首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effect of a 2',5'-RNA third strand backbone on the stability of triple helices with a 'pyrimidine motif' targeting the polypurine strand of duplex DNA, duplex RNA and DNA/RNA hybrids. Comparative experiments were run in parallel with DNA and the regioisomeric RNA as third strands adopting the experimental design of Roberts and Crothers. The results reveal that 2',5'-RNA is indeed able to recognize double helical DNA (DD) and DNA (purine):RNA (pyrimidine) hybrids (DR). However, when the duplex purine strand is RNA and the duplex pyrimidine strand is DNA or RNA (i.e. RD or RR), triplex formation is not observed. These results exactly parallel what is observed for DNA third strands. Based on T m data, the affinities of 2',5'-RNA and DNA third strands towards DD and DR duplexes were similar. The RNA third strand formed triplexes with all four hairpins, as previously demonstrated. In analogy to the arabinose and 2'-deoxyribose third strands, the possible C2'- endo pucker of 2',5'-linked riboses together with the lack of an alpha-2'-OH group are believed to be responsible for the selective binding of 2',5'-RNA to DD and DR duplexes, over RR and RD duplexes. These studies indicate that the use of other oligonucleotide analogues will prove extremely useful in dissecting the contributions of backbone and/or sugar puckering to the recognition of nucleic acid duplexes.  相似文献   

2.
A method of enriching, from the total DNA of an organism, for long DNA strands carrying a particular gene is described. The purified RNA corresponding to the gene is covalently attached to biotin via a cytochrome c bridge. This modified RNA is hybridized to the total DNA. Those DNA strands which hybridize are separated from all the other DNA, using the avidin-biotin interaction, by one of two methods. Avidin is covalently attached to submicroscopic polymer spheres; the complexes of avidin spheres with the DNA: RNA-biotin hybrids band in CsCl at a much lower buoyant density than does free DNA. Alternatively, the DNA:RNA-biotin hybrids are isolated by affinity chromatography on an avidin-solid support column. These methods have been used to prepare long single strands of Drosophila ribosomal DNA (rDNA) in high yield and 42 to 80% pure.  相似文献   

3.
The major component of kinetoplast DNA (kDNA) in the protozoan Crithidia acanthocephali is an association of approximately 27,000, 0.8 micrometers (1.58 x 10(6) dalton) circular molecules apparently held together in a particular structural configuration by topological interlocking. We have carried out hybridization experiments between kDNA samples containing one or the other of the two complementary (H and L) strands of purified 0.8 micrometers molecules derived from mechanically disrupted associations and RNA samples prepared either from whole C. acanthocephali cells or from a mitochondrion-enriched fraction. The results of experiments involving cesium sulfate buoyant density centrifugation indicate that whole cell RNA contains a component(s) complementary to all kDNA H strands, but none complementary to kDNA L strands. Similar results were obtained using mitochondrion-associated RNA. Digestion of RNA/DNA hybrids and suitable controls with the single-strand-specific nuclease S1 indicated that 10% of the kDNA H strand is involved in hybrid formation. Visualization of RNA/DNA hybrids stained with bacteriophage T4 gene 32 protein revealed that hybridation involves a single region of each kDNA H strand, equal to approximately 10% of the molecule length. These data suggest that at least 10% of the small circular component of kDNA of Crithidia acanthocephali is transcribed.  相似文献   

4.
J I Gyi  A N Lane  G L Conn    T Brown 《Nucleic acids research》1998,26(13):3104-3110
The stereochemical and dynamic properties of the C2' hydroxyl group in several DNA.RNA hybrids have been measured by NMR and compared with the homologous RNA duplex. The C2'-OH NMR signals of the RNA strands were identified, and numerous specific assignments were made. The rate constants for exchange of the hydroxyl protons with water were determined at 5 degrees C, and were found to depend on both the position within a particular sequence and the nature of the duplex. On average, the exchange rate constants were slowest for the hybrids of composition rR.dY, and fastest for the RNA duplex, with an overall range of approximately 10-50/s. In the DNA.RNA hybrids, strong NOEs and ROEs were observed between the OH and the H1' of the same sugar, unambiguously showing that the OH proton points toward the H1' most of the time, and not toward the O3' of the same sugar. Evidence for significant hydration in both grooves of the DNA.RNA hybrids and the DNA duplex was found in ROESY and NOESY experiments. On average, the minor groove of the DNA.RNA hybrids showed more kinetically significant hydration than the DNA, which can be attributed to the hydrophilic lining of hydroxyl groups in RNA.  相似文献   

5.
S Mak  B Oberg  K Johansson  L Philipson 《Biochemistry》1976,15(26):5754-5761
An aqueous polymer phase system containing 6.3% (w/w) dextran and 3.5% (w/w) poly(ethylene glycol) in 10 mM phosphate buffer (pH 8.0) was developed to select RNA-DNA hybrids from unhybridized RNA. The top phase of this phase system, which contains DNA and the RNA-DNA hybrids, can be used to purify adenovirus messenger RNA both early and late in the infectious cycle. The hybrids can be melted by heat in the top phase and the messenger RNA selected by oligo(dT)cellulose chromatography whereupon the polymers and the DNA percolate and the polyadenylated messenger RNA absorb to the column. The isolated messenger RNA appears to be almost quantitatively recovered at a purity from 70 to 90% depending on the concentration of the specific messenger RNA in the starting material. Early and late viral messenger RNA were selected on the complementary strands of adenovirus DNA according to this procedure.  相似文献   

6.
Chakraborty S  Krishnan Y 《Biochimie》2008,90(7):1088-1095
We have constructed and characterized a long-lived hybrid DNA(2)-RNA(2) i-motif that is kinetically formed by mixing equivalent amount of C-rich RNA (R) and C-rich DNA (D). Circular dichroism shows that these hybrids are distinct from their parent DNA(4) or RNA(4) i-motif. pH dependent CD and UV thermal melting experiments showed that the complexes were maximally stable at pH 4.5, the pK(a) of cytosine, consistent with the complex being held by CH(+)-C base pairs. Fluorescence studies confirmed their tetrameric nature and established the relative strand polarities of the RNA and DNA strands in the complex. These showed that in a hybrid D(2)R(2) i-motif two DNA strands occupy one narrow groove and the two RNA strands occupy the other. This suggests that even the sugar-sugar interactions are highly specific. Interestingly, this hybrid slowly disproportionates into DNA(4) i-motifs and ssRNA which would be valuable to study intermediates in DNA(4) i-motif formation.  相似文献   

7.
8.
The 4S RNA genes in HeLa mitochondrial DNA (mtDNA) have been mapped by electron microscopy using the electron-opaque label ferritin. This method is based on the high affinity interaction between the protein, avidin, and biotin. 4S RNA, covalently coupled to biotin, was hybridized to single-stranded mtDNA. The hybrids were then labeled with ferritin-avidin conjugates. The positions of ferritin-labeled 4S RNA genes were determined relative to the rRNA genes on both heavy (H) and light (L) strands of mtDNA. This region was recognized as a duplex segment after hybridization either with rRNA in the case of H strands or with DNA complementary to rRNA in the case of L strands.Our studies suggest that at least nineteen 4S RNA genes are present in the HeLa mitochondrial genome. On the H strand, we have confirmed the nine map positions found in a previous electron microscope mapping study (Wu et al., 1972) and obtained evidence for three additional 4S RNA genes. On the L strand, seven 4S RNA genes have been mapped. The nineteen genes are distributed more or less uniformly around the genome. There is a pair of closely spaced genes, approximately 150 nucleotides apart, on the H strand, and another closely spaced pair on the L strand.  相似文献   

9.
The artificial restriction DNA cutter (ARCUT) method to cut double-stranded DNA at designated sites has been developed. The strategy at the base of this approach, which does not rely on restriction enzymes, is comprised of two stages: (i) two strands of pseudo-complementary peptide nucleic acid (pcPNA) anneal with DNA to form 'hot spots' for scission, and (ii) the Ce(IV)/EDTA complex acts as catalytic molecular scissors. The scission fragments, obtained by hydrolyzing target phosphodiester linkages, can be connected with foreign DNA using DNA ligase. The location of the scission site and the site-specificity are almost freely tunable, and there is no limitation to the size of DNA substrate. This protocol, which does not include the synthesis of pcPNA strands, takes approximately 10 d to complete. The synthesis and purification of the pcPNA, which are covered by a related protocol by the same authors, takes an additional 7 d, but pcPNA can also be ordered from custom synthesis companies if necessary.  相似文献   

10.
11.
A simple method for selection of RNA-DNA hybrids has been developed and applied to the purification of adenovirus-specific messenger RNA. Cytoplasmic RNA prepared from adenovirus type 2 (ad2)-infected HeLa cells or from an ad2-transformed rat cell line was hybridized in solution to the complementary strands of ad2 DNA. The hybridization mixture was subsequently fractionated by chromatography on a Sepharose 2B column. The intact probe DNA as well as the RNA-DNA hybrids are excluded from the gel matrix and elute with the void volume. Nonhybridized RNA, in contrast, is included into the gel matrix and elutes as a broad peak well separated from the excluded fractions. Fractions corresponding to the void volume, were collected and the RNA-DNA hybrids were denatured in 90% formamide. The selected RNA was separated from the DNA by affinity chromatography on poly(U)-Sepharose. Restriction endonuclease fragments of DNA with a large enough size to make them excluded from the agarose column were also used for hybridization. In these experiments hybridizations were carried out under conditions which would allow R-loop formation (Thomas, M., White, R.L., and Davis, R.W. (1976) Proc. Natl. Acad. Sci. U.S.A. 73, 2294-2298) and the hybridized RNA was separated from unhybridized RNA by Sepharose chromatography. The validity of the method was demonstrated by programming an in vitro protein-synthesizing system with selected RNA.  相似文献   

12.
P Woolley  S Dohrmann 《Biochemistry》1983,22(13):3226-3231
Intercalation of the ethidium analogue 3,5-diazido-5-ethyl-6-phenylphenanthridinium into double helices followed by irradiation with blue or ultraviolet light results in cross-linking between the two strands with an efficiency around 30% for DNA, RNA, and DNA-RNA hybrids. Details of this reaction and a convenient synthesis of the ethidium analogue are described. Stable tertiary structure in RNA impedes intercalation and thus reduces the efficiency of cross-linking. In contrast to the ethidium derivative, various acridine diazides show little or no cross-linking ability.  相似文献   

13.
14.
Arabinonucleic acid, the 2'-stereoisomer of RNA, was tested for its ability to recognize double-helical DNA, double-helical RNA and RNA-DNA hybrids. A pyrimidine oligoarabinonucleotide (ANA) was shown to form triple-helical complexes only with duplex DNA and hybrid DNA (Pu):RNA (Py) with an affinity that was slightly lower relative to the corresponding pyrimidine oligodeoxynucleotide (DNA) third strand. Neither the ANA nor DNA third strands were able to bind to duplex RNA or hybrid RNA (Pu):DNA (Py). In contrast, an RNA third strand recognized all four possible duplexes (DD, DR, RD and RR), as previously demonstrated. Such an understanding can be applied to the design of sequence-selective oligonucleotides which interact with double-stranded nucleic acids and emphasizes the role of the 2'-OH group as a general recognition and binding determinant of RNA.  相似文献   

15.
To gain insight into the origins of the large binding affinity of RNA toward target duplexes, 2'-deoxy-2'-fluororibonucleic acid (2'F-RNA) and 2'-deoxy-2'-fluoroarabinonucleic acid (2'F-ANA) were tested for their ability to recognize duplex DNA, duplex RNA, and RNA-DNA hybrids. 2'F-RNA, 2'F-ANA, and the corresponding control single-stranded (ss) DNA strands were shown to form triple-helical complexes only with duplex DNA and hybrid DNA (Pu)-RNA (Py), but not with duplex RNA and hybrid RNA (Pu)-DNA (Py). In contrast, an RNA third strand recognized all four possible duplexes (DD, DR, RD, and RR) as previously demonstrated by Roberts and Crothers [(1992) Science 258, 1463-1466]. The 2'F-RNA (C3'-endo) strand exhibited significantly reduced affinity for duplexes compared to an unmodified RNA (C3'-endo) strand. These findings are consistent with the intermolecular 2'-OH-phosphate contact mechanism proposed by Escudé et al. [(1993) Nucleic Acids Res. 24, 5547-5553], as a ribo 2'-F atom should not interact with a negatively charged phosphate. In addition, they emphasize the role of the 2'-OH ribose as a general recognition and binding determinant of RNA. The 2'-F arabino modification (2'F-ANA, C2'-endo) led to a considerable increase in the binding affinity for duplex DNA, as compared to those of DNA and 2'F-RNA third strands. This is likely to be the result of a greater population of C2'-endo pucker of the 2'F-ANA compared to DNA. The enhancement observed for 2'F-ANA strands toward duplex DNA is comparable to that observed with 2'-OMe RNA. Since 2'F-ANA has been shown to be more resistant to nuclease degradation than DNA, these results are likely to stimulate experimental work on arabinose derivatives in laboratories concerned with targeting DNA sequences in vivo ("antigene" strategy).  相似文献   

16.
A method of preparing strand-specific probes for DNA X DNA or DNA X RNA hybridizations is described. Double-stranded DNA fragments are first isolated from any recombinant DNA clone containing the desired sequence, and then labeled in vitro by nick-translation (T. Maniatis, A. Jeffrey, and D. G. Kleid (1975) Proc. Natl. Acad. Sci. USA 72, 1184-1188; P. W. J. Rigby, M. Dieckmann, C. Rhodes, and P. Berg (1977) J. Mol. Biol. 113, 237-251). Sequences homologous to the desired strand are captured by annealing the denatured nick-translate to viral strands of an appropriate M13 clone, and recovered by elution of the resulting hybrids from a column of agarose A50M (Bio-Rad). By this method, separate probes with specificity to either strand, as well as the double-stranded probe, may conveniently be prepared from a single nick-translation reaction. Probes may be obtained which are homologous either to the full length of the cloned region or to selected portions thereof by selecting appropriate M13 clones for annealing. The probe is recovered as a population of fragments several hundred bases or less in length, which have been found ideal for saturating liquid hybridizations, and should be similarly well suited for in situ hybridizations to cytological preparations.  相似文献   

17.
We have reported on the differences in site-specific cleavage between DNA and DNA-RNA hybrids by various prototypic DNA cleavers (accompanying paper). In the case of bleomycin (BLM), degradation at 5'-GC-3'sites was suppressed relative to the same sequence in double-stranded DNA, while 5'-GT-3' damage remained constant. We now present results of our further investigation on the chemical and conformational factors that contribute to BLM-mediated DNA strand cleavage of DNA-RNA hybrids. Substitution of guanine by hypoxanthine on the RNA strand of hybrids resulted in a significant enhancement of 5'-GC-3' site damage on the DNA strand relative to double-stranded DNA, thus reversing the suppression noted at these sites. Additionally, 5'-AT-3' sites, which are damaged significantly more in the hybrid than in DNA, exhibit decreased product formation when hypoxanthine is present on the RNA strand of hybrids. However, when hypoxanthine is substituted for guanine on the DNA strand (a GC cleavage site becomes IC), 5'-IT-3' and 5'-IC-3' site cleavage is almost completely suppressed, whereas AT site cleavage is dramatically enhanced. The priority in metallobleomycin site-specific cleavage of hybrids changes with hypoxanthine substitution: the cleavage priority is AT > GT > GC in native hybrid; GC > GT > AT in hybrids substituted with hypoxanthine in the RNA strand; AT >> GT approximately GC in hybrids substituted with hypoxanthine in the DNA strand. The results of kinetic isotope effect studies on BLM cleavage are presented and, in most cases, the values are larger for the hypoxanthine-substituted hybrid. The results suggest that the 2-amino groups of guanine residues on both strands of the nucleic acid play an important role in modulation of the binding and cleavage specificity of BLM.  相似文献   

18.
Sequence-specific recognition of DNA is a critical step in gene targeting. Here we describe unique oligonucleotide (ON) hybrids that can stably pair to both strands of a linear DNA target in a RecA-dependent reaction with ATP or ATPγS. One strand of the hybrids is a 30-mer DNA ON that contains a 15-nt-long A/T-rich central core. The core sequence, which is substituted with 2-aminoadenine and 2-thiothymine, is weakly hybridized to complementary locked nucleic acid or 2′-OMe RNA ONs that are also substituted with the same base analogs. Robust targeting reactions took place in the presence of ATPγS and generated metastable double D-loop joints. Since the hybrids had pseudocomplementary character, the component ONs hybridized less strongly to each other than to complementary target DNA sequences composed of regular bases. This difference in pairing strength promoted the formation of joints capable of accommodating a single mismatch. If similar joints can form in vivo, virtually any A/T-rich site in genomic DNA could be selectively targeted. By designing the constructs so that the DNA ON is mismatched to its complementary sequence in DNA, joint formation might allow the ON to function as a template for targeted point mutation and gene correction.  相似文献   

19.
HeLa mitochondrial 4 s RNA has been covalently coupled to the electron opaque label, ferritin, which is visible in the electron microscope. Mixtures of HeLa mitochondrial 12 s ribosomal RNA, 16 s rRNA and/or the 4 s RNA-ferritin conjugate have been hybridized to separated heavy (H) and light (L) strands of HeLa mitochondrial DNA, or to a mixture of H and L strands. The relative positions of the duplex regions corresponding to the 12 s and 16 s rRNA—DNA hybrids and of the ferritin-labeled 4 s RNA's have been mapped in the electron microscope after spreading the DNA strands by the formamide modification of the basic protein film technique. The 12 s and 16 s duplex regions have lengths of 0·-26 ± 0.04 μm and 0.46 ± 0.07 μm, respectively. They are separated by a single-strand region of length 0.047 ± 0.017 μm, corresponding to 160 ± 60 nucleotides. There are nine reproducible binding sites for 4 s RNA on the H strand. One such site lies within the spacer region between the 12 s and 16 s coding sequences, one site is immediately adjacent to the other side of the 12 s sequence and one is adjacent to the other side of the 16 s sequence. The other 4 s sites are rather evenly spaced along the DNA strand of total length 15,600 nucleotides, except that two of them are clustered with a spacing of 120 ± 30 nucleotides between them. There are three 4 s RNA coding sequences on the L strand, separated from one another by 2280 and 3900 nucleotides, respectively.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号