首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Light Interception and Photosynthetic Efficiency in Some Glasshouse Crops   总被引:5,自引:0,他引:5  
Productivity of glasshouse crops is strongly limited by lightreceipt, and efficient interception and use of light in photosynthesisis correspondingly important. Mature row crop canopies of cucumberand tomato intercepted about 76% of the light incident on theirupper surfaces; about 18% was lost through gaps between therows. Light transmitted through the entire depth of the canopywas reflected back by white plastic on the ground, so that thelower surface of the canopy received approximately 13% of thelight incident on the upper surface. The light flux incidenton the sides of these canopies (c. 2m tall and 6m x 16m in area)amounted to some 20–30% of that incident on the uppersurface. About 32% of daylight falling on the glasshouse (c.9m x 18m in area) was intercepted by the glasshouse structureand glazing; of the 68% entering the house, some fell on headlandsoccupying 35% of the glasshouse area. The loss of light to headlands,and the gain from canopy side-lighting, would be relativelysmaller for larger glasshouses. At near-ambient CO2 concentrations, net photosynthetic ratesof the cucumber canopy were comparable to those of closed canopiesof other glasshouse and field crops which have maximum lightconversion efficiencies of 5–8µg CO2 J–1 at50–200 W m–2 incident light flux density. Efficiencydecreases only slightly with stronger light. Glasshouse cropswith CO2 enrichment to 1200 vpm achieve conversion efficienciesof 7–10µg CO2 J–1. Efficiencies of utilizationof intercepted light, on an energy basis, reach 6–10%in various field and glasshouse crops with near-ambient CO2,and reached an exceptional 11% for the cucumber canopy. Glasshousecrops with CO2 enrichment achieve maximum efficiency of lightenergy utilization between 12% and 13%. Key words: Glasshouse cucumber and tomato, light interception and utilization, photosynthetic efficiency, row crops  相似文献   

2.
The rates of CO2 assimilation by potted spray carnation plants(cv. Cerise Royalette) were determined over a wide range oflight intensities (45–450 W m–2 PAR), CO2 concentrations(200–3100 vpm), and leaf temperatures (5–35 °C).Assimilation rates varied with these factors in a way similarto the response of single leaves of other temperate crops, althoughthe absolute values were lower. The optimal temperature forCO2 assimilation was between 5 and 10 °C at 45 W m–2PAR but it increased progressively with increasing light intensityand CO2 concentration up to 27 °C at 450 W m–2 PARand 3100 vpm CO2 as expressed by the equation TOpt = –6.47-h 2.336 In G + 0.031951 where C is CO2 concentration in vpmand I is photo-synthetically active radiation in W m–2.CO2 enrichment also increased stomatal resistance, especiallyat high light intensities. The influence of these results on optimalization of temperaturesand CO2 concentrations for carnation crops subjected to dailylight variation, and the discrepancy between optimal temperaturesfor growth and net photosynthesis, are discussed briefly  相似文献   

3.
Wheat plants were grown in a controlled environment with daytemperatures of 18 ?C and with 500 µ Einsteins m–28–1 of photosynthetically active radiation for 16 h. Beforeanthesis and 2 to 3 weeks after, rates of net photosynthesiswere measured for leaves in 2 or 21% O2 containing 350 vpm CO2at 13, 18, 23, and 28 ?C and with 500 µEinsteins m–2s–1 of photosynthetically active radiation. Also, underthe same conditions of light intensity and temperature, therates of efflux of CO2 into CO2-free air were measured and,for mature flag leaves 3 to 4 weeks after anthesis, gross andnet photosynthesis from air containing 320 vpm 14CO2 of specificactivity 39?7 nCi µmol–1. When the O2 concentration was decreased from 21 to 2% (v/v)the rate of net photosynthesis increased by 32 per cent at thelowest temperature and 54 per cent at the highest temperature.Efflux of CO2 into CO2-free air ranged from 38 per cent of netphotosynthesis at 13 ?C to 86 per cent at 28 ?C. Gross photosynthesis,measured by the 14C assimilated during 40 s, was greater thannet photosynthesis by some 10 per cent at 13 ?C and 17 per centat 28 ?C. These data indicate that photorespiration was relativelygreater at higher temperatures.  相似文献   

4.
The rate of net photosynthesis (P) of whole plant stands oftomato (Lycopersicon esculentum Mill.), cucumber (Cucumis sativusL.) and sweet pepper (Capsicum annuum L.) was measured in sixlong-term experiments in large greenhouses under normal operatingconditions and CO2-concentrations between 200 and 1200 µmolmol-1. The objective was to quantify the responses to lightand carbon dioxide and to obtain data sets for testing simulationmodels. The method of measuring canopy photosynthesis involvedan accurate estimation of the greenhouse CO2 balance, usingnitrous oxide (N2O) as tracer gas to determine, on-line, theexchange rate between greenhouse and outside air. The estimatedrelative error in the observed P was about ± 10%, exceptthat higher relative errors could occur under particular conditions. A regression equation relating P to the photosynthetically activeradiation, the CO2 concentration and the leaf area index explained83-91% of the variance. The main canopy photosynthesis characteristicscalculated with the fitted regression equations were: canopyPmax 5-9 g m-2 h-1 CO2 uptake; ratio Pmax/LAI 1·5-3 gm-2 h-1; light compensation point 32-86 µmol s-1 m-2;light use efficiency (quantum yield) at low light 0·06-0·10µmol µmol-1 and CO2 compensation point 18-54 µmolmol-1. The results were related to the prevailing conditions.Copyright1994, 1999 Academic Press Canopy photosynthesis, Capsicum annuum L., carbon dioxide, CO2, CO2 balance, CO2 use efficiency, cucumber, Cucumis sativus L., glasshouse, greenhouse, light use efficiency, Lycopersicon esculentum Mill., sweet pepper, tomato, tracer gas  相似文献   

5.
The rates of net photosynthesis by closed canopies of tomatoplants were measured at three CO2 concentrations and three humiditiesover a range of natural light flux densities. The data havebeen analysed using a model of canopy photosynthesis which allowsfor variation in leaf area index and other leaf and canopy characteristics.The model also deals explicitly with the effects of CO2 concentration,leaf conductance, and photorespiration on the leaf photochemicalefficiency, . The leaves were found to have a photochemicalefficiency in the absence of photorespiration, m, of 12?6 ?10–9 kg (CO2) J–1. At a CO2 concentration of 0?73 ? 10–3 kg m–3 (400vpm) the leaf photochemical efficiency, , and canopy light utilizationefficiency, c, were 18 per cent greater at a vapour pressuredeficit of 0?5 kPa than at 1?0 kPa. At a CO2 concentration of2?2 ? 10–3 kg m–3 (1200 vpm) they were only 5 percent greater.  相似文献   

6.
Tomato plants were grown in solution culture in a controlledenvironment at 20 ?C with a 12 h photoperiod of 400 µmolquanta m–2 s–1 PAR with either normal ambient CO2,approximately 340 vpm, or with 1000 vpm CO2. The short- andlong-term effects of CO2 enrichment on photosynthesis were determinedtogether with the levels of ribulose-1, 5-bisphosphate carboxylase(RuBPco) E.C. 4.1.1.39 [EC] protein and activity throughout leafdevelopment of the unshaded 5th leaf above the cotyledons. Thehigh CO2 concentration during growth did not appreciably affectthe rate of leaf expansion or final leaf area but did increasethe fresh weight per unit area of leaf. With short-term CO2enrichment, i.e. only during the photosynthesis measurements,the light-saturated photosynthetic rate (Pmax) of young leavesdid not increase while those reaching full expansion more thandoubled their net rate of CO2 fixation. However, with longerterm CO2 enrichment, i.e. growing the crop in high CO2, theplants did not maintain this photosynthetic gain. While theCO2 concentration during growth did not affect the peak in Pmaxmeasured in 300 vpm CO2 or Pmax in 1000 vpm CO2, RuBPco proteinor its activity, the subsequent ontogenetic decline in theseparameters was greatly accelerated by the high CO2 treatment.Compared with plants grown in normal ambient CO2 the high CO2grown leaves, when almost fully expanded, contained only approximatelyhalf as much RuBPco protein and Pmax in 300 vpm CO2 and Pmaxin1000 vpm CO2 were similarly reduced. The loss of RuBPco proteinmay be a major factor associated with the accelerated fall inPmax since it was close to that predicted from the amount andkinetics of RuBPco assuming RuBP saturation. In the oldest leavesexamined grown in high CO2 additional factors may be limitingphotosynthesis since RuBPco kinetics marginally overestimatedPmax in 300 vpm CO2 and the initial slope of photosynthesisin response to intercellular CO2 was also less than expectedfrom the extractable RuBPco. Key words: Lycopersicon esculentum (Mill.) cv. Findon Cross, CO2 enrichment, acclimation to high CO2, photosynthesis, RuBPco protein and activity  相似文献   

7.
Net photosynthetic rates per unit ground area for plant standsof Solanum melongena L. var. esculentum (aubergine) and Amaranthuscaudatus L. var. edulis (grain amaranth) were measured over10 min intervals in an airtight, glass, controlled-environmentcabinet for a range of light flux densities provided by thediurnal variation in daylight. Light response curves for photosynthesisof stands, grown at ambient CO2 concentration, were definedat 400, 800 and 1200 vpm CO2. Light compensation points for these stands were around 20-30J m-2 s-1 and decreased slightly at higher CO2 concentrations.For aubergine, a C3 species, the short-term effects of CO2 enrichmentwere to increase the initial slope as well as the asymptoteof the light response curve, reducing light saturation at moderateto high light flux densities; but for amaranthus, a C4 species,saturation was less apparent and CO2 enrichment scarcely increasedphotosynthesis except at light flux densities above 150 J m-2s-1. The canopies intercepted 93-98% of incident light. The efficiencyof utilization of intercepted light in photosynthesis (µgCO2 J-1) increased from zero at the light compensation pointto a maximum at an optimum light flux density of about 100 Jm-2 s-1 (the optimum rose a little with CO2 enrichment) anddecreased slightly with further increase in light. Maximum utilizationefficiencies at 400 vpm CO2 were 8-9 µg CO2 J-1. Enrichmentto 1200 vpm did not affect the peak utilization efficiency ofthe C4 amaranthus, but increased that aubergine to 12·2µg CO2 J-1 (equivalent to some 14% when using the heatof combustion of plant dry matter to convert to the dimensionlessform). This is among the highest recorded efficiencies of lightutilization for stands, and relates to the exceptionally favourableenvironment, with optimal control of CO2 concentration, humidity,temperature, water supply and mineral nutrition.Copyright 1993,1999 Academic Press Amaranthus caudatus L. var. edulis, Solanum melongena L. var. esculentum, canopy photosynthesis, CO2 enrichment, light interception, light utilization, photosynthetic efficiency  相似文献   

8.
The relationships between CO2 concentrating mechanisms, photosyntheticefficiency and inorganic carbon supply have been investigatedfor the aquatic macrophyte Littorella uniflora. Plants wereobtained from Esthwaite Water or a local reservoir, with thelatter plants transplanted into a range of sediment types toalter CO2 supply around the roots. Free CO2 in sediment-interstitial-waterranged from 1–01 mol m–3 (Esthwaite), 0.79 mol m–3(peat), 0.32 mol m–3 (silt) and 0–17 mol m–3(sand), with plants maintained under PAR of 40 µmol m–2s–1. A comparison of gross morphology of plants maintained underthese conditions showed that the peat-grown plants with highsediment CO2 had larger leaf fresh weight (0–69 g) andtotal surface area (223 cm2 g–1 fr. wt. including lacunalsurface area) than the sand-grown plants (0.21 g and 196 cm2g–1 fr. wt. respectively). Root fresh weights were similarfor all treatments. In contrast, leaf internal CO2 concentration[CO2], was highest in the sand-grown plants (2–69 molm–3, corresponding to 6.5% CO2 in air) and lowest inthe Esthwaite plants (1–08 mol m–3). Expressionof CAM in transplants was also greatest in the low CO2 regime,with H+ (measured as dawn-dusk titratable acidity) of 50µmolg fr. wt., similar to Esthwaite plants in natural sediment.Assuming typical CAM stoichiometry, decarboxylation of malatecould account largely for the measured [CO2]1 and would makea major contribution to daytime CO2 fixation in vivo. A range of leaf sections (0–2, 1–0, 5–0 and17–0 mm) was used to evaluate diffusion limitation andto select a suitable size for comparative studies of photosyntheticO2 evolution. The longer leaf sections (17.0 mm), which weresealed and included the leaf tip, were diffusion-limited witha linear response to incremental addition of CO2 and 1–0mol m–3 exogenous CO2 was required to saturate photosynthesis.Shorter leaf sections were less diffusion-limited, with thegreatest photosynthetic capacity (36 µmol O2 g–1 fr. wt. h–1) obtainedfrom the 1.0 mm size and were not infiltrated by the incubatingmedium. Comparative studies with 1.0 mm sections from plants grown inthe different sediment types revealed that the photosyntheticcapacity of the sand-grown plants was greatest (45 µmolO2 g–1 fr. wt. h–1) with a K0.5 of 80 mmol m–3.In terms of light response, saturation of photosynthesis intissue slices occurred at 850–1000 µmol m–2s–1 although light compensation points (6–11 µmolm–2s–1) and chlorophyll a: b ratios (1.3) were low.While CO2 and PAR responses were obtained using varying numbersof sections with a constant fresh weight, the relationshipsbetween photosynthetic capacity and CO2 supply or PAR were maintainedwhen the data were expressed on a chlorophyll basis. It is concludedthat under low PAR, CO2 concentrating mechanisms interact inintact plants to maintain saturating CO2 levels within leaflacunae, although the responses of the various components ofCO2 supply to PAR require further investigation. Key words: Key words-Uttorella uniflora, internal CO2 concentration, crassulacean acid metabolism, root inorganic carbon supply, CO2 concentrating mechanism  相似文献   

9.
The responses of net CO2 assimilation to sudden changes in irradiancewere studied in Phaseolus vulgaris L. in the laboratory andthe field. For irradiance changes between 50 µmol m–2s–1 to 350 µmol m–2 s–1 in the laboratory,assimilation rate increased with half-times of 2.7 and 4.1 minin well-watered and water-stressed plants, respectively. Ina field experiment with a change in irradiance from 400 to 1200µmol m–2 s–1 the response was faster (half-time=c.1.2 min). In all cases when irradiance was returned to a lowvalue, assimilation declined rapidly with a half-time of approximately1 min, which approached the time resolution of the gas-exchangesystem. The corresponding changes in stomatal conductance in responseto both increasing and decreasing irradiance were much slowerthan the assimilation responses, indicating that biochemicalprocesses, rather than CO2 supply, primarily determined theactual rate of assimilation in these experiments. The conceptof stomatal limitation to photosynthesis is discussed in relationto these results. A simple model for assimilation in a fluctuating light environmentis proposed that depends on a steadystate light response curve,an ‘induction lag’ on increasing irradiance, andan induction-state memory. The likely importance of taking accountof such induction lags in natural canopy microclimates is considered. Key words: Models, Phaseolus vulgaris, photosynthetic induction, CO2 assimilation, stomatal limitation, sunflecks, water stress  相似文献   

10.
Effects of atmospheric CO2 enrichment to a level above 600 parts10–6 on leaf and canopy gas exchange characteristics wereinvestigated in Trifolium repens, using an open system for gasexchange measurement. The cuvettes of the system served as growthchambers, allowing continuous measurement in a semi-controlledenvironment of ±350 and ±600 parts 10–6CO2, respectively. Carbon balance data were compared with cropyield and effects on the canopy level were compared with measuredleaf responses of photosynthesis and stomatal behaviour. Photosyntheticstimulation by high CO2 was stronger at the canopy level (103%on average) than for leaves (90% in full light), as a consequenceof accelerated foliage area development. The latter increasedabsolute water consumption by 16%, despite strong stomatal closure.The overall result was a 63% improvement in canopy water useefficiency (WUE), while leaf WVE increased almost 3-fold insaturating light. The stomatal response was such that, whilethe internal CO2 concentration in the leaf, ch increased withrising atmospherical CO2 concentration, ca, ci/ca was somewhatdecreased. Total canopy resistance, Rc, was generally lowerat high CO2 levels, despite higher leaf resistance. Higher canopyCO2 loss at night and faster light extinction in a larger-sizedhigh CO2 canopy were major drawbacks which prevented a furtherincrease in dry matter production (the harvest index was increasedby a factor 1.83). Key words: CO2 enrichment, canopy CO2 exchange, carbon balance, water use efficiency, leaf and canopy resistance  相似文献   

11.
The carbon balance of shade-grown Ananas comosus was investigatedwith regard to nitrogen supply and responses to high PAR. Netdark CO2 uptake was reduced from 61.2 to 38.5 mmol CO2 m–2in N limited (–N) plants grown under low PAR (60 µmolm–2 s–1) and apparent photon yield declined from0.066 to 0.034 (mol 02.mol–1 photon), although photosyntheticcapacities (measured under 5% CO2) were similar. Following transferfor 7 d to high PAR (600. µmol m–2 s–1), netCO2 uptake at night increased by 14% in +N plants, and daytimephotosynthetic capacity was higher, with a maximum value of7.8 µmol m–2 s–1. The magnitude of dark CO2 fixation during CAM was measured asdawn—dusk variations in leaf-sap titratable acidity (H+)and as the proportion of malic and citric acids. The contributionfrom re-fixation of respiratory CO2 recycling (measured as thedifference between net CO2 uptake and malic acid accumulation)varied with growth conditions, although it was generally lower(30%) than reported for other bromeliads. Assuming a stoichiometryof 2H+: malate and 3H+: citrate, there was a good agreementbetween titratable protons and enzymatically determined organicacids. The accumulation of citric acid was related to nitrogensupply and PAR regime, increasing from 7.0 mol m–3 (+Nplants) to 18 mol m–3 (–N plants) when plants weretransferred to high PAR; malate: citrate ratios decreased from13.1 to 2.5 under these conditions. Under the low PAR regime, leaf-sap osmotic pressure increasedat night in proportion to malic acid accumulation. However,following the transfer to high PAR for 7 d, there was a muchgreater depletion of soluble sugars at night which correspondedto a decrease in leaf-sap osmotic pressure. Although a rolefor citric acid in CAM has not been properly defined, it appearsthat the accepted stoichiometry for CAM in terms of gas exchange,titratable acidity, malic acid and osmotic pressure may nothold for plants which accumulate citric acid. Key words: Ananas comosus, CAM, citric acid accumulation, carbon recycling  相似文献   

12.
Gas exchange and organic acid accumulation of the C3-CAM intermediateClusia minor L. were investigated in response to various day/nighttemperatures and two light regimes (low and high PAR). For bothlight levels equal day/night temperatures between 20°C and30°C caused a typical C3 gas exchange pattern with all CO2uptake occurring during daylight hours. A day/ night temperatureof 15°C caused a negative CO2 balance over a 24 h periodfor low-PAR-grown plants while high-PAR-grown plants showeda CAM gas exchange pattern with most CO2 uptake taking placeduring the dark period. However, there was always a considerablenight-time accumulation of malic acid which increased when thenight-time temperature was lowered and had its maximum (54 mmolm–2) at day/night temperature of 30/15°C. A significantamount of malic acid accumulation (23 mmol m–2) in low-PAR-grownplants was observed only at 30/15°C. Recycling of respiratoryCO2 in terms of malic acid accumulation reached between 2·0and 21·5 mmol m–2 for high-PAR-grown plants whilethere was no significant recycling for low-PAR-grown plants.Both low and high-PAR-grown plants showed considerable night-timeaccumulation of citric acid. Indeed under several temperatureregimes low-PAR-grown plants showed day/night changes in citricacid levels whereas malic acid levels remained approximatelyconstant or slightly decreased. It is hypothesized that lowand high-PAR-grown plants have different requirements for citrate.In high-PAR-grown plants, the breakdown of citrate preventsphotoinhibition by increasing internal CO2 levels, whereas inlow-PAR-grown plants the night-time accumulation of citric acidmay function as an energy and carbon saving mechanism. Key words: C. minor, C3, CAM, citric acid, light intensity  相似文献   

13.
The relationships between photosynthesis, dry matter accumulationand translocation have been studied during the development ofthe first true leaf of cucumber. The leaf was grown in an irradianceof 50W m–2 photosynthetically active radiation for 10h–1 at 20 C and 2 g m–3 CO2. The maximum rate of net photosynthesis, on a leaf area basis,occured at full expansion. Photochemical efficiency, based onincident radiation, also increased up to this stage and wasrelated to the concentration of chlorophyll in the leaf. Darkrespiration and the light compensation point fell over the wholeperiod of leaf expansion. A carbon budget analysis showed that the rate of carbon accumulationin the leaf reached a peak at 70 percent expansion. The leafchanged from a net importer to a net exporter of carbon whenit was about 30 percent expanded. The rate of export increasedwith leaf expansion (and with net photosynthesis) and was twiceas high in the day an in the night at full expansion. At fullleaf expansion there was a reduction in the amount of starchlost overnight, and the carbon exported amounted to 80 per centof the daily net carbon fixed. Cucumber, Cumic satinu L., leaf development, photosynthesis, translocation, carbon budget, mineral content  相似文献   

14.
Measurements of microclimate and photosynthesis of lucerne var.Europe were made in the field during the spring of 1976. Themaximum rate of canopy gross photosynthesis (14.3 g CO2 m–2h–1, I = ) was 2.5 times greater than that of S 24 perennialryegrass at the same LAI. This difference was due to differencesin individual leaf photosynthesis. The photosynthetic rate ofthe youngest fully expanded leaf of lucerne remained constantthroughout the experimental period at 3.6 g CO2 m–2 h–1(300 W m–2). Measurements of soil water potential profiles indicated thatlucerne extracted water from the soil to a depth of at least800 mm, with a region of maximum uptake between 400 and 600mm. This capability, with a moderate mean leaf resistance of460 s m–1, conferred a high assimilation efficiency onlucerne, with a mean water use efficiency of 34 g H2O lost pergram of carbohydrate assimilated, compared with 200 g H2O pergram of carbohydrate for S 24. Medicago sativa L, lucerne, photosynthesis, assimilation efficiency  相似文献   

15.
The effects of growth at elevated CO2 on the response to hightemperatures in terms of carbon assimilation (net photosynthesis,stomatal conductance, amount and activity of Rubisco, and concentrationsof total soluble sugars and starch) and of photochemistry (forexample, the efficiency of excitation energy captured by openphotosystem II reaction centres) were studied in cork oak (Quercussuber L.). Plants grown in elevated CO2 (700 ppm) showed a down-regulationof photosynthesis and had lower amounts and activity of Rubiscothan plants grown at ambient CO2 (350 ppm), after 14 monthsin the greenhouse. At that time plants were subjected to a heat-shocktreatment (4 h at 45C in a chamber with 80% relative humidityand 800–1000 mol m–2 s–1 photon flux density).Growth in a CO2-enriched atmosphere seems to protect cork oakleaves from the short-term effects of high temperature. ElevatedCO2 plants had positive net carbon uptake rates during the heatshock treatment whereas plants grown at ambient CO2 showed negativerates. Moreover, recovery was faster in high CO2-grown plantswhich, after 30 min at 25C, exhibited higher net carbon uptakerates and lower decreases in photosynthetic capacity (Amax aswell as in the efficiency of excitation energy captured by openphotosystem II reaction centres (FvJFm than plants grown atambient CO2. The stomata of elevated CO2 plants were also lessresponsive when exposed to high temperature. Key words: Elevated CO2, temperature, acclimation, photosynthesis, Quercus suber L.  相似文献   

16.
Mistletoes usually have slower rates of photosynthesis thantheir hosts. This study examines CO2assimilation, chlorophyllfluorescence and the chlorophyll content of temperate host–parasitepairs (nine hosts parasitized by Ileostylus micranthus and Carpodetusserratus parasitized by Tupeia antarctica). The hosts of I.micranthus had higher mean annual CO2assimilation (3.59 ±0.41 µmol m-2 s-1) than I. micranthus(2.42 ± 0.20µmol m-2 s-1), and C. serratus(2.41 ± 0.43 µmolm-2 s-1) showed higher CO2assimilation than T. antarctica(0.67± 0.64 µmol m-2 s-1). Hosts saturated at significantlyhigher electron transport rates (ETR) and light levels thanmistletoes. The positive relationship between CO2assimilationand electron transport suggests that the lower CO2assimilationrates in mistletoes are a consequence of lower electron transportrates. When photosynthetic rates, ETR and chlorophyll a /b ratioswere adjusted for photosynthetically active radiation, hostsdid not have significantly higher CO2assimilation (3.21 ±0.37 µmol m-2 s-1) than mistletoes (2.54 ± 0.41µmol m-2 s-1), but still had significantly higher ETRand chlorophyll a / b ratios. The electron transport rates,saturating light and chlorophyll a / b ratios of sun leavesfrom mistletoes were similar to host shade leaves. These responsesindicate that in comparison with their hosts, mistletoe leaveshave the photosynthetic characteristics of the leaves of shadeplants. Copyright 2000 Annals of Botany Company CO2assimilation, photosynthetic active radiation (PAR), chlorophyll fluorescence, electron transport rate (ETR), photochemical quenching (qp), non-photochemical quenching (qn), sun and shade leaves, chlorophyll content, Ileostylus micranthus, Tupeia antarctica, New Zealand  相似文献   

17.
ROBSON  M. J. 《Annals of botany》1973,37(3):501-518
The rates of net photosynthesis (Pn,c) in the light (85 W m–2visible), and respiration in the dark, of a simulated swardof S24 ryegrass were measured for 12 weeks during its developmentfrom a collection of two-leaved seedlings to a closed canopywith an LAI of 23 (15 of green leaf laminae). By the sixth week light interception was complete (LAI = 10.6)and Pn,c had risen to 24 mg CO2 dm–2 h–1, similarto rates recorded in the field. Photosynthetic functions (lightresponse curves) showed that the swards remained unsaturatedup to energy receipts of almost 400 W m–2, whereas singleleaves were light saturated at about 130 W m–2. Earlyin the development of the sward LAI had a greater effect onPn,c than radiation receipt, later the reverse was true. Thegrowth habit of the sward ranged from moderately erect (an Svalue of 0.72) to moderately prostrate (‘S’ = 0.37),while the ability of the two youngest fully expanded leaveson a tiller to make use of light in photosynthesis declinedas the sward increased in density from values of A max of 20to 5 mg CO2 dm–2 h–1. By varying the values of Sand A max fed into a model of canopy photosynthesis, withinthe above limits, it was demonstrated that, in practice, A maxis a greater determinant of canopy photosynthesis than S, exceptat low LAI where a prostrate sward has a marked advantage overan erect one. The rate of dark respiration rose as the swards increased inweight, although not in proportion to it, until the ninth weekwhen a ceiling yield of live plant tissue was reached. Respiratorylosses from the sward came almost equally from a component associatedwith maintenance (Rm) and one associated with growth (Rg). Therate of Rm was estimated to be about 0.014 g day–1 pergram of plant tissue, and that of Ra about 0.25 g per gram ofnew tissue produced—both close to theoretical values.The measured dry matter production curve of the swards was comparedwith that estimated from the gas analysis data. Similarly therates of gross photosynthesis estimated from the gas analysisdata were compared with the predictions of the mathematicalmodel. In both cases the fit was reasonably good. A balancesheet was drawn up; of every 100 units of carbon fixed, 45 werelost in respiration and 16 as dead leaf, 5 ended up in the rootand 6 in the stubble; only 28 remained as harvestable live leaftissue.  相似文献   

18.
The effect of high light and root chilling on gas exchange,chlorophyll fluorescence, and bulk shoot water potential (shoot)was examined for Pinus sylvestris seedlings. Transferring plantsfrom low light (200 µmol m–2s–1, PAR) anda soil temperature of 15 °C to high light (850 µmolm–2 s–1) and 1 °C caused >90% decrease innet photosynthesis and leaf conductance measured at 350 mm3dm-3 CO2, and a decrease in the ratio of variable to maximumfluorescence (Fv/Fm) from 0.83 to 0.63. The decrease in Fv/Fmwas, however, only marginally greater than when seedlings weretransferred from low to high light but kept at a soil temperatureof 15 °C. Thus, photoinhibition was a minor component ofthe substantial decrease observed for net photosynthesis at1 °C soil temperature. The decrease in net photosynthesisand shoot at 1 °C was associated with an increase in calculatedintracellular CO2 concentration, suggesting that non-stomatalfactors related to water stress were involved in inhibitingcarbon assimilation. Measurements at saturating external CO2concentration, however, indicate that stomatal closure was thedominant factor limiting net photosynthesis at low soil temperature.This interpretation was confirmed with additional experimentsusing Pinus taeda and Picea engelmannii seedlings. Decreasesin gas-exchange variables at 5 °C soil temperature werenot associated with changes in shoot Thus, hormonal factors,localized decreases in needles or changes in xylem flux maymediate the response to moderate root chilling.  相似文献   

19.
Acclimation of Lolium temulentum to enhanced carbon dioxide concentration   总被引:2,自引:0,他引:2  
Acclimation of single plants of Lolium temulentum to changing[CO2] was studied on plants grown in controlled environmentsat 20°C with an 8 h photoperiod. In the first experimentplants were grown at 135 µ;mol m–2 s–1 photosyntheticphoton flux density (PPFD) at 415µl l–1 or 550µll–1 [CO2] with some plants transferred from the lowerto the higher [CO2] at emergence of leaf 4. In the second experimentplants were grown at 135 and 500 µmol m–2 s–1PPFD at 345 and 575 µl l–1 [CO2]. High [CO2] during growth had little effect on stomatal density,total soluble proteins, chlorophyll a content, amount of Rubiscoor cytochrome f. However, increasing [CO2] during measurementincreased photosynthetic rates, particularly in high light.Plants grown in the higher [CO2] had greater leaf extension,leaf and plant growth rates in low but not in high light. Theresults are discussed in relation to the limitation of growthby sink capacity and the modifications in the plant which allowthe storage of extra assimilates at high [CO2]. Key words: Lolium, carbon dioxide, photosynthesis, growth, stomatal density  相似文献   

20.
In "air-grown" Chroomonas sp. cells, low concentrations of DCMU(less than 0.1 µM) could prevent the inhibition of 14CO2fixation by anaerobiosis under light-saturating conditions (morethan 40 W.m–2), with phenazine methosulfate showing asimilar effect. Antimycin A, carbonyl cyanide m-chlorophenylhydrazone(CCCP), and N,N'-dicyclohexylcarbodiimide strongly inhibitedanaerobic photosynthesis at concentrations which did not significantlyinhibit the rate under 2% O2 at high light intensity (200 W.m–2),although 0.2 µM CCCP stimulated the rate under 2% O2 tosome extent. On the other hand, KCN inhibited the rate muchmore strongly under 2% O2 than N2, although it inhibited therate very strongly at concentrations above 5 µM both underN2 and 2% O2. These results suggest that the inhibition of photosynthetic14CO2 fixation by anaerobiosis in this alga result from ATPdeficiency caused by over-reduction of electron carriers ofthe cyclic electron flow and that oxygen can prevent the over-reduction.Cyclic electron flow seems to be necessary to provide additionalATP for CO2 reduction under anaerobic conditions, although itseems to be less necessary under aerobic conditions. (Received July 21, 1983; Accepted January 23, 1984)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号