首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to investigate the roles of microRNA-383 (miRNA-383) in progression of non–small cell lung cancer (NSCLC) and the potential mechanism. The expressions of miR-383 and Wnt1 protein were detected in lung cancer tissues and cells by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot analysis. After the transfection of miR-383 mimics, si-Wnt1 or miR-383+Wnt1, the viability and apoptosis of NSCLC cells were detected by cell counting kit-8 and terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling, respectively. The interaction between miR-383 and Wnt1 was investigated by luciferase activity and Western blot analysis. Cells stably transfected with miR-383 mimics were inoculated into the right axillary of nude mice by subcutaneous injection. The tumor volume and weight were measured, and the expressions of miR-383, Wnt1, β-catenin, and cyclin D1 were detected by qRT-PCR and Western blot analysis. The expression of miR-383 was significantly decreased, and the level of Wnt1 was significantly increased (P < 0.05) in lung cancer tissues and cells. Upregulation of miR-383 or inhibition of Wnt1 expression inhibited the cell viability and induce apoptosis in NSCLC cells. Moreover, Wnt1 was the target gene of miR-383, and its overexpression weakened the regulatory effect of miR-383 on cell viability and apoptosis in NSCLC cells. Besides, the addition of miR-383 decreased the tumor volume and size and inhibited the expressions of Wnt1, β-catenin, and cyclin D1 at the protein level in nude mice. Collectively, miR-383 induced apoptosis and inhibited cell viability as well as tumorigenic capacity in nude mice via regulating the Wnt/β-catenin signaling pathway.  相似文献   

2.
Although bone morphogenetic protein-6 (BMP-6) has been identified as a tumor suppressor associated with breast cancer differentiation and metastasis, the potential roles of BMP-6 in regulating cell cycle progression have not been fully examined. In the present study, we provide the novel finding that induction of BMP-6 in MDA-MB-231 breast cancer cells significantly inhibits cell proliferation by decreasing the number of cells in S phase of the cell cycle, resulting in inhibition of tumorigenesis in a nude mouse xenograft model. Further investigation indicated that BMP-6 up-regulates the expression of microRNA-192 (miR-192) in MDA-MB-231 cells. Elevated expression of miR-192 caused cell growth arrest, which is similar to the effect of BMP-6 induction. Importantly, depletion of endogenous miR-192 by miRNA inhibition significantly attenuated BMP-6-mediated repression of cell cycle progression. In breast cancer tissue, miR-192 expression is significantly down-regulated in tumor samples and positively correlates with the expression of BMP-6, demonstrating the inhibitory effect of BMP-6 on cell proliferation through miR-192 regulation. Additionally, using the RT2 Profiler PCR Array, retinoblastoma 1 (RB1) was identified as a direct target of the BMP-6/miR-192 pathway in regulating cell proliferation in breast cancer. In conclusion, we have identified an important role for BMP-6/miR-192 signaling in the regulation of cell cycle progression in breast cancer. Furthermore, BMP-6/miR-192 was expressed at low levels in breast cancer specimens, indicating that this pathway might represent a promising therapeutic target for breast cancer treatment.  相似文献   

3.
MicroRNAs plays an important role in the ccurrence and development of non–small-cell lung cancer (NSCLC). miR-497-5p has been reported to function as a tumor suppressor in various cancers. However, the role of miR-497-5p in NSCLC remains poorly understood. In this study, we aimed to investigate the biological role and potential molecular mechanism of miR-497-5p in NSCLC. Our results showed that the messenger RNA (mRNA) expression level of miR-497-5p was notably downregulated in human NSCLC tissues and cell lines. miR-497-5p overexpression remarkably inhibited NSCLC cell proliferation and increased cell apoptosis in A549 and H460 cells, whereas inhibition of miR-497-5p had an opposite effect. The ability of cell migration and invasion was inhibited by miR-497-5p overexpression but was increased by miR-497-5p inhibition. Moreover, our findings indicated that SOX5 was a direct target of miR-497-5p. The protein and mRNA expression levels of SOX5 in A549 cells were remarkably inhibited by miR-497-5p overexpression but was upregulated by miR-497-5p inhibition. Furthermore, SOX5 overexpression notably reversed the effect of miR-497-5p mimic on NSCLC cell proliferation, cell apoptosis, cell migration, and invasion. Taken together, these results indicated that miR-497-5p overexpression inhibited NSCLC cell proliferation, migration and invasion, and induced cell apoptosis through inhibiting SOX5 gene expression. It was conceivable that miR-497-5p might serve as a potential molecular target for NSCLC treatment.  相似文献   

4.
Laryngeal cancer (LC) is an increasingly common malignant tumors of head and neck cancer. Aberrant expression of microRNA (miRNA) is closely related with LC development. In the current study, we investigated the biological function and underlying molecular mechanism of miR-384 in LC. The results showed that the miR-384 expression was markedly downregulated in LC tissue and cell lines (TU212 and TU686) as compared with that of adjacent nontumor tissues and a normal human bronchial epithelial cell line. Next, we performed gain-of-function and loss-of-function experiments in the TU212 and TU686 cells by transfecting the cells with miR-384 mimics, miR-384 inhibitor, or miRNA control. Moreover, results showed that miR-384 mimic remarkably inhibited LC cell proliferation, which was notably decreased by miR-384 inhibitor. Furthermore, miR-384 mimics notably increased the amounts of DNA fragmentation from the apoptotic cells (a hallmark of apoptosis) and the caspase-3 activity, whereas miR-384 inhibitor resulted in a decline of DNA fragmentation and the caspase-3 activity compared with its control. In addition, a dual-luciferase reporter assay confirmed that Wnt-induced secreted protein-1 (WISP1) gene was a direct target of miR-384. MiR-384 mimic remarkably inhibited the messenger RNA and protein expression of WISP1, which was upregulated by miR-384 inhibitor as compared to its control. WISP1 knockdown by small interfering RNA inhibited LC cell proliferation and promoted cell apoptosis. WISP1 overexpression partly abrogates the effect of miR-384 overexpression. Taken together, these data indicate that miR-384 regulates LC cell proliferation and apoptosis through targeting WISP1 signaling pathway, providing a novel insight into the LC treatment.  相似文献   

5.
MiR-217 can function as an oncogene or a tumour suppressor gene depending on cell type. However, the function of miR-217 in lung cancer remains unclear to date. This study aims to evaluate the function of miR-217 in lung cancer and investigate its effect on the sensitivity of lung cancer cells to cisplatin. The expression of miR-217 was detected in 100 patients by real-time PCR. The effects of miR-217 overexpression on the proliferation, apoptosis, migration and invasion of SPC-A-1 and A549 cells were investigated. The target gene of miR-217 was predicted by Targetscan online software, screened by dual luciferase reporter gene assay and demonstrated by Western blot. Finally, the effects of miR-217 up-regulation on the sensitivity of A549 cells to cisplatin were determined. The expression of miR-217 was significantly lower in lung cancer tissues than in noncancerous tissues (p < 0.001). The overexpression of miR-217 significantly inhibited the proliferation, migration and invasion as well as promoted the apoptosis of lung cancer cells by targeting KRAS. The up-regulation of miR-217 enhanced the sensitivity of SPC-A-1 and A549 cells to cisplatin. In conclusion, miR-217 suppresses tumour development in lung cancer by targeting KRAS and enhances cell sensitivity to cisplatin. Our results encourage researchers to use cisplatin in combination with miR-217 to treat lung cancer. This regime might lead to low-dose cisplatin application and cisplatin side-effect reduction.  相似文献   

6.
为了探究miR-29a对非小细胞肺癌细胞增殖和凋亡的影响及分子机制,本研究通过荧光定量PCR检测肺癌组织、癌旁组织、肺癌细胞以及人正常肺支气管上皮细胞BEAS-2B中miR-29a的表达,在肺癌A549转染miR-29a mimics后,使用荧光定量PCR和CCK-8法分别检测miR-29a的表达以及各组细胞的活力,使用流式细胞术检测A549细胞凋亡;通过荧光定量PCR检测肺癌组织、癌旁组织PDGFB m RNA的表达,采用Western blot检测PDGFB蛋白的表达;使用双荧光素酶报告基因检测miR-29a可能的靶基因;在肺癌A549细胞转染miR-29a mimics后继续转染PDGFB过表达质粒,通过qPCR和Western blotting分别检测PDGFB mRNA和蛋白的表达。结果表明,与癌旁组织相比,miR-29a在肺癌组织的表达显著下调(p<0.01),PDGFB在肺癌组织的表达显著增加(p<0.01);转染miR-29a mimics后,肺癌A549细胞中miR-29a表达显著增加(p<0.01);CCK-8法结果显示miR-29a mimics组A549肺癌细胞在24 h和48 h后细胞增值率较miR-NC对照组显著降低(p<0.01);流式细胞术结果显示miR-29a mimics组的细胞凋亡率较miR-NC对照组显著增加(p<0.01);与miR-NC+PDGFB 3’UTR WT组相比,miR-29a mimics+PDGFB 3’UTR WT组的荧光强度显著降低(p<0.01);荧光定量PCR和Western blotting显示miR-29a mimics+PDGFB组PDGFB m RNA和蛋白表达量与miR-29a mimics+vector组相比显著增加(p<0.01)。本研究结果表明miR-29a在肺癌组织和肺癌细胞株中低表达,及抑制PDGFB的表达并且促进肺癌细胞凋亡。  相似文献   

7.
Background: The decreased level of miR-192-5p has been reported in several kinds of cancers, including bladder, colon, ovarian, and non-small cell lung cancer. However, the expression and function of miR-192-5p in papillary thyroid carcinoma/cancer (PTC) remains unknown.Objective: The present study aimed to explore the function and underlying mechanism of miR-192-5p in PTC development.Methods: PTC tissues and relative normal controls from PTC patients were collected. qRT-PCR analysis was performed to measure miR-192-5p and SH3RF3 mRNA level in PTC tissues and cell lines. CCK-8 method and FCM assay were used to test cell proliferation and apoptosis in TPC-1 cells, respectively. The abilities of cell migration and invasion were detected by wound healing and transwell assays, respectively. The protein expression was evaluated by Western blot. The interaction between miR-192-5p and Src homology 3 (SH3) domain containing ring finger 3 (SH3RF3) were confirmed by dual-luciferase reporter assay.Results: MiR-192-5p level was obviously decreased in PTC tissues and cell lines. Overexpression of miR-192-5p suppressed proliferation, migration, invasion, and EMT process, while induced apoptosis in TPC-1 cells. In addition, miR-192-5p negatively modulated SH3RF3 expression by binding to its 3′-untranslated region (3′UTR). Silencing SH3RF3 inhibited the migration, invasion, and EMT of TPC-1 cells. In the meantime, matrine, an alkaloid extracted from herb, exerted its anti-cancer effects in PTC cells dependent on increase in miR-192-5p expression and decrease in SH3RF3 expression.Conclusion: We firstly declared that miR-192-5p played a tumor suppressive role in PTC via targeting SH3RF3. Moreover, matrine exerted its anti-cancer effects in PTC via regulating miR-192-5p/SH3RF3 pathway.  相似文献   

8.
9.

Objectives

To study the roles and mechanisms of RNA binding protein RNPC1 in non-small cell lung cancer progression.

Results

RNPC1 and long non-coding RNA CASC2 expression levels were significantly downregulated in lung cancer tissues compared with normal adjacent tissues, and their expression levels were positively correlated. Functionally, overexpression of RNPC1 or CASC2 inhibited non-small cell lung cancer cells proliferation, migration and invasion, and promoted cells apoptosis. Mechanistically, RNPC1 was found to harbor binding sites on CASC2 and directly bound to CASC2, and increased CASC2 mRNA stability and expression. Notably, the promotive effects of RNPC1 on CASC2 expression were attenuated by miR-181a overexpression. Moreover, CASC2 3′UTR with mutated miR-181a binding sites did not respond to RNPC1 alteration. Finally, the inhibitory effects of RNPC1 overexpression were attenuated or even reversed by CASC2 knockdown or miR-181a overexpression.

Conclusions

RNA bind protein RNPC1 could inhibit non-small cell lung cancer progression by competitively binding to CASC2 with miR-181a.
  相似文献   

10.
The involvement of miR-204 in lung cancer development is unclear. In our study, we analyzed the expression of miR-204 in tumor- and adjacent-tissue samples from 141 patients with non-small cell lung cancer (NSCLC). MiR-204 expression was decreased in tumor samples compared with non-cancerous tissue-derived controls. Moreover, miR-204 expression negatively correlated with homeobox protein SIX1 expression, tumor size and metastasis. MiR-204 silencing in miR-204-positive NSCLC cell lines promoted cell invasion and proliferation. Concomitantly, MiR-204 overexpression resulted in reduced cell proliferation and invasion, upregulated E-cadherin and downregulated N-cadherin and Vimentin expression. SIX1 was identified as a potential target of miR-204, and SIX1 silencing partially compromised the invasive and proliferative capacity of miR-204-deficient cells. Thus, miR-204 may be involved in the NSCLC development.  相似文献   

11.
Glucose metabolism is a common target for cancer regulation and microRNAs (miRNAs) are important regulators of this process. Here we aim to investigate a tumor-suppressing miRNA, miR-33b, in regulating the glucose metabolism of non-small cell lung cancer (NSCLC). In our study, quantitative real-time polymerase chain reaction (qRT-PCR) showed that miR-33b was downregulated in NSCLC tissues and cell lines, which was correlated with increased cell proliferation and colony formation. Overexpression of miR-33b through miR-33b mimics transfection suppressed NSCLC proliferation, colony formation, and induced cell-cycle arrest and apoptosis. Meanwhile, miR-33b overexpression inhibited glucose metabolism in NSCLC cells. Luciferase reporter assay confirmed that miR-33b directly binds to the 3′-untranslated region of lactate dehydrogenase A (LDHA). qRT-PCR and Western blot analysis showed that miR-33b downregulated the expression of LDHA. Moreover, introducing LDHA mRNA into cells over-expressing miR-33b attenuated the inhibitory effect of miR-33b on the growth and glucose metabolism in NSCLC cells. Taken together, these results confirm that miR-33b is an anti-oncogenic miRNA, which inhibits NSCLC cell growth by targeting LDHA through reprogramming glucose metabolism.  相似文献   

12.
Accumulating evidence has shown that miRNAs are aberrantly expressed in human gastric cancer and crucial to tumorigenesis. Herein, we identified the role of miR-148a in gastric cell proliferation. miR-148a knockdown inhibited cell proliferation in gastric cancer cell lines. Conversely, miR-148a overexpression promoted cell proliferation and cell cycle progression. p27, a key inhibitor of cell cycle, was verified as the target of miR-148a, indicating miR-148a might downregulate p27 expression to promote gastric cell proliferation. Moreover, we confirmed that miR-148a expression was frequently and dramatically downregulated in human advanced gastric cancer tissues, and observed a good inverse correlation between miR-148a and p27 expression in tumor samples. Thus, our results demonstrated that miR-148a downregulation might exert some sort of antagonistic function in cell proliferation, rather than promote cell proliferation in gastric cancer.  相似文献   

13.
14.
In this study, we aimed to investigate the effects of lncRNA CASC11 on gastric cancer (GC) cell progression through regulating miR-340-5p and cell cycle pathway. Expressions of lncRNA CASC11 in gastric cancer tissues and cell lines were determined by qRT-PCR. Differentially expressed lncRNAs, mRNAs and miRNAs were screened through microarray analysis. The relationship among CASC11, CDK1 and miR-340-5p was predicted by TargetScan and validated through dual luciferase reporter assay. Western blot assay examined the protein level of CDK1 and several cell cycle regulatory proteins. GO functional analysis and KEGG pathway analysis were used to predict the association between functions and related pathways. Cell proliferation was determined by CCK-8 assays. Cell apoptosis and cell cycle were detected by flow cytometry assay. CASC11 was highly expressed in GC tissues and cell lines. Knockdown of CASC11 inhibited GC cell proliferation, promoted cell apoptosis and blocked cell cycle. KEGG further indicated an enriched cell cycle pathway involving CDK1. QRT-PCR showed that miR-340-5p was down-regulated in GC cells tissues, while CDK1 was up-regulated. Furthermore, CASC11 acted as a sponge of miR-340-5p which directly targeted CDK1. Meanwhile, miR-340-5p overexpression promoted GC cell apoptosis and induced cell cycle arrest, while CDK1 overexpression inhibited cell apoptosis and accelerated cell cycle. Our study revealed the mechanism of CASC11/miR-340-5p/CDK1 network in GC cell line, and suggested that CASC11 was a novel facilitator that exerted a biological effect by activating the cell cycle signaling pathway. This finding provides a potential therapeutic target for GC.  相似文献   

15.
16.
MicroRNAs (miRNAs) are fundamental regulators of cell proliferation, differentiation, and apoptosis, and are implicated in tumorigenesis of many cancers. MiR-34a is best known as a tumor suppressor through repression of growth factors and oncogenes. Growth arrest specific1 (GAS1) protein is a tumor suppressor that inhibits cancer cell proliferation and induces apoptosis through inhibition of RET receptor tyrosine kinase. Both miR-34a and GAS1 are frequently down-regulated in various tumors. However, it has been reported that while GAS1 is down-regulated in papillary thyroid carcinoma (PTC), miR-34a is up-regulated in this specific type of cancer, although their potential roles in PTC tumorigenesis have not been examined to date. A computational search revealed that miR-34a putatively binds to the 3′-UTR of GAS1 gene. In the present study, we confirmed previous findings that miR-34a is up-regulated and GAS1 down-regulated in PTC tissues. Further studies indicated that GAS1 is directly targeted by miR-34a. Overexpression of miR-34a promoted PTC cell proliferation and colony formation and inhibited apoptosis, whereas knockdown of miR-34a showed the opposite effects. Silencing of GAS1 had similar growth-promoting effects as overexpression of miR-34a. Furthermore, miR-34a overexpression led to activation of PI3K/Akt/Bad signaling pathway in PTC cells, and depletion of Akt reversed the pro-growth, anti-apoptotic effects of miR-34a. Taken together, our results demonstrate that miR-34a regulates GAS1 expression to promote proliferation and suppress apoptosis in PTC cells via PI3K/Akt/Bad pathway. MiR-34a functions as an oncogene in PTC.  相似文献   

17.
miR-3940-5p level was lower in non–small cell lung cancer (NSCLC) tumor tissues than that in the matched tumor-adjacent tissues and correlated with clinicopathological features. Cyclin D1 (CCND1), a key driver of malignant transformation in NSCLC, was overexpressed in many cancers, including NSCLC. The ubiquitin specific peptidase-28 (USP28) was also overexpressed in NSCLC and associated with poor prognosis of NSCLC patients. We searched for miR-3940-5p targets by using TargetScan and miRanda online tools and found that CCND1 and USP28 were potential targets of miR-3940-5p. Based on these findings, we speculated that miR-3940-5p might target CCND1 and USP28 to inhibit NSCLC growth. We determined the expression of miR-3940-5p, CCND1, and USP28 by quantitative real-time polymerase chain reaction and Western blot assays, respectively, and found downregulation of miR-3940-5p and upregulation of CCND1 and USP28 in NSCLC tissues and cell lines. Cell proliferation and apoptosis assays showed that miR-3940-5p suppressed proliferation and promoted apoptosis in NSCLC cells, and silencing CCND1 and USP28 both recapitulated the effects of miR-3940-5p on NSCLC cells. Furthermore, we verified that CCND1 and USP28 were direct targets of miR-3940-5p and also found that the effects of NSCLC cell proliferation and apoptosis by miR-3940-5p were attenuated by overexpression of CCND1 or USP28. The animal experiments also showed that overexpression of miR-3940-5p inhibited the growth of NSCLC tumors in vivo. These results confirmed our speculation that miR-3940-5p inhibits proliferation and induces apoptosis in NSCLC cells by targeting CCND1 and USP28. These findings facilitate a better understanding of the molecular mechanisms underlying NSCLC initiation and progression and provide promising diagnostic markers and therapeutic targets for NSCLC.  相似文献   

18.
microRNAs (miRNAs) play crucial roles in cancer development and progression by targeting mRNAs for degradation and/or translational repression. microRNA-802 (miR-802) has been reported as a tumor suppressor and its deregulation is observed in various human cancers. However, the prognostic value of miR-802 and its underlying mechanisms involved in human cervical cancer are poorly investigated. The purposes of this study were to explore the role of miR-802 in cervical cancer and to clarify the regulation of serine/arginine-rich splicing factor 9 (SRSF9) by miR-802. Here, we found that miR-802 was downregulated in both cervical cancer tissues and cell lines. Transfection of a miR-802 mimic into cervical cancer cells inhibited their proliferation and colony formation, and promoted cell cycle arrest at the G0/G1 phase and cell apoptosis. In addition, we found that miR-802 could directly target the 3′-untranslated region of SRSF9 and suppress SRSF9 expression. Rescue experiments revealed that overexpression of SRSF9 partially reversed the inhibition effect of miR-802 in cervical cancer cells. Overall, these findings demonstrate that miR-802 functions as a tumor suppressor in cervical cancer by targeting SRSF9, suggesting that miR-802 might serve as a potential therapeutic target in cervical cancer.  相似文献   

19.
The present study investigated the potential interaction between miR-526b and lncRNA SLC16A1-AS1 in triple-negative breast cancer (TNBC). Expression of miR-526b and SLC16A1-AS1 in TNBC tumor tissues and paired nontumor tissues from 60 TNBC patients was detected by real-time polymerase chain reaction (RT-qPCR). The interaction between miR-526b and SLC16A1-AS1 was evaluated with overexpression experiments, followed by RT-qPCR. The proliferation and migration of cells were detected with cell counting kit-8 assay and Transwell assay, respectively. Apoptosis of cells was assessed by cell apoptosis assay. The expression of apoptosis-related proteins was quantified by Western blot analysis. MiR-526b was predicted to bind with SLC16A1-AS1. Overexpression of miR-526b in TNBC cells decreased the expression levels of SLC16A1-AS1, while overexpression of SLC16A1-AS1 did not affect the expression of miR-526b. In TNBC tissues, miR-526b was downregulated in TNBC tissues, while SLC16A1-AS1 was upregulated in TNBC tissues compared to that in nontumor tissues. The expression of SLC16A1-AS1 and miR-526b were inversely correlated. In vitro experiments showed that overexpression of SLC16A1-AS1 promoted cell proliferation and invasion but suppressed cell apoptosis. MiR-526b played an opposite role and suppressed the function of SLC16A1-AS1. MiR-526b is downregulated in TNBC and it targets SLC16A1-AS1 to regulate proliferation, apoptosis, and invasion of TNBC cells.  相似文献   

20.
Long noncoding RNAs have an essential role in the tumorigenesis of breast cancer (BC). Nonetheless, the consequences of long intergenic noncoding RNA 00641 (LINC00641) in BC remain unidentified. This study shows that LINC00641 expression level was decreased in BC tissues. LINC00641 expression level was negatively related to tumor size, lymph-node metastasis, as well as clinical stage. LINC00641 overexpression inhibited cell proliferation, migration, and invasion but stimulated apoptosis in BC cells. LINC00641 overexpression also remarkably reduced BC growth and metastasis in vivo. LINC00641 acts as a competitive endogenous RNA to sponge miR-194-5p. miR-194-5p level was higher in BC tissues and cells compared with normal-adjacent tissues and normal breast epithelial cell. miR-194-5p expression was negatively correlated with LINC00641 expression in BC tissues. miR-194-5p overexpression reversed the effects of LINC00641 on cell proliferation, cycle, apoptosis, migration, as well as invasion. In conclusion, LINC00641 inhibits BC cell proliferation, migration, as well as invasion by sponging miR-194-5p.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号