid)-d-glucose, and mixtures of aldotri-, aldotetra-, and aldopentaouronic acid that contain both (1 → 6)- and (1 → 2)-d-glucosidic linkages. It is concluded that the branches at O-2 are mainly single d-glucose units, whereas those occurring at O-3 may be longer than two glucose units, forming a highly branched structure having an average repeating- unit of 5 sugar residues.  相似文献   

3.
Heparin was converted by treatment with nitrous acid primarily into sulfated disaccharides. The mixture of disaccharides was reduced with sodium boro[3H]hydride and the disaccharides were purified by preparative paper electrophoresis and paper chromatography. Four disaccharides were obtained. On the basis of their paper electrophoretic mobilities and the products formed at intermediate stages of their acid hydrolysis, the disaccharides were identified as 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, 4-O-(2-O-sulfo-α-l-idopyranosyluronic acid)-2,5-anhydro-d-mannitol, 4-O-(α-l-idopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol, and 4-O-(β-d-glucopyranosyluronic acid)-6-O-sulfo-2,5-anhydro-d-mannitol. The purified disaccharides were used as standards in the development of a high-performance liquid chromatography procedure for their separation and quantitation on a Partisil-10 SAX anion-exchange column. The three monosulfated disaccharides were resolved by isocratic elution with 40 mm KH2PO4. The KH2PO4 concentration was tehn increased to 400 mm to elute the disulfated disaccharide. Column effluents were collected in 12-ml fractions, and the recovery of each 3H-labeled product was determined by scintillation counting. When sodium boro-[3H]hydride with a specific activity of 315 mCi/mmol was used in the reduction of the heparin deamination products, the disaccharides gave 28,500 cpm/nmol in the effluent peaks. Quantitative recoveries of the 3H-disaccharides were obtained. It was demonstrated that the method developed using the purified disaccharides gave reproducible and quantitative results in direct assays of aliquots of boro[3H]hydride-reduced heparin deamination mixtures.  相似文献   

4.
The configuration at the acetal carbon atom of pyruvic acid acetals present in some extracellular bacterial polysaccharides has been investigated. Assignment of the absolute configuration was made by comparing signals in the 13C- and 1H-n.m.r. spectra of the polysaccharides with those of model substances. The S-configuration was demonstrated in eight polysaccharides in which pyruvic acid is linked to O-4 and O-6 of D-glucopyranosyl or D-mannopyranosyl residues. The R-configuration was demonstrated in four polysaccharides in which pyruvic acid is linked to O-4 and O-6 of D-galactopyranosyl residues. Consequently, in each of these acetals, which form 1,3-dioxane rings, the methyl group is equatorial and the carboxyl group axial. The S-form was further demonstrated in four polysaccharides in which the pyruvic acid is linked to O-3 and O-4 of D-galactopyranosyl groups.  相似文献   

5.
A study is reported of the reactivities of the disaccharides isolated after deamination of beef-lung heparin and reduction of the products by sodium borotritide: 2,5-anhydro-O-(α-l-idopyranosyluronic acid sulfate)-d-mannitol sulfate, SIMS; 2,5-anhydro-O-(α-l-idopyranosyluronic acid)-d-mannitol sulfate, IMS; 2,5-anhydro-O-(α-l-idopyranosyluronic acid sulfate)-d-mannitol, SIM; and 2,5-anhydro-O-(β-d-glucopyranosyluronic acid)-d-mannitol sulfate, GMS. Results for the non-sulfated disaccharides IM and GM, prepared by desulfation of SIMS and GMS, are also reported. SIMS and SIM were inert to purified α-l-iduronidase, showed unexpected resistance to periodate oxidation, and lost sulfate rapidly in 50mm hydrochloric acid at 100°. Hydrolysis of IM and of IMS was catalyzed by α-l-iduronidase, and of GM and GMS by β-d-glucuronidase; the radioactive products were identified as 2,5-anhydro-d-mannitol (aM) and its sulfate (aMS). The products SIM and IMS obtained by deamination of heparin and desulfation of SIMS (the major deamination product) are apparently identical. In heparin partially desulfated by methanolic hydrogen chloride, residual sulfate groups were mostly linked to l-iduronic acid residues. Chemical, chromatographic, and electrophoretic methods that are valuable for separation and characterization of the disaccharides are described.  相似文献   

6.
The fate of 4-linked D-glucopyranosyluronic residues under reductive-cleavage conditions was investigated by using the Klebsiella aerogenes type 54 strain A3 capsular polysaccharide. Treatment of the fully methylated polysaccharide with triethylsilane and trimethylsilyl trifluoromethanesulfonate in dichloromethane, followed by in situ acetylation, yielded 1,5-anhydro-2,3,4,6-tetra-O-methyl-D-glucitol, 3,4-di-O-acetyl-1,5-anhydro-2,6-di-O-methyl-D-glucitol, and 3-O-acetyl-1,5-anhydro-2,4-di-O-methyl-L-fucitol, as expected, but the expected product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue, namely, methyl 3-O-acetyl-2,6-anhydro-4,5-di-O-methyl-L-gulonate, was not observed. Instead, methyl 2-O-acetyl-3,6-anhydro-4,5-di-O-methyl-L-gulonate (6) was identified as the sole product of reductive cleavage of the 4-linked D-glucopyranosyluronic residue. That compound 6 arose as a result of rearrangement during reductive cleavage rather than by reductive cleavage of a 5-linked D-glucofuranosyluronic residue, was established by reductive cleavage of the fully methylated polysaccharide following reduction of its ester groups with either lithium aluminum hydride or lithium aluminum deuteride. The products of the latter reductive cleavage were the same as before, except for the absence of 6 and the presence of 4,6-di-O-acetyl-1,5-anhydro-2,3-di-O-methyl-D-glucitol, or its 6,6-dideuterio isomer. Although the reductive-cleavage technique is suitable for the direct analysis of polysaccharides containing 4-linked D-glucopyranosyluronic residues, it does not establish whether the uronic residue is a 4-linked pyranoside or a 5-linked furanoside. The expected product is, however, derived from the 4-linked D-glucopyranosyluronic residue after sequential methylation, reduction of its ester group and reductive cleavage.  相似文献   

7.
A new catalyst for reductive cleavage of methylated glycans   总被引:1,自引:0,他引:1  
Several per-O-methylated D-glucans and D-fructans were used as models in an attempt to identify new catalysts for carrying out reductive cleavage. Included in these model studies were several D-glucans that contained 4-linked D-glucopyranosyl residues as well as one having a 4-linked D-glucitol residue, as both types of residue had previously been found to give rise to substantial proportions of artifactual products. These studies led to the development of a new catalyst for carrying out reductive cleavage, namely, a mixture of 5 equivalents of trimethylsilyl methanesulfonate (Me3SiOSO2Me) and 1 equivalent of boron trifluoride etherate (BF3 . Et2O) per equivalent of acetal. This new catalyst was found to accomplish the reductive cleavage of per-O-methylated, 4-linked D-glucopyranosyl residues and 4-linked D-glucitol residues, to give only the expected derivatives of 1,5-anhydro-D-glucitol and D-glucitol, respectively. The mixture of Me3SiOSO2Me and BF3 . Et2O also catalyzed reductive cleavage of the D-fructofuranosyl residues of per-O-methylated sucrose and inulin, to give only the expected derivatives of 2,5-anhydro-D-mannitol and 2,5-anhydro-D-glucitol. Indeed, when used alone, Me3SiOSO2Me also rapidly catalyzed the reductive cleavage of D-fructofuranosyl residues, but, under the same conditions, D-glucopyranosyl residues were unaffected. The results of these and other model studies demonstrated that catalysis of reductive cleavage by the mixture of Me3SiOSO2Me and BF3 . Et2O occurs in a synergistic manner. Examination of the mixture of Me3SiOSO2Me and BF3 . Et2O by 1H-n.m.r. spectroscopy demonstrated that a reaction occurs to generate trimethylsily fluoride and species of the type F2BOSO2Me, FB(OSO2Me)2, or B(OSO2Me)3 via ligand exchange.  相似文献   

8.
The reaction of two equivalents of diphenylchlorophosphate in cold pyridine with 2,5-anhydrohexitols has been assumed to result in only 1,6-bis(diphenylphosphate) products. However, by thin-layer, silica gel dry-column, and DEAE-Sephadex A-25 column chromatography, the products of this reaction have been shown to contain three major components; monophosphates (32 or 30%, by weight), 1,6-bis(phosphates) (40 or 56%), and 1,4,6-tris(phosphates) (28 or 14%): the former percentages for the product from 2,5-anhydro-d-mannitol (1) and the latter for the product from 2,5-anhydro-d-glucitol (10). The identity of each bis- and tris-(phosphate) of 1 or 10 was established by 31P- and 13C-n.m.r. spectroscopy. Acetylated bis- and tris-(diphenylphosphates) of 1 were also examined by 1H-n.m.r. The significance of these findings on the interpretation of studies of the anomeric specificity of enzymes and on the specificity of the reagent diphenylchlorophosphate are discussed. The formation of only a 1,4,6-tris(phosphate) of 10 suggests that the 1,6-bis(diphenylphosphate) of 10 may undergo formation of a 1,3-cyclic phosphate triester by transesterification with elimination of phenol. A method for the determination of the number of cyclohexylammonium groups crystallizing with a sugar phosphate is proposed that simplifies the elemental analysis of this type of salt.  相似文献   

9.
Periodate oxidation of LPG-1 established that N-acetylneuraminic acid residues are linked preponderantly α-(2→3) to D-galactose residues. The resistance of 2-acetamido-2-deoxyD-galactose residues to periodate oxidation suggests that they are linked at either O-3 or O-4 to D-galactose residues. After treatment of LPG-I with alkaline sulfite, ≈80% of 2-acetamido-2-deoxygalactose was recovered as the sulfonic acid derivative. The Gal→GalNAc disaccharide released from sialic-acid-free LPG-I by digestion with endo-2-acetamido-2-deoxy-α-D-galactosidase (which suggests an α-D-GalNAc→-L-Ser or -L-Thr linkage) gave a high color-yield in the Morgan—Elson reaction, indicating that 2-acetamido-2-deoxy-D-galactose residues are linked at C-3 to D-galactose residues. The migration of the released Gal-GalNAc disaccharide was the same as that of a standard sample of O-β-D-galactosyl-(1→3)-2-acetamido-2-deoxy-D-galactose. Treatment of sialic acid-free LPG-I with Streptococcus pneumoniae β-D-galactosidase, which hydrolyzes only galactosides linked β-D-(1→4) gave no free D-galactose, whereas treatment of LPG-I with bovine testes β-D-galactosidase released > 90% of D-galactose. These results provide evidence for β-D-Galp-(1→3)-α-D-GalNAcp-(1→3)-L-Ser or -L-Thr and α-NeuAc-(2→3)-β-D-Galp-(1→3)-α-D- GalNAcp-(1→3)-L-Ser or -L-Thr structures. The sensitivity of the methods used and the recovery of constituents following treatment of LPG-I do not rule out the occurrence of small amounts of other tri- or tetra-saccharide chains.  相似文献   

10.
The applicability of the reductive-cleavage method to the analysis of polysaccharides bearing pyruvic acid acetals has been demonstrated. Direct reductive cleavage of fully methylated gum xanthan yielded the expected products, including 1,5-anhydro-4,6-O-[(S)-1-methoxycarbonylethylidene]-2,3-di-O-methy l-D- mannitol. The latter product was not observed when reductive cleavage was performed subsequent to reduction of ester groups in the fully methylated polysaccharide and mild hydrolysis to remove pyruvic acid acetal substituents. Instead, the latter experiment yielded 1,5-anhydro-2,3-di-O-methyl-D-mannitol, establishing the presence in the polysaccharide of terminal (nonreducing) D-mannopyranosyl groups bearing 4,6-O-(1-carboxyethylidene) substituents. The products of reductive cleavage were characterized, where appropriate, by comparison of the gas chromatographic retention times and chemical ionization- and electron ionization-mass spectra of their acetates to those of authentic standards. Alternatively, the products of reductive cleavage could be characterized without resort to comparison with authentic standards by analysis of the 1H-n.m.r. spectra of their benzoates, which were obtained in pure form by high-performance liquid chromatography. By either method of product characterization, this two-step procedure of analysis reveals the presence of pyruvic-acetal residues in polysaccharides and establishes both the identity of the sugar residue to which they are attached and their positions of attachment.  相似文献   

11.
The polysaccharide of the mucin secreted by the leaves of Drosera capensis is composed of l-arabinose, d-xylose, d-galactose, d-mannose, and d-glucuronic acid in the molar ratio of 3.6:1.0:4.9:8.4:8.2. For structural elucidation, methylation analysis using g.l.c. and g.l.c.-m.s. was performed on the native, the carboxyl-reduced, and the degraded polysaccharides. Partial hydrolysis, periodate oxidation, chromium trioxide oxidation, and uronic acid degradation were also performed on the native and carboxyl-reduced polysaccharides. Partial hydrolysis of the native and carboxyl-reduced polysaccharides gave various oligosaccharides that were characterized and suggest a structure containing a d-glucurono-d-mannan backbone having a repeating unit → 4)-β-d-GlcpA-(1 → 2)-α-d-Manp-(1 →. l-Arabinose and d-xylose are present as nonreducing furanosyl and pyranosyl end-groups, respectively, both attached to O-3 of d-glucuronic acid residues of the backbone. d-Galactose is present as non-reducing pyranosyl end-group linked to O-3 of d-mannose residues.  相似文献   

12.
The cotyledon of the seed of Mirabilis jalapa was found to contain a d-glucan. Methylation, periodate oxidation, and graded and enzymic hydrolysis studies were conducted to elucidate its structure. For every 38 d-glucosyl residues therein, 34 are (1→4)- and 3 are (1→3)-linked; the d-glucosyl unit at the branch point is linked through O-1, O-2, and O-4. In some places in the chain, there are at least three (1→3)-linked d-glucosyl residues in a sequence. Both α- and β-d-glucosidic linkages are present in the polysaccharide, the former preponderating. The d-glucan gave with iodine a faint blue color that had λmax 420 nm.  相似文献   

13.
1,6-Diamino-2,5-anhydro-1,6-dideoxy-dl-glucitol dihydrochloride and some derivatives were synthesized from 3,5-di-O-acetyl-1,6-dibromo-1,6-dideoxy-d-mannitol. Introduction of the 2,5-anhydro ring and subsequent replacement of the terminal bromine atoms by azide gave low yields of the diazide; therefore, a reverse reaction-sequence was applied. The azido groups were reduced with hydrogen sulfide-pyridine, and the amino groups formed were methylated by using formaldehyde-formic acid and subsequently treating with borohydride. According to 13C-n.m.r. investigations, the symmetrically substituted, 2,5-anhydroglucitol derivatives are present mainly in the 4T3 [“north” (N) type of twist] conformation, whereas the analogous l-iditol derivatives mainly adopt the 3T4 [“south” (S)] type. The different quaternary salts obtained on methylation of the corresponding 1,6-bis(dimethylamino)derivatives with methyl iodide (aiming at the structure of epi-muscarine) showed no muscarine-like, biological activity.  相似文献   

14.
Summary. Both 2,5-trans and 2,5-cis disubstituted 2-tert-butyl-5-(indol-3-yl)methylimidazolidin-4-ones were synthesised and their enolates were prepared using LDA. While the enolate of the 2,5-trans disubstituted derivative could not be methylated, the enolate of the cis-2,5-disubstituted derivative was successfully methylated with methyl iodide to a product which on hydrolysis gave enantiomerically pure α-methyl-L-tryptophan. Received October 31, 1998, Accepted July 23, 1999  相似文献   

15.
Two l-arabino-d-galactan-containing glycoproteins having a potent inhibitory activity against eel anti-H agglutinin were isolated from the hot saline extracts of mature radish leaves and characterized to have a similar monosaccharide composition that consists of l-arabinose, d-galactose, l-fucose, 4-O-methyl-d-glucuronic acid, and d-glucuronic acid residues. The chemical structure features of the carbohydrate components were investigated by carboxyl group reduction, methylation, periodate oxidation, partial acid hydrolysis, and digestion with exo- and endo-glycosidases, which indicated a backbone chain of (1→3)-linked β-d-galactosyl residues, to which side chains consisting of α-(1→6)-linked d-galactosyl residues were attached. The α-l-arabinofuranosyl residues were attached as single nonreducing groups and as O-2- or O-3-linked residues to O-3 of the β-d-galactosyl residues of the side chains. Single α-l-fucopyranosyl end groups were linked to O-2 of the l-arabinofuranosyl residues, and the 4-O-methyl-β-d-glucopyranosyluronic acid end groups were linked to d-galactosyl residues. The O-α-l-fucopyranosyl-(1→2)-α-l-arabinofuranosyl end-groups were shown to be responsible for the serological, H-like activity of the l-arabino-d-galactan glycoproteins. Reductive alkaline degradation of the glycoconjugates showed that a large proportion of the polysaccharide chains is conjugated with the polypeptide backbone through a 3-O-d-galactosylserine linkage.  相似文献   

16.
A unique, alkali-soluble polysaccharide has been isolated from the cell walls of the basidiomycete Coprinus macrorhizus microsporus. The polysaccharide, which is primarily a glucan, contains a large proportion of α-(1→4)-linked d-glucose residues and a smaller amount of β-(1→3) and (1→6) linkages, as suggested by methylation, partial acid hydrolysis, periodate oxidation, and enzymic studies. Hydrolysis of the methylated polysaccharide gave equimolar amounts of 2,4-di- and 2,3-di-O-methyl-d-glucose; no 2,6-di-O-methyl-d-glucose was identified, indicating the absence of branch points joined through O-1, O-3, and O-4. The isolation and identification of 2-O-α- glucopyranosylerythritol from the periodate-oxidized polysaccharide suggests that segments of the a-(1→4)-linked d-glucose residues are joined by single (1→3)-linkages. An extracellular enzyme-preparation from Sporotrichum dimorphosporum (QM 806) containing both β-(1→3)- and α-(1→4)-d-glucanohydrolase activity released 76% of the reducing groups from the polysaccharide. The polysaccharide also contains minor proportions of xylose, mannose, 2-amino-2-deoxyglucose, and amino acids.  相似文献   

17.
Treatment of methyl 2,3-anhydro-5-deoxy-α-d-ribofuranoside with lithium dimethyl cuprate gave methyl 2,5-dideoxy-2-C-methyl-α-d-arabinofuranoside (54% yield) and methyl 3,5-dideoxy-3-C-methyl-α-d-xylofuranoside (10%). The former was converted into its 3-O-acetyl and 3-O-benzyl derivatives, which, upon acid hydrolysis, afforded 3-O-acetyl- and 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinofuranose in 60–75% overall yield. Treatment of the 3-O-benzyl compound with ethanethiol in the presence of trifluoromethanesulfonic acid afforded 3-O-benzyl-2,5-dideoxy-2-C-methyl-d-arabinose diethyl dithioacetal (20%) and ethyl 3-O-benzyl-2,5-dideoxy-2-C-methyl-1-thio-α-d-arabinoside (73%). The former, which was also available from the latter by equilibration in acidic ethanethiol, was acetylated at O-4 and the product converted into the corresponding dimethyl acetal (85% overall yield). This compound was, after debenzylation, hydrolyzed with acid, to provide 4-O-acetyl-2,5-dideoxy-2-C-methyl-d-arabinose in 70% overall yield.  相似文献   

18.
2-Acetamido-5-amino-2,5-dideoxy-d-xylopyranosyl hydrogensulfite (11) has been synthesized from benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5,6-O-isopro-pylidene-β-d-glucofuranoside (1). O-Deisopropylidenation of 1 gave the triol 2, which was converted, via oxidative cleavage at C-5-C-6 and subsequent reduction, into the related benzyl β-d-xylofuranoside derivative (3). Catalytic reduction of benzyl 2-(benzyloxycarbonylamino)-2-deoxy-5-O-tosyl-β-d-xylofuranoside, derived from 3 by selective tosylation, and subsequent N-acetylation, afforded benzyl 2-acetamido-2-deoxy-5-O-tosyl-β-d-xylofuranoside, which was treated with sodium azide to give the corresponding 5-azido derivative (6). (Tetrahydropyran-2-yl)ation of the product formed by hydrolysis of 6 gave 2-acetamido-5-azido-2,5-dideoxy-1,3- di-O-(tetrahydropyran-2-yl)-d-xylofuranose (9). Treatment of 2-acetamido-5-amino-2,5-dideoxy-1,3-di-O-(tetrahydropyran-2-yl)-d-xylofuranose, derived from 9 by reduction, with sulfur dioxide in water gave 11. Hydrogenation of 6 and subsequent acetylation yielded 3-acetamido-4,5-diacetoxy-1-acetyl-xylo-piperidine. Evidence in support of the structures assigned to the new derivatives is presented.  相似文献   

19.
Human plasma α1-antitrypsin (α1-AT), bovine trypsin, and α-chymotrypsin were labeled with either 14C or 3H by reductive methylation. The labeled inhibitor retained the capacity to inactivate and to form 1:1 molar complexes with either the unlabeled or labeled trypsin and α-chymotrypsin. After intravenous injection of reductively methylated α1-AT into rats, the labeled glycoprotein showed a circulating half-life of 12 h. When the N-acetylneuraminic acid residues were removed from the labeled α1-AT by neuraminidase in vitro, injection into rats of this product resulted in a rapid (half-life of about 5 min) and almost complete disappearance of the label from the circulation in 30 min. There was a concomitant accumulation of radioactivity in the liver of over 75% of the injected dose. The reductively methylated radioactively labeled trypsin and chymotrypsin experienced no loss of enzymatic activities. They showed the ability to form complexes in vivo with the two major plasma inhibitors, namely, α1-AT and α2-macroglobulin. High-voltage paper electrophoretic separation of acid hydrolysates of the labeled proteins revealed that ?-N-monomethyllysine and ?N,N-dimethyllysine are the only residues found to be radioactive.  相似文献   

20.
The structure of the extracellular polysaccharide of Rhizobium trifolii has been investigated. Methylation analysis, sequential degradations by oxidation and elimination of oxidized residues, uronic acid degradation, and degradation by oxidation of the acetylated polysaccharide with chromium trioxide in acetic acid were the main methods used. It is proposed that the polysaccharide is composed of heptasaccharide repeating-units having the following structure:
An unusual feature is that some of the repeating units are incomplete and lack the terminal β-d-galactopyranosyl group. The polysaccharide contains O-acetyl groups (somewhat more than 1 mol. per unit), linked to O-2 and O-3 of 4-O-substituted d-glucopyranosyl chain-residues. A previous finding that the polysaccharide contains 2-deoxy-d-arabino-hexose (2-deoxy-d-glucose) residues is erroneous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号