首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Measuring the Canopy Net Photosynthesis of Glasshouse Crops   总被引:3,自引:0,他引:3  
A null balance method is described for measuring net photosynthesisof mature canopies of cucumber and other protected crops overperiods of 10 min in a single-span glasshouse (c. 9m x 18m inarea). Accuracy of control of the CO2 concentration in the greenhouseatmosphere is within ±10 vpm of the normal ambient level(c. 350 vpm). The amounts of CO2 used in canopy net photosynthesisare measured with linear mass flowmeters accurate to within±0.80g. The total errors incurred in measuring canopynet photosynthesis at an ambient CO2 level are estimated tobe of the order of ± 1·2% in bright light (350W m–2, PAR)and ±3·6% in dull light (100W m–2, PAR). Measurements of the rates of net photosynthesis of a maturecanopy of a cucumber crop were made at near-ambient CO2 concentrationsover a range (0–350 W m–2) of natural light fluxdensities. A model of light absorption and photosynthesis applicableto row crops was used to obtain a net photosynthesis versuslight response curve for the cucumber crop. At a light fluxdensity of 350 W m–2 the fitted value of canopy net photosynthesiswas 2.65 mg CO2 m–2s–1 (equivalent to over 95 kgCO2 ha–1h–1). The results are discussed in relationto the need for CO2 supplements to avoid depletion in both ventilatedand unventilated glasshouses during late spring and summer. Key words: Glasshouse crops, cucumber, measurement, canopy photosynthesis, light, CO2  相似文献   

2.
Wheat plants were grown in a controlled environment with daytemperatures of 18 ?C and with 500 µ Einsteins m–28–1 of photosynthetically active radiation for 16 h. Beforeanthesis and 2 to 3 weeks after, rates of net photosynthesiswere measured for leaves in 2 or 21% O2 containing 350 vpm CO2at 13, 18, 23, and 28 ?C and with 500 µEinsteins m–2s–1 of photosynthetically active radiation. Also, underthe same conditions of light intensity and temperature, therates of efflux of CO2 into CO2-free air were measured and,for mature flag leaves 3 to 4 weeks after anthesis, gross andnet photosynthesis from air containing 320 vpm 14CO2 of specificactivity 39?7 nCi µmol–1. When the O2 concentration was decreased from 21 to 2% (v/v)the rate of net photosynthesis increased by 32 per cent at thelowest temperature and 54 per cent at the highest temperature.Efflux of CO2 into CO2-free air ranged from 38 per cent of netphotosynthesis at 13 ?C to 86 per cent at 28 ?C. Gross photosynthesis,measured by the 14C assimilated during 40 s, was greater thannet photosynthesis by some 10 per cent at 13 ?C and 17 per centat 28 ?C. These data indicate that photorespiration was relativelygreater at higher temperatures.  相似文献   

3.
Light Interception and Photosynthetic Efficiency in Some Glasshouse Crops   总被引:5,自引:0,他引:5  
Productivity of glasshouse crops is strongly limited by lightreceipt, and efficient interception and use of light in photosynthesisis correspondingly important. Mature row crop canopies of cucumberand tomato intercepted about 76% of the light incident on theirupper surfaces; about 18% was lost through gaps between therows. Light transmitted through the entire depth of the canopywas reflected back by white plastic on the ground, so that thelower surface of the canopy received approximately 13% of thelight incident on the upper surface. The light flux incidenton the sides of these canopies (c. 2m tall and 6m x 16m in area)amounted to some 20–30% of that incident on the uppersurface. About 32% of daylight falling on the glasshouse (c.9m x 18m in area) was intercepted by the glasshouse structureand glazing; of the 68% entering the house, some fell on headlandsoccupying 35% of the glasshouse area. The loss of light to headlands,and the gain from canopy side-lighting, would be relativelysmaller for larger glasshouses. At near-ambient CO2 concentrations, net photosynthetic ratesof the cucumber canopy were comparable to those of closed canopiesof other glasshouse and field crops which have maximum lightconversion efficiencies of 5–8µg CO2 J–1 at50–200 W m–2 incident light flux density. Efficiencydecreases only slightly with stronger light. Glasshouse cropswith CO2 enrichment to 1200 vpm achieve conversion efficienciesof 7–10µg CO2 J–1. Efficiencies of utilizationof intercepted light, on an energy basis, reach 6–10%in various field and glasshouse crops with near-ambient CO2,and reached an exceptional 11% for the cucumber canopy. Glasshousecrops with CO2 enrichment achieve maximum efficiency of lightenergy utilization between 12% and 13%. Key words: Glasshouse cucumber and tomato, light interception and utilization, photosynthetic efficiency, row crops  相似文献   

4.
Increasing the concentration of CO2 in the air from the usual300 ppm to 1, 000 ppm in growth rooms with temperatures of 20°C during the 16-h light period and 15° C during the 8-hdark period increased the total dry weight of sugar-beet, barley,and kale by about 5o per cent. A further increase in CO, concentrationto 3, 300 ppm increased dry weight slightly more. These effectsoccurred with light intensities ranging from 3.7 to II.6 caldm–2 min–1 of visible radiation supplied by a mixtureof fluorescent and tungsten lamps, and were only slightly greaterwith the brighter light. Extra CO2 also increased leaf area,though relatively less than dry weight, and the number of barleyshoots but not of sugar-beet or kale leaves; it decreased leaf-arearatio, specific leaf area, and the ratio of tops to roots. Maizewas taller with extra CO2. Net assimilation rates in 1, 000 and 3, 300 ppm CO2 were about20 and 30 per cent respectively greater than in 300 ppm. Uptakeof CO2 in the light by complete tops and single leaves alsoincreased with increase in CO2 concentration. Photosynthesisof leaves of plants recently transferred to a new CO2 concentrationdepended only on that concentration and not on the originalone. Doubling the light intensity from 3.7 to 7.7 cal dm–2min–1 affected dry weight, leaf area, net assimilationrate, etc., similarly to a tenfold increase in CO2 concentration.  相似文献   

5.
The effect of high light and root chilling on gas exchange,chlorophyll fluorescence, and bulk shoot water potential (shoot)was examined for Pinus sylvestris seedlings. Transferring plantsfrom low light (200 µmol m–2s–1, PAR) anda soil temperature of 15 °C to high light (850 µmolm–2 s–1) and 1 °C caused >90% decrease innet photosynthesis and leaf conductance measured at 350 mm3dm-3 CO2, and a decrease in the ratio of variable to maximumfluorescence (Fv/Fm) from 0.83 to 0.63. The decrease in Fv/Fmwas, however, only marginally greater than when seedlings weretransferred from low to high light but kept at a soil temperatureof 15 °C. Thus, photoinhibition was a minor component ofthe substantial decrease observed for net photosynthesis at1 °C soil temperature. The decrease in net photosynthesisand shoot at 1 °C was associated with an increase in calculatedintracellular CO2 concentration, suggesting that non-stomatalfactors related to water stress were involved in inhibitingcarbon assimilation. Measurements at saturating external CO2concentration, however, indicate that stomatal closure was thedominant factor limiting net photosynthesis at low soil temperature.This interpretation was confirmed with additional experimentsusing Pinus taeda and Picea engelmannii seedlings. Decreasesin gas-exchange variables at 5 °C soil temperature werenot associated with changes in shoot Thus, hormonal factors,localized decreases in needles or changes in xylem flux maymediate the response to moderate root chilling.  相似文献   

6.
The rates of net photosynthesis by closed canopies of tomatoplants were measured at three CO2 concentrations and three humiditiesover a range of natural light flux densities. The data havebeen analysed using a model of canopy photosynthesis which allowsfor variation in leaf area index and other leaf and canopy characteristics.The model also deals explicitly with the effects of CO2 concentration,leaf conductance, and photorespiration on the leaf photochemicalefficiency, . The leaves were found to have a photochemicalefficiency in the absence of photorespiration, m, of 12?6 ?10–9 kg (CO2) J–1. At a CO2 concentration of 0?73 ? 10–3 kg m–3 (400vpm) the leaf photochemical efficiency, , and canopy light utilizationefficiency, c, were 18 per cent greater at a vapour pressuredeficit of 0?5 kPa than at 1?0 kPa. At a CO2 concentration of2?2 ? 10–3 kg m–3 (1200 vpm) they were only 5 percent greater.  相似文献   

7.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

8.
The responses of net CO2 assimilation to sudden changes in irradiancewere studied in Phaseolus vulgaris L. in the laboratory andthe field. For irradiance changes between 50 µmol m–2s–1 to 350 µmol m–2 s–1 in the laboratory,assimilation rate increased with half-times of 2.7 and 4.1 minin well-watered and water-stressed plants, respectively. Ina field experiment with a change in irradiance from 400 to 1200µmol m–2 s–1 the response was faster (half-time=c.1.2 min). In all cases when irradiance was returned to a lowvalue, assimilation declined rapidly with a half-time of approximately1 min, which approached the time resolution of the gas-exchangesystem. The corresponding changes in stomatal conductance in responseto both increasing and decreasing irradiance were much slowerthan the assimilation responses, indicating that biochemicalprocesses, rather than CO2 supply, primarily determined theactual rate of assimilation in these experiments. The conceptof stomatal limitation to photosynthesis is discussed in relationto these results. A simple model for assimilation in a fluctuating light environmentis proposed that depends on a steadystate light response curve,an ‘induction lag’ on increasing irradiance, andan induction-state memory. The likely importance of taking accountof such induction lags in natural canopy microclimates is considered. Key words: Models, Phaseolus vulgaris, photosynthetic induction, CO2 assimilation, stomatal limitation, sunflecks, water stress  相似文献   

9.
Net photosynthetic rates per unit ground area for plant standsof Solanum melongena L. var. esculentum (aubergine) and Amaranthuscaudatus L. var. edulis (grain amaranth) were measured over10 min intervals in an airtight, glass, controlled-environmentcabinet for a range of light flux densities provided by thediurnal variation in daylight. Light response curves for photosynthesisof stands, grown at ambient CO2 concentration, were definedat 400, 800 and 1200 vpm CO2. Light compensation points for these stands were around 20-30J m-2 s-1 and decreased slightly at higher CO2 concentrations.For aubergine, a C3 species, the short-term effects of CO2 enrichmentwere to increase the initial slope as well as the asymptoteof the light response curve, reducing light saturation at moderateto high light flux densities; but for amaranthus, a C4 species,saturation was less apparent and CO2 enrichment scarcely increasedphotosynthesis except at light flux densities above 150 J m-2s-1. The canopies intercepted 93-98% of incident light. The efficiencyof utilization of intercepted light in photosynthesis (µgCO2 J-1) increased from zero at the light compensation pointto a maximum at an optimum light flux density of about 100 Jm-2 s-1 (the optimum rose a little with CO2 enrichment) anddecreased slightly with further increase in light. Maximum utilizationefficiencies at 400 vpm CO2 were 8-9 µg CO2 J-1. Enrichmentto 1200 vpm did not affect the peak utilization efficiency ofthe C4 amaranthus, but increased that aubergine to 12·2µg CO2 J-1 (equivalent to some 14% when using the heatof combustion of plant dry matter to convert to the dimensionlessform). This is among the highest recorded efficiencies of lightutilization for stands, and relates to the exceptionally favourableenvironment, with optimal control of CO2 concentration, humidity,temperature, water supply and mineral nutrition.Copyright 1993,1999 Academic Press Amaranthus caudatus L. var. edulis, Solanum melongena L. var. esculentum, canopy photosynthesis, CO2 enrichment, light interception, light utilization, photosynthetic efficiency  相似文献   

10.
Carbon dioxide and water vapour exchanges of the second leafof Zea mays in controlled environment cuvettes were measuredin an open gas-exchange system, during and following subjectionto low temperature stress. Photosynthetic CO2 assimilation (Fc)decreased markedly with decrease in leaf temperature so thatFc at 5 °C was c. 7% of Fc at 20 °C. Fc continued todecline if leaf temperature was maintained at 5 °C, andwhen returned to 20 °C the leaf could not regain its previousFc. This chill-induced reduction in the capacity of the leafto assimilate CO2 was proportional to the duration of the chilland increased with water vapour pressure deficit and photonflux density (In). Six hours at 5 °C decreased Fc on returnto 20 °C, relative to Fc prior to treatment, by c. 10% indarkness and by c. 50% in a photon flux density approachingfull-sunlight (Ip = 1.5 mmol m–2 s–1). The degreeof reduction in Fc following chill treatment showed an almostlinear dependence on both the length and temperature of thechill. Chill treatments resulted in a decrease in both stomataland mesophyll conductances. Examination of the responses ofFc to light and CO2 concentration suggested that chill damageto the capacity for CO2 assimilation resulted from effects onboth the light and CO2 limited processes within photosynthesis. Key words: Chilling, Photosynthesis, Zea mays, Light-temperature interaction  相似文献   

11.
The photosynthetic response to CO2 concentration, light intensityand temperature was investigated in water hyacinth plants (Eichhorniacrassipes (Mart.) Solms) grown in summer at ambient CO2 or at10000 µmol(CO2) mol–1 and in winter at 6000 µmol(CO2)mol–1 Plants grown and measured at ambient CO2 had highphotosynthetic rate (35 µmo1(CO2) m–2 s–1),high saturating photon flux density (1500–2000) µmolm–2 s–1 and low sensitivity to temperature in therange 20–40 °C. Maximum photosynthetic rate (63 µmol(CO2)m–2 s–1) was reached at an internal CO2 concentrationof 800 µmol mol–1. Plants grown at high CO2 in summerhad photosynthetic capacities at ambient CO2 which were 15%less than for plants grown at ambient CO2, but maximum photosyntheticrates were similar. Photosynthesis by plants grown at high CO2and high light intensity had typical response curves to internalCO2 concentration with saturation at high CO2, but for plantsgrown under high CO2 and low light and plants grown under lowCO2 and high light intensity photosynthetic rates decreasedsharply at internal CO2 concentrations above 1000 µmol–1. Key words: Photosynthesis, CO2, enrichment, Eichhornia crassipes  相似文献   

12.
Measurements of microclimate and photosynthesis of lucerne var.Europe were made in the field during the spring of 1976. Themaximum rate of canopy gross photosynthesis (14.3 g CO2 m–2h–1, I = ) was 2.5 times greater than that of S 24 perennialryegrass at the same LAI. This difference was due to differencesin individual leaf photosynthesis. The photosynthetic rate ofthe youngest fully expanded leaf of lucerne remained constantthroughout the experimental period at 3.6 g CO2 m–2 h–1(300 W m–2). Measurements of soil water potential profiles indicated thatlucerne extracted water from the soil to a depth of at least800 mm, with a region of maximum uptake between 400 and 600mm. This capability, with a moderate mean leaf resistance of460 s m–1, conferred a high assimilation efficiency onlucerne, with a mean water use efficiency of 34 g H2O lost pergram of carbohydrate assimilated, compared with 200 g H2O pergram of carbohydrate for S 24. Medicago sativa L, lucerne, photosynthesis, assimilation efficiency  相似文献   

13.
Effects of CO2-Enrichment on the Growth of Young Tomato Plants in Low Light   总被引:3,自引:0,他引:3  
HURD  R. G. 《Annals of botany》1968,32(3):531-542
Carbon dioxide-enrichment of young tomato plants grown in controlled-environmentcabinets at low light intensity (14 cal cm–2 day–1,visible radiation) increased their net assimilation rates and,initially, relative growth-rates. Subsequently, the relativegrowth-rate fell to near the rate of non-enriched plants, owingto a fall in leaf-area ratio associated with an increase inleaf dry weight/area. Sowing non-enriched plants a few daysearlier to reach the same total dry weight would not have producedidentical plants. The effects of CO2-enrichment to 1000 vpm could be simulatedby increasing light intensity by approximately one third exceptthat the plants had shorter internodes than those in extra CO2.This was a morphogenetic effect of light since CO2-enrichmentitself produced slightly shorter plants than controls for anequivalent total dry weight. CO2-enrichment did not change the dry-weight distribution inthe plants and had little effect on rate of leaf produoctionor the number of flower primordia. There were no indicationsthat beneficial effects of CO2-enrichment operated other thanthrough increased photosynthesis.  相似文献   

14.
HEUER  BRURIA; PLAUT  Z. 《Annals of botany》1981,48(3):261-268
The influence of salinity in the growing media on ribulose-1,5-bisphosphate (RuBP) carboxylase and on CO2 fixation by intactsugar beet (Beta vulgaris) leaves was investigated. RuBP carboxylase activity was mostly stimulated in young leavesafter exposure of plants for 1 week to 180 mM NaCl in the nutrientsolution. This stimulation was more effective at the higherNaHCO2 concentrations in the reaction medium. Salinity also enhanced CO2 fixation in intact leaves mostlyat rate-limiting light intensities. A 60 per cent stimulationin CO2 fixation rate was obtained by salinity under 450 µEm–2 s–1. At quantum flux densities of 150 µEm–2 s–1 (400–700 nm) this stimulation was280 per cent. Under high light intensities no stimulation bysalinity was found. In contrast, water stress achieved by directleaf desiccation or by polyethylene glycol inhibited enzymeactivity up to fourfold at –1.2 MPa. Beta vulgaris, sugar beet, ribulose-1, 5-bisphosphate carboxylase, salt stress, water stress, carbon dixoide fixation, salinity  相似文献   

15.
1) The wavelength effects on 14CO2-fixation by Chlorella cellswere studied, using monochromatic light of different light intensities. 2) Blue light (453 mµ) stimulated the incorporation of14C into aspartate, glutamate and malate. Red light (679 mµ),on the other hand, stimulated its incorporation into P-esters,free sugars and insoluble material. 3) The blue light effect was observed in the presence of CMUat concentrations completely suppressing ordinary photosyntheticCO2-fixation. 4) The blue light effect in the presence of CMU was inducedat very low intensities. At 453 mµ, 300 erg cm–2sec–1 was sufficient for complete saturation. 5) Time courses of 14C-incorporation into individual compoundswere investigated. Irrespective of the wavelength of the illuminatinglight, the first stable CO2-fixation product formed under weaklight (400–500 erg cm–2 sec–1) was citrulline.At higher light intensities (4,000–7,000 erg cm–2sec–1), PGA was the first stable CO2-fixation product.The incorporation of 14C into citrulline was not inhibited byCMU. 6) Experimental results indicate that both blue light-inducedincorporation of 14C into amino and organic acids and the incorporationof 14C into citrulline induced by low intensity light are operatedby a mechanism(s) independent of ordinary photosynthetic CO2-fixation.Possible effects of light regulating the carbon metabolism inalgal cells are discussed. (Received July 24, 1969; )  相似文献   

16.
Tomato plants were grown in solution culture in a controlledenvironment at 20 ?C with a 12 h photoperiod of 400 µmolquanta m–2 s–1 PAR with either normal ambient CO2,approximately 340 vpm, or with 1000 vpm CO2. The short- andlong-term effects of CO2 enrichment on photosynthesis were determinedtogether with the levels of ribulose-1, 5-bisphosphate carboxylase(RuBPco) E.C. 4.1.1.39 [EC] protein and activity throughout leafdevelopment of the unshaded 5th leaf above the cotyledons. Thehigh CO2 concentration during growth did not appreciably affectthe rate of leaf expansion or final leaf area but did increasethe fresh weight per unit area of leaf. With short-term CO2enrichment, i.e. only during the photosynthesis measurements,the light-saturated photosynthetic rate (Pmax) of young leavesdid not increase while those reaching full expansion more thandoubled their net rate of CO2 fixation. However, with longerterm CO2 enrichment, i.e. growing the crop in high CO2, theplants did not maintain this photosynthetic gain. While theCO2 concentration during growth did not affect the peak in Pmaxmeasured in 300 vpm CO2 or Pmax in 1000 vpm CO2, RuBPco proteinor its activity, the subsequent ontogenetic decline in theseparameters was greatly accelerated by the high CO2 treatment.Compared with plants grown in normal ambient CO2 the high CO2grown leaves, when almost fully expanded, contained only approximatelyhalf as much RuBPco protein and Pmax in 300 vpm CO2 and Pmaxin1000 vpm CO2 were similarly reduced. The loss of RuBPco proteinmay be a major factor associated with the accelerated fall inPmax since it was close to that predicted from the amount andkinetics of RuBPco assuming RuBP saturation. In the oldest leavesexamined grown in high CO2 additional factors may be limitingphotosynthesis since RuBPco kinetics marginally overestimatedPmax in 300 vpm CO2 and the initial slope of photosynthesisin response to intercellular CO2 was also less than expectedfrom the extractable RuBPco. Key words: Lycopersicon esculentum (Mill.) cv. Findon Cross, CO2 enrichment, acclimation to high CO2, photosynthesis, RuBPco protein and activity  相似文献   

17.
Single clonal plants of white clover (Trifolium repens L) grownfrom explants in a Perlite rooting medium, and dependent fornitrogen on N2 fixation in root nodules, were grown for severalweeks in controlled environments which provided two regimesof CO2, and temperature 23/18 °C day/night temperaturesat 680 µmol mol–1 CO2, (C680), and 20/15 °Cday/night temperatures at 340 µmol mol–1 CO2 (C340)After 3–4 weeks of growth, when the plants were acclimatedto the environmental regimes, leaf and whole-plant photosynthesisand respiration were measured using conventional infra-red gasanalysis techniques Elevated CO2 and temperature increased ratesof photosynthesis of young, fully expanded leaves at the growthirradiance by 17–29%, despite decreased stomatal conductancesand transpiration rates Water use efficiency (mol CO2 mol H2O–1)was also significantly increased Plants acclimated to elevatedCO2, and temperature exhibited rates of leaf photosynthesisvery similar to those of C340 leaves ‘instantaneously’exposed to the C680 regime However, leaves developed in theC680 regime photosynthesised less rapidly than C340 leaves whenboth were exposed to a normal CO2, and temperature environmentIn measurements where irradiance was varied, the enhancementof photosynthesis in elevated CO2 at 23 °C increased graduallyfrom approx 10 % at 100 µmol m–1 s–1 to >27 % at 1170 µmol m–2 s–1 In parallel, wateruse efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 In parallel,water use efficiency increased by 20–40 % at 315 µmolm–2 s–1 In parallel, water use efficiency increasedby 20–40 % at 315 µmol m–2 s–1 to approx100 % at the highest irradiance Elevated CO2, and temperatureincreased whole-plant photosynthesis by > 40 %, when expressedin terms of shoot surface area or shoot weight No effects ofelevated CO2 and temperature on rate of tissue respiration,either during growth or measurement, were established for singleleaves or for whole plants Dependence on N2, fixation in rootnodules appeared to have no detrimental effect on photosyntheticperformance in elevated CO2, and temperature Trifolium repens, white clover, photosynthesis, respiration, elevated CO2, elevated temperature, water use efficiency, N2 fixation  相似文献   

18.
Photosynthetic assimilation of exogenous 14CO2 and H14CO3by the aquatic angiosperm Potamogeton lucens L. is reported.Equivalent maximum rates of assimilation (1.5 µmol s–1m–2) were obtained in the presence of saturating levelsof 14CO2 (1.0 mol m–3, pH 5.3) or H14CO3 (1.5 molm–3, pH, 9.2). Under subsaturating 14CO2 levels, bothgaseous diffusion and H14CO3 transport were shown tooperate simultaneously, such that maximal photosynthetic rateswere established. An induction lag of approximately 3 min was observed when exogenous14CO2 was assimilated. A longer lag of approximately 12 minwas required, however, before linear assimilation rates wereestablished when H14CO3 acted as the carbon source. The light-activatedH14CO3 transport system was found to be quite labile.A brief (5 min) dark treatment returned the system to the inactivestate. Bicarbonate transport was shown to be competitively inhibitedby CO32–ions. The possibility is discussed that this formof inhibition may be common to many HCO3 assimilators. Preliminary polar cation transport studies (from lower to upperleaf surface) indicated an almost exact one to one relationshipbetween the rates of Na+ influx and efflux and H14CO3assimilation. The possible relationship(s) between these transportprocesses and the requirement for electrical neutrality is brieflydiscussed.  相似文献   

19.
Knight, S. L. and Mitchell, C. A. 1988. Effects of CO2 and photosyntheticphoton flux on yield, gas exchange and growth rate of Lactucasativa L. ‘Waldmann’s Green'.—J. exp. Bot.39: 317–328. Enrichment of CO2 to 46 mmol m–3 (1 000 mm3 dm–3)at a moderate photosynthetic photon flux (PPF) of 450 µmolm–2 s–1 stimulated fresh and dry weight gain oflettuce leaves 39% to 75% relative to plants at 16 mmol m–3CO2 (350 mm3 dm–3). Relative growth rate (RGR) was stimulatedonly during the first several days of exponential growth. ElevatingCO2 above 46 mmol m–3 at moderate PPF had no further benefit.However, high PPF of 880–900 µmol m–2 s–1gave further, substantial increases in growth, RGR, net assimilationrate (NAR) and photosynthetic rate (Pn), but a decrease in leafarea ratio (LAR), at 46 or 69 mmol m–3 (1000 or 1500 mm3dm–3) CO2, the differences being greater at the higherCO2 level. Enrichment of CO2 to a supraoptimal level of 92 mmolm–3 (2000 mm3 dm–3) at high PPF increased leaf areaand LAR, decreased specific leaf weight, NAR and Pn and hadno effect on leaf, stem and root dry weight or RGR relativeto plants grown at 69 mmol m–3 CO2 after 8 d of treatment.The results of the study indicate that leaf lettuce growth ismost responsive to a combination of high PPF and CO2 enrichmentto 69 mmol m–3 for several days at the onset of exponentialgrowth, after which optimizing resources might be conserved. Key words: Photosynthesis, relative growth rate, CO2 enrichment  相似文献   

20.
The CO2 compensation point at 25 °C and 250 µEinsteinsm–2 s–1 wasmeasured for 27 bryo-phyte species, andwas found to be in the range of 45–160 µl CO2 I–1air. Under the same conditions Zea mays gave a value of 11 µlI–1 and Horde um vulgare 76 µI–1. The rate of loss of photosyntheticallyfixed 14CO2 in the light and dark in six bryophytes (three mosses,two leafy liverworts, one thalloid liverwort) was determinedin CO2-free air and 100% O2. The rate of 14CO2 evolution inthe light was less than that in the dark in CL2-free air, butin 100% O2 the rate in the light increased, so that in all butthe leafy liverworts it was greater than that in the dark. Raisingthe temperature tended to increase the rate of 14CO2 evolutioninto CO2-free air both in the light and dark, so that the light/dark(L/D) ratio did not greatly vary. The lower rate of loss of14CO2 in the light compared tothe dark could be due to partialinhibition of ‘dark respiration’ reactions in thelight, a low rate of glycolate synthesis and oxidation, or partialreassimilation of the 14CO2 produced, or a combination of someor all of these factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号