首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
An enzyme having both UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) pyrophosphorylase activities was purified to homogeneity from Bifidobacterium bifidum. The molecular weight of the enzyme was about 200,000 and it appeared to be composed of four identical subunits. The purified enzyme showed almost the same reactivity towards UDP-Glc and UDP-Gal, and showed about 10% of this activity towards UDP-xylose at 8 mM. The enzyme required magnesium ions for maximum activity. The apparent equilibrium constants were about 2.5 for UDP-Glc pyrophosphorolysis and 1.1 for UDP-Gal pyrophosphorolysis. The enzyme activities were inhibited by various nucleotides (product or substrate analogs). Some sugar phosphates, such as fructose 6-P, erythrose 4-P, and 3-phosphoglycerate, stimulated the activities. These properties are discussed in relation to the significance of the enzyme in galactose metabolism of B. bifidum.  相似文献   

2.
Glycosyltransferases A and B utilize the donor substrates UDP-GalNAc and UDP-Gal, respectively, in the biosynthesis of the human blood group A and B trisaccharide antigens from the O(H)-acceptor substrates. These enzymes were cloned as synthetic genes and expressed in Escherichia coli, thereby generating large quantities of enzyme for donor specificity evaluations. The amino acid sequence of glycosyltransferase A only differs from glycosyltransferase B by four amino acids, and alteration of these four amino acid residues (Arg-176-->Gly, Gly-235-->Ser, Leu-266-->Met and Gly-268-->Ala) can change the donor substrate specificity from UDP-GalNAc to UDP-Gal. Crossovers in donor substrate specificity have been observed, i.e., the A transferase can utilize UDP-Gal and B transferase can utilize UDP-GalNAc donor substrates. We now report a unique donor specificity for each enzyme type. Only A transferase can utilize UDP-GlcNAc donor substrates synthesizing the blood group A trisaccharide analog alpha-D-Glcp-NAc-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2 )7CH3 (4). Recombinant blood group B was shown to use UDP-Glc donor substrates synthesizing blood group B trisaccharide analog alpha-D-Glcp-(1-->3)-[alpha-L-Fucp-(1-->2)]-beta-D-Galp-O-(CH2) 7CH3 (5). In addition, a true hybrid enzyme was constructed (Gly-235-->Ser, Leu-266-->Met) that could utilize both UDP-GlcNAc and UDP-Glc. Although the rate of transfer with UDP-GlcNAc by the A enzyme was 0.4% that of UDP-GalNAc and the rate of transfer with UDP-Glc by the B enzyme was 0.01% that of UDP-Gal, these cloned enzymes could be used for the enzymatic synthesis of blood group A and B trisaccharide analogs 4 and 5.  相似文献   

3.
Guo H  Li L  Wang PG 《Biochemistry》2006,45(46):13760-13768
The O-antigen of lipopolysaccharide in Gram-negative bacteria plays an important role in bacterium-host interactions. Escherichia coli O86:B7 O-unit contains five sugar residues: one fucose (Fuc) and two each of N-acetylgalactosamine (GalNAc) and galactose (Gal). The entire O-antigen gene cluster was previously sequenced: orf1 was assigned the gne gene for the biosynthesis of UDP-GalNAc. To confirm this annotation, overexpression, purification, and biochemical characterization of Gne were performed. By using capillary electrophoresis, we showed that Gne can catalyze the interconversion of both UDP-GlcNAc/GalNAc and UDP-Glc/Gal almost equally well. The Km values of Gne for UDP-Glc, UDP-Gal, UDP-GlcNAc, and UDP-GalNAc are 370, 295, 323, and 373 microM, respectively. The comparison of kinetic parameters of Gne from Escherichia coli O86:B7 to those of other characterized UDP-GlcNAc/Glc 4-epimerases indicated that it has relaxed specificity toward the four substrates, the first characterized enzyme to have this activity in the O-antigen biosynthesis. Moreover, the calculated kcat/Km values for UDP-GalNAc and UDP-Gal are approximately 2-4 times higher than those for UDP-GlcNAc and UDP-Glc, suggesting that Gne is slightly more efficient for the epimerization of UDP-GalNAc and UDP-Gal. One mutation (S306Y) resulted in a loss of epimerase activity for non-acetylated substrates by about 5-fold but totally abolished the activity for N-acetylated substrates, indicating that residue S306 plays an important role in the determination of substrate specificity.  相似文献   

4.
Interconversion of UDP-glucose (UDP-Glc) and UDP-galactose (UDP-Gal) by the UDP-Glc 4´-epimerase intimately connects the biosynthesis of these two nucleotide sugars. Their de novo biosynthesis involves transformation of glucose-6-phosphate into glucose-1-phosphate by the phosphoglucomutase and subsequent activation into UDP-Glc by the specific UDP-Glc pyrophosphorylase (UGP). Besides UGP, Leishmania parasites express an uncommon UDP-sugar pyrophosphorylase (USP) able to activate both galactose-1-phosphate and glucose-1-phosphate in vitro. Targeted gene deletion of UGP alone was previously shown to principally affect expression of lipophosphoglycan, resulting in a reduced virulence. Since our attempts to delete both UGP and USP failed, deletion of UGP was combined with conditional destabilisation of USP to control the biosynthesis of UDP-Glc and UDP-Gal. Stabilisation of the enzyme produced by a single USP allele was sufficient to maintain the steady-state pools of these two nucleotide sugars and preserve almost normal glycoinositolphospholipids galactosylation, but at the apparent expense of lipophosphoglycan biosynthesis. However, under destabilising conditions, the absence of both UGP and USP resulted in depletion of UDP-Glc and UDP-Gal and led to growth cessation and cell death, suggesting that either or both of these metabolites is/are essential.  相似文献   

5.
Analogs of the mRNA cap are widely employed to study processes involved in mRNA metabolism as well as being useful in biotechnology and medicinal applications. Here we describe synthesis of six dinucleotide cap analogs bearing a single phosphorothioate modification at either the alpha, beta, or gamma position of the 5',5'-triphosphate chain. Three of them were also modified with methyl groups at the 2'-O position of 7-methylguanosine to produce anti-reverse cap analogs (ARCAs). Due to the presence of stereogenic P centers in the phosphorothioate moieties, each analog was obtained as a mixture of two diastereomers, D1 and D2. The mixtures were resolved by RP HPLC, providing 12 different compounds. Fluorescence quenching experiments were employed to determine the association constant (K(AS)) for complexes of the new analogs with eIF4E. We found that phosphorothioate modifications generally stabilized the complex between eIF4E and the cap analog. The most strongly bound phosphorothioate analog (the D1 isomer of the beta-substituted analog m(7)Gpp(S)pG) was characterized by a K(AS) that was more than fourfold higher than that of its unmodified counterpart (m(7)GpppG). All analogs modified in the gamma position were resistant to hydrolysis by the scavenger decapping pyrophosphatase DcpS from both human and Caenorhabditis elegans sources. The absolute configurations of the diastereomers D1 and D2 of analogs modified at the alpha position (i.e., m(7)Gppp(S)G and m(2) (7,2'-O )Gppp(S)G) were established as S(P) and R(P) , respectively, using enzymatic digestion and correlation with the S(P) and R(P) diastereomers of guanosine 5'-O-(1-thiodiphosphate) (GDPalphaS). The analogs resistant to DcpS act as potent inhibitors of in vitro protein synthesis in rabbit reticulocyte lysates.  相似文献   

6.
7.
Galactinol, 1-O-(alpha-D-galactopyranosyl)-myo-inositol, was produced from sucrose as a starting material. UDP-Glc was prepared with sucrose and UDP using sucrose synthase partially purified from sweet potato roots. Then, the UDP-Glc was converted to UDP-Gal using yeast UDP-Gal 4-epimerase from a commercial source. Finally, galactinol was produced from the UDP-Gal and myo-inositol using galactinol synthase partially purified from cucumber leaves. The product was identified as galactinol by the retention times of HPLC, alpha-galactosidase digestion, and NMR spectrometry.  相似文献   

8.
A UDP-Gal:N-acetylglucosamine beta(1,4)-galactosyltransferase which catalyzes the synthesis of beta-D-Gal(1,4)-D-GlcNAc units has been purified 17,560-fold from Ehrlich tumor cells to apparent electrophoretic homogeneity. The enzyme appears to be a monomeric protein with Mr = 56,000-58,000. Enzymatic activity requires the presence of MnCl2, is stimulated by detergent, and exhibits a pH optimum at 6.9. The Km values for GlcNAc and UDP-Gal are 1.89 and 0.046 mM, respectively. The Ehrlich cell beta-galactosyltransferase acts efficiently on glycoproteins and glycolipids terminating in GlcNAc, but is inactive toward glycoconjugates possessing terminal GalNAc units. The oligosaccharides beta-D-GlcNAc(1,3)-D-Gal and beta-D-GlcNAc(1,3)[beta-D-GlcNAc(1,6)]-D-Gal are good acceptors for the beta-galactosyltransferase from Ehrlich cells, suggesting that the enzyme may participate in the biosynthesis of i/I structures. In addition, other linear and branched sugars presenting GlcNAc residues at their nonreducing termini also act as acceptors for the enzyme. The activity of Ehrlich cell beta-galactosyltransferase both in the presence and absence of alpha-lactalbumin has been studied using a series of derivatives of Glc and GlcNAc which were substituted at various positions of the pyranose ring. This study has provided a map of the molecular contacts necessary for enzymatic activity in the presence and in the absence of alpha-lactalbumin.  相似文献   

9.
Microsome preparations extracted from wheat roots or sycamore cell suspensions catalyzed the transfer of sugar from nucleotide-sugars to endogenous lipidic acceptors. The nature of the products biosynthesized from UDP-Glc, GDP-Glc, UDP-Gal, UDP-Xyl or UDP-Arab was examined. Sterylglycosides were obtained from UDP-Gglc, GDP-Glc or UDP-Xyl. Galactosyldiglycerides were synthesized from UDP-Gal. When UDP-Glc or UDP-Gal was used as a substrate, a membrane-bound 4-epimerase interconverted the epimeric nucleotide-sugars, thereby allowing the simultaneous biosynthesis of galactosyldiglycerides and sterylglucosides. The biosynthesis of free and acylated sterylglucosides from UDP-Glc, without interference of other glycosyl transfer reactions, was obtained by the omission of Mg++ ions from the incubation medium. The biosynthesis of galactosyldiglycerides from UDP-Gal without interference of other transfer reactions was obtained when digitonin was added to the incubation medium of sycamore microsomes.  相似文献   

10.
The O-linked oligosaccharides (O-glycans) in mammalian glycoproteins are classified according to their core structures. Among the most common is the core 1 disaccharide structure consisting of Galbeta1-->3GalNAcalpha1-->Ser/Thr, which is also the precursor for many extended O-glycan structures. The key enzyme for biosynthesis of core 1 O-glycan from the precursor GalNAc-alpha-Ser/Thr is UDP-Gal:GalNAc-alpha-Ser/Thr beta3-galactosyltransferase (core1 beta3-Gal-T). Core 1 beta3-Gal-T activity, which requires Mn2+, was solubilized from rat liver membranes and purified 71,034-fold to apparent homogeneity (>90% purity) in 5.7% yield by ion exchange chromatography on SP-Sepharose, affinity chromatography on immobilized asialo-bovine submaxillary mucin, and gel filtration chromatography on Superose 12. The purified enzyme is free of contaminating glycosyltransferases. Two peaks of core 1 beta3-Gal-T activity were identified in the final step on Superose 12. One peak of activity contained protein bands on non-reducing SDS-PAGE of approximately 84- and approximately 86-kDa disulfide-linked dimers, whereas the second peak of activity contained monomers of approximately 43 kDa. Reducing SDS-PAGE of these proteins gave approximately 42- and approximately 43-kDa monomers. Both the 84/86-kDa dimers and the 42/43-kDa monomers have the same novel N-terminal sequence. The purified enzyme, which is remarkably stable, has an apparent Km for UDP-Gal of 630 microm and an apparent Vmax of 206 micromol/mg/h protein using GalNAcalpha1-O-phenyl as the acceptor. The reaction product was generated using asialo-bovine submaxillary mucin as an acceptor; treatment with O-glycosidase generated the expected disaccharide Galbeta1-->3GalNAc. These studies demonstrate that activity of the core 1 beta1,3-Gal-T from rat liver is contained within a single, novel, disulfide-bonded, dimeric enzyme.  相似文献   

11.
The biosynthesis of galactosyl-beta 1,3-N-acetylglucosamine has been demonstrated using membrane preparations from pig trachea. Unlike the UDP-galactose:2-acetamido-2-deoxy-D-glucose 4 beta-galactosyltransferase, which is inhibited by high levels of N-acetylglucosamine, the UDP-galactose:N-acetylglucosamine 3 beta-galactosyltransferase shows no inhibition at 200 mM N-acetylglucosamine. About 80% of the total disaccharide synthesized at 200 mM N-acetylglucosamine was base-labile suggesting the 1,3-linkage, alpha-Lactalbumin inhibits galactose incorporation into galactosyl-beta 1,4-N-acetylglucosamine but has little or no effect on the activity of the 1,3-galactosyltransferase. Escherichia coli beta-galactosidase readily hydrolyzed the base-stable product, but not the base-labile component. The apparent 1,3-linked disaccharide was reduced with NaBH4 and was isolated by Bio-Gel P-2 column chromatography. Methylation analysis by gas chromatography/mass spectrometry showed tetramethyl galactose and a 3-substituted N-acetylglucosaminitol. Neither the beta 1,4 nor the beta 1,3 disaccharide was hydrolyzed by green coffee bean alpha-galactosidase. Both disaccharides were readily hydrolyzed by bovine testes beta-galactosidase. This is the first report on the galactosyltransferase which catalyzes the synthesis of the galactosyl-beta 1,3-N-acetylglucosamine linkage such as found in the Type I chain of human blood group substances. A tissue survey in rats showed only rat intestine to have readily detectable UDP-galactose: N-acetylglucosamine 3 beta-galactosyltransferase activity. The intestinal membrane fraction like the tracheal enzyme catalyzes the synthesis of two disaccharides as judged by base treatment, and these appear to be the beta 1,3 and beta 1,4 isomers of galactosyl-N-acetylglucosamine.  相似文献   

12.
The major cell-surface carbohydrates (lipooligosaccharide, capsule, and glycoprotein N-linked heptasaccharide) of Campylobacter jejuni NCTC 11168 contain Gal and/or GalNAc residues. GalE is the sole annotated UDP-glucose 4-epimerase in this bacterium. The presence of GalNAc residues in these carbohydrates suggested that GalE might be a UDP-GlcNAc 4-epimerase. GalE was shown to epimerize UDP-Glc and UDP-GlcNAc in coupled assays with C. jejuni glycosyltransferases and in sugar nucleotide epimerization equilibria studies. Thus, GalE possesses UDP-GlcNAc 4-epimerase activity and was renamed Gne. The Km(app) values of a purified MalE-Gne fusion protein for UDP-GlcNAc and UDP-GalNAc are 1087 and 1070 microm, whereas those for UDP-Glc and UDP-Gal are 780 and 784 microm. The kcat and kcat/Km(app) values were three to four times higher for UDP-GalNAc and UDP-Gal than for UDP-GlcNAc and UDP-Glc. The comparison of the kinetic parameters of MalE-Gne to those of other characterized bacterial UDP-GlcNAc 4-epimerases indicated that Gne is a bifunctional UDP-GlcNAc/Glc 4-epimerase. The UDP sugar-binding site of Gne was modeled by using the structure of the UDP-GlcNAc 4-epimerase WbpP from Pseudomonas aeruginosa. Small differences were noted, and these may explain the bifunctional character of the C. jejuni Gne. In a gne mutant of C. jejuni, the lipooligosaccharide was shown by capillary electrophoresis-mass spectrometry to be truncated by at least five sugars. Furthermore, both the glycoprotein N-linked heptasaccharide and capsule were no longer detectable by high resolution magic angle spinning NMR. These data indicate that Gne is the enzyme providing Gal and GalNAc residues with the synthesis of all three cell-surface carbohydrates in C. jejuni NCTC 11168.  相似文献   

13.
A recombinant analog of human choriogonadotropin beta-subunit descarboxyl-terminal peptide (115-145 residues, delhCG beta) was obtained by the expression of corresponding beta cDNA in the baculovirus expression system. The efficiency of expression and secretion was high. The recombinant delhCG beta was purified by immunoaffinity using a specific monoclonal antibody against hCG beta and reverse phase high performance liquid chromatography. The hCG beta analog lacked the carboxyl-terminal 31-residue peptide as well as the four O-linked carbohydrates. Also, the N-linked "complex" type carbohydrates in the deletion mutant were modified to the high mannose type. The apparent molecular weights of delhCG beta in sodium dodecyl sulfate-polyacrylamide gel electrophoresis under reducing and nonreducing conditions were found to be 19,000 and 27,500 respectively. delhCG beta on hydrolysis with endo N-acetylglucosaminidase F or H yielded a 17,500 protein band whereas treatment with N-glycanase gave a protein band with a molecular weight of 16,000. The carbohydrate analysis of delhCG beta, calculated on the basis of 4 residues of N-acetylglucosamine, showed 3 or 4 fucose, 0.6 N-acetylgalactosamine, and 11.4 mannose residues, indicating the high mannose type structures of the two N-linked carbohydrate chains. Despite the carbohydrate modification of the N-linked carbohydrates and the carboxyl-terminal deletion, the delhCG beta had about 87% of the immunological activity of the native hCG beta, indicating no significant conformational alteration induced by the mutation. The delhCG beta combined readily with native hCG alpha, and the reconstituted hCG alpha del beta required 0.031 pmol to achieve 50% inhibition of binding of the tracer with rat lutropin/choriogonadotropin receptor compared with 0.039 pmol by native hCG. Like native hCG, hCG alpha del beta also had most comparable ability to stimulate cAMP accumulation and progesterone production in rat Leydig cells. Thus it is clear from the data that the carboxyl-terminal deletion and thereby the deletion of four O-linked carbohydrates had no effect on its in vitro immunological and biological properties.  相似文献   

14.
An enzyme hydrolyzing diadenosine 5',5"'P1, P4-tetraphosphate (Ap4A) to AMP and ATP has been purified to apparent homogeneity from mouse liver cell extracts. The isolation procedure comprised ammonium sulfate precipitation, chromatography on Sephadex G-75. DEAE-cellulose, blue Sepharose and AMP-Sepharose. The enzyme is a single polypeptide chain with a native Mr = 64,000 with a Km of 1.66 microM and Vmax of 1.25 mumol/min. AMP, ADP, Ap4, GTP, Gp4, Ap3A, Ap5A, Gp3G, and Gp5G are noncompetitive inhibitors of the Ap4A hydrolase activity, whereas Gp4G inhibits Ap4A hydrolysis competitively with a Ki of 6 microM. Theophylline, caffeine, and isobutylmethylxanthine do not or only slightly inhibit Ap4A hydrolysis. Mitogenic factors have no effect on the enzymatic activity of Ap4A hydrolase, excluding that a direct influence of internalized mitogens on Ap4A degradation could be responsible for mitogen-dependent fluctuation of intracellular Ap4A pool sizes.  相似文献   

15.
R Cecchelli  R Cacan  A Verbert 《FEBS letters》1986,208(2):407-412
The mechanism of translocation of UDP-GlcNAc, UDP-Gal and UDP-Glc into intracellular vesicles has been studied using thymocytes whose plasma membranes have been permeabilized with isotonic ammonium chloride. It has been previously shown that the intracellular vesicles have specific carriers for UDP-GlcNAc and UDP-Gal. We now report that the translocation of these two sugar nucleotides occurs via UDP-GlcNAc/UDP and UDP-Gal/UDP antiports. The entry of UDP-GlcNAc or UDP-Gal into vesicles was specifically dependent on the exit of UDP from these vesicles. In contrast, no antiport mechanism has been recovered with UDP-Glc for which no transport and accumulation into intracellular vesicles were observed.  相似文献   

16.
The human P2Y14 receptor is potently activated by UDP-glucose (UDP-Glc), UDP-galactose (UDP-Gal), UDP-N-acetylglucosamine (UDP-GlcNAc), and UDP-glucuronic acid. Recently, cellular release of UDP-Glc and UDP-GlcNAc has been reported, but whether additional UDP-sugars are endogenous agonists for the P2Y14 receptor remains poorly defined. In the present study, we describe an assay for the quantification of UDP-Gal with subnanomolar sensitivity. This assay is based on the enzymatic conversion of UDP-Gal to UDP, using 1-4-β-galactosyltransferase. UDP is subsequently phosphorylated by nucleoside diphosphokinase in the presence of [γ-32P]ATP and the formation of [γ-32P]UTP is monitored by high-performance liquid chromatography. The overall conversion of UDP-Gal to [γ-32P]UTP was linear between 0.5 and 30 nM UDP-Gal. Extracellular UDP-Gal was detected on resting cultures of various cell types, and increased release of UDP-Gal was observed in 1321N1 human astrocytoma cells stimulated with the protease-activated receptor agonist thrombin. The occurrence of regulated release of UDP-Gal suggests that, in addition to its role in glycosylation reactions, UDP-Gal is an important extracellular signaling molecule.  相似文献   

17.
The hydrolysis of thioester containing phospholipids by rat liver plasmalemma phospholipase A1 was measured in a continuous spectrophotometric assay. In this assay thioester substrates were employed which, upon hydrolysis, liberated a free thiol which was reacted with 4,4'-dithiopyridine to yield the product 4-thiopyridone that absorbs at 324 nm. Thioester substrates, prepared by chemical synthesis, were used in phospholipid and Triton X-100 micelles for kinetic analysis carried out according to the method of Hendrickson and Dennis (Hendrickson, H.S., and Dennis, E.A. (1984) J. Biol. Chem. 259, 5734-5739). Vmax, Ks, and Km values obtained for various isomers and racemic mixtures of the synthetic thioester analogs are compared with corresponding oxyester substrates. Unnatural sn-1 isomers competitively inhibited the hydrolysis of natural sn-3 isomers of phosphatidylethanolamine and phosphatidic acid. Furthermore, the sn-1 isomer of phosphatidic acid was hydrolyzed by phospholipase A1, but with lower catalytic efficiency than the sn-3 isomer. The presence of a thioester at the sn-1 position did not change the Vmax significantly, as compared to the oxyester phospholipids. When two thioesters were present on the phospholipid molecule, the Vmax was decreased significantly. A convenient synthesis of 1-monothioester analogs of phospholipids is reported. The results presented show the usefulness of the spectrophotometric assay for measuring phospholipase A1 activity as well as the influence of racemic mixtures and thioesters on the hydrolytic rate.  相似文献   

18.
Connective tissue of the freshwater pulmonate Lymnaea stagnalis was shown to contain galactosyltransferase activity capable of transferring Gal from UDP-Gal in beta 1-3 linkage to terminal GalNAc of GalNAc beta 1-4GlcNAc-R [R = beta 1-2Man alpha 1-O(CH2)8COOMe, beta 1-OMe, or alpha,beta 1-OH]. Using GalNAc beta 1-4GlcNAc beta 1-2Man alpha-1-O(CH2)8COOMe as substrate, the enzyme showed an absolute requirement for Mn2+ with an optimum Mn2+ concentration between 12.5 mM and 25 mM. The divalent cations Mg2+, Ca2+, Ba2+ and Cd2+ at 12.5 mM could not substitute for Mn2+. The galactosyltransferase activity was independent of the concentration of Triton X-100, and no activation effect was found. The enzyme was active with GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe (Vmax 140 nmol.h-1.mg protein-1; Km 1.02 mM), GalNAc beta 1-4GlcNAc (Vmax 105 nmol.h-1.mg protein-1; Km 0.99 mM), and GalNAc beta 1-4GlcNAc beta 1-OMe (Vmax 108 nmol.h-1.mg protein-1; Km 1.33 mM). The products formed from GalNAc beta 1-4GlcNAc beta 1-2Man alpha 1-O(CH2)8COOMe and GalNAc beta 1-4GlcNAc beta 1-OMe were purified by high performance liquid chromatography, and identified by 500-MHz 1H-NMR spectroscopy to be Gal beta 1-3GalNAc beta 1-4GlcNAc 1-OMe, respectively. The enzyme was inactive towards GlcNAc, GalNac beta 1-3 GalNAc alpha 1-OC6H5, GalNAc alpha 1--ovine-submaxillary-mucin, lactose and N-acetyllactosamine. This novel UDP-Gal:GalNAc beta 1-4GlcNAc-R beta 1-3-galactosyltransferase is believed to be involved in the biosynthesis of the hemocyanin glycans of L. stagnalis.  相似文献   

19.
We report the synthesis, biological activity and conformational analysis of analogs of the cyclic hexapeptide L-363,301, c[Pro6-Phe7-D-Trp8-Lys9-Thr10-Phe11] (numbering as in the native hormone somatostatin-14). The d-Trp in position 8 was replaced with (2R,3S)- and (2R,3R)-beta-MeTrp respectively, with an added methyl group in the beta position of Trp. The objective of our study was to determine the potency and selectivity generated by the added constraint in the beta position of the d-Trp upon binding to human somatostatin receptors hsst1-5. We synthesized the building blocks enantioselectively and incorporated them into the peptides by SPPS. Competition binding assays revealed that both compounds 2 and 3 were selective for hsst2 over hsst5. The (2R,3S) analog 2 was approximately 30 times more potent at hsst2 than the (2R,3R) analog 3. Interestingly, the (2R,3R) compound showed no binding affinity at hsst5.  相似文献   

20.
Galactosyltransferases (GalTs), capable of transferring a galactosyl residue from UDP-galactose (UDP-Gal) to polysaccharide acceptor, were solubilized from flax (Linum usitatissimum L.) membranes using 0.5% CHAPS. The observed requirement for a rhamnogalacturonan I (RG-I) exogenous substrate to stimulate the solubilized GalT activity provided the first evidence for the presence of RG-I GalT activities in flax cells. An assay to measure specifically the products of this RG-I GalT activity was designed, based on size-exclusion chromatography. Labelled products were characterized as an RG-I polymer by using purified RG-I hydrolase or lyase. At pH 8 and in the presence of 5 mM CaCl2, beta-D-galactosyl residues were specifically transferred onto RG-I branches of short beta-(1 --> 4)-D-galactan side chains. These side chains were liable to hydrolysis by beta-galactosidase and endo-beta-(1 --> 4)-D-galactanase. The RG-I GalT had a temperature optimum of 30 degrees C. an apparent Km for UDP-Gal and exogenous RG-I substrate of 460 +/- 40 microM and 1.1 +/- 0.1 mg ml(-1) respectively, and a Vmax of 3.0 +/- 0.5 pkat mg(-1) protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号