首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin light chain kinase and a fraction of type II cAMP-dependent protein kinase have been partially purified from bovine brain by affinity chromatography on calmodulin-Sepharose. The myosin kinase was purified approximately 3700-fold and has an estimated molecular weight of 130,000 +/- 10,000 by sodium dodecyl sulfate gel electrophoresis. A fraction of soluble cAMP-dependent protein kinase also bound to calmodulin-Sepharose and was purified 2300-fold. A fraction of this cAMP-dependent protein kinase after purification by glycerol gradient centrifugation was shown to contain the two subunits of calcineurin, a major calmodulin-binding protein in brain, and the two subunits of type II cAMP-dependent protein kinase in a ratio of 1:1:2:2. Its sedimentation coefficient was 8.1 S and 9.0 S when centrifuged in the absence or presence of calmodulin, suggesting the formation of a complex between calmodulin and protein kinase. Our results suggest the possibility that calcineurin may be involved in the interaction between the protein kinase and calmodulin. Furthermore, our studies imply that the regulatory subunit of the cAMP-dependent protein kinase, but not the catalytic subunit, is the site of interaction with calmodulin since the catalytic subunit of protein kinase was partially resolved from the complex by cAMP.  相似文献   

2.
Smooth muscle myosin light chain kinase is phosphorylated in vitro by protein kinase C purified from human platelets. When myosin light chain kinase which has calmodulin bound is phosphorylated by protein kinase C, 0.8-1.1 mol of phosphate is incorporated per mol of myosin light chain kinase with no effect on its enzyme activity. Phosphorylation of myosin light chain kinase with no calmodulin bound results in the incorporation of 2-2.4 mol of phosphate and significantly decreases the rate of myosin light chain kinase activity. The decrease in myosin light chain kinase activity is due to a 3.3-fold increase in the concentration of calmodulin necessary for the half-maximal activation of myosin light chain kinase. The sites phosphorylated by protein kinase C and the catalytic subunit of cAMP-dependent protein kinase were compared by two-dimensional peptide mapping following extensive tryptic digestion of phosphorylated myosin light chain kinase. The single site phosphorylated by protein kinase C when calmodulin is bound to myosin light chain kinase (site 3) is different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 1). The additional site that is phosphorylated by protein kinase C when calmodulin is not bound appears to be the same site phosphorylated by the catalytic subunit of cAMP-dependent protein kinase (site 2). These studies confirm the important role of site 2 in binding calmodulin to myosin light chain kinase. Sequential studies using both protein kinase C and the catalytic subunit of cAMP-dependent protein kinase suggest that the phosphorylation of site 1 also plays a part in decreasing the affinity of myosin light chain kinase for calmodulin.  相似文献   

3.
The phosphorylation of the calmodulin-dependent enzyme myosin light chain kinase, purified from bovine tracheal smooth muscle and human blood platelets, by the catalytic subunit of cAMP-dependent protein kinase and by cGMP-dependent protein kinase was investigated. When myosin light chain kinase which has calmodulin bound is phosphorylated by the catalytic subunit of cAMP-dependent protein kinase, 1 mol of phosphate is incorporated per mol of tracheal myosin light chain kinase or platelet myosin light chain kinase, with no effect on the catalytic activity. Phosphorylation when calmodulin is not bound results in the incorporation of 2 mol of phosphate and significantly decreases the activity. The decrease in myosin light chain kinase activity is due to a 5 to 7-fold increase in the amount of calmodulin required for half-maximal activation of both tracheal and platelet myosin light chain kinase. In contrast to the results with the catalytic subunit of cAMP-dependent protein kinase, cGMP-dependent protein kinase cannot phosphorylate tracheal myosin light chain kinase in the presence of bound calmodulin. When calmodulin is not bound to tracheal myosin light chain kinase, cGMP-dependent protein kinase phosphorylates only one site, and this phosphorylation has no effect on myosin light chain kinase activity. On the other hand, cGMP-dependent protein kinase incorporates phosphate into two sites in platelet myosin light chain kinase when calmodulin is not bound. The sites phosphorylated by the two cyclic nucleotide-dependent protein kinases were compared by two-dimensional peptide mapping following extensive tryptic digestion of the phosphorylated myosin light chain kinases. With respect to the tracheal myosin light chain kinase, the single site phosphorylated by cGMP-dependent protein kinase when calmodulin is not bound appears to be the same site phosphorylated in the tracheal enzyme by the catalytic subunit of cAMP-dependent protein kinase when calmodulin is bound. With respect to the platelet myosin light chain kinase, the additional site that was phosphorylated by cGMP-dependent protein kinase when calmodulin was not bound was different from that phosphorylated by the catalytic subunit of cAMP-dependent protein kinase.  相似文献   

4.
In a previous report on the ontogeny of the ovarian adenosine 3',5'-monophosphate (cAMP)-dependent protein kinase activity during prepubertal development of the rat, we concluded that the 4-fold decline in cAMP-dependent protein kinase activity observed in ovaries of 21- to 23-day-old rats was due to the presence of a heat-labile inhibitor in the ovarian extracts (Hunzicker-Dunn et al., 1984). We developed an assay for this ovarian kinase inhibitor activity that was based on the observation that ovarian cytosol added to an exogenous catalytic subunit of cAMP-dependent protein kinase caused a time-dependent and ovarian cytosol protein concentration-dependent inhibition of exogenous catalytic subunit phosphotransferase activity. The present studies were conducted to evaluate the basis for this catalytic subunit inhibitor present in soluble rat ovarian extracts of prepubertal-aged rats. This inhibitor activity was absent from cytosol extracts of rat corpora lutea, rat liver, rabbit follicles, and rabbit corpora lutea. Inhibitor activity present in rat ovarian cytosol was not attributable to insufficient levels of the phosphorylation substrate Kemptide. Inhibitor activity was also not related to the presence of the large amount of catalytic subunit-free regulatory subunit of the cAMP-dependent protein kinase present in ovarian extracts of late juvenile-aged rats. Inhibitor activity, however, did correlate with an endogenous adenosine triphosphatase (ATPase) activity that reduced assay ATP concentrations below levels needed to accurately measure phosphotransferase activity, despite the presence of sodium fluoride (an ATPase inhibitor) and ATP concentrations 5- to 15-fold greater than the Km of the kinase for ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Liver glycogen phosphorylase associated with the glycogen pellet was activated by a MgATP-dependent process. This activation was reduced by 90% by ethylene glycol bis(beta-aminoethyl ether)N,N,N',N'-tetraacetic acid, not affected by the inhibitor of the cAMP-dependent protein kinase, and increased 2.5-fold by the catalytic subunit of cAMP-dependent protein kinase. Low levels of free Ca2+ (8 x 10(-8) M) completely prevented the effects of the chelator. The activation of phosphorylase by MgATP was shown not to be due to formation of AMP. DEAE-cellulose chromatography of the glycogen pellet separated phosphorylase from phosphorylase kinase. The isolated phosphorylase was no longer activated by MgATP in the presence or absence of the catalytic subunit of cAMP-dependent protein kinase. The isolated phosphorylase kinase phosphorylated and activated skeletal muscle phosphorylase b and the activation was increased 2- to 3-fold by the catalytic subunit of cAMP-dependent protein kinase. Mixing the isolated phosphorylase and phosphorylase kinase together restored the effects of MgATP and the catalytic subunit of cAMP-dependent protein kinase on phosphorylase activity. These findings demonstrate that the phosphorylase kinase associated with liver glycogen has regulatory features similar to those of muscle phosphorylase kinase.  相似文献   

6.
The regulatory subunit of type I cAMP-dependent protein kinase (RI) from rabbit skeletal muscle inhibited the activity of a low molecular weight phosphoprotein phosphatase. The inhibition was concentration and time dependent. A maximum inhibition, about 70%, was observed at 2 microM of RI with an apparent Ki of 0.8 microM. Inhibition was associated with a decrease in Vmax with no change in Km for substrate, phosphorylase a. On the other hand, cAMP-dependent protein kinase holoenzyme or its catalytic subunit was without any effect. The inhibition of phosphoprotein phosphatase by RI may be of physiological significance since the dissociation of cAMP-dependent protein kinase by cAMP would result in a simultaneous increase in the phosphorylation and decrease in the dephosphorylation rates of target proteins.  相似文献   

7.
1. The inhibition of the catalytic subunit of protein phosphatase-1 (PP-1c) by the regulatory subunit of cAMP-dependent protein kinase II (RII) was studied. 2. Phosphorylation or thiophosphorylation of RII increased its inhibitory potency up to 4- and 6-fold and rendered it competitive with respect to the substrate of PP-1c, phosphorylase a. The Ki values for thiophospho-RII and phospho-RII were 200 and 500 nM, respectively. 3. Though PP-1c was able to release phosphate from phospho-RII, its activity once incubated with phospho-RII, remained inhibited even 80% of the phosphate was released from phospho-RII. 4. The catalytic subunit of cAMP-dependent protein kinase was effective in suspending the inhibition employed either before or after the addition of phospho-RII to PP-1c. 5. No exclusive bindings of thiophospho-RII and heat-stable protein inhibitors to the PP-1c could be proved by double inhibition studies, however some synergism was observed in their effect.  相似文献   

8.
The phosphotransferase activity of the Rous sarcoma virus src gene product, pp60src, was inhibited both in vitro and in vivo by the bioflavonoid quercetin. The Ki for the inhibitory effect was in the range of 6-11 microM under conditions in vitro. The inhibitory effect of quercetin was competitive towards the nucleotides ATP and GTP as substrates for pp60src and was non-competitive towards alpha-casein as the protein substrate of this kinase activity. In contrast, studies in vitro of the phosphotransferase activity of the catalytic subunit of the cAMP-dependent protein kinase showed that this flavonoid did not inhibit the phosphorylation of physiological substrates of this enzyme. In cultured cells the half-maximal inhibition of tyrosine phosphorylation of pp60src as well as the phosphorylation of the Mr = 34000 protein, a physiological substrate of pp60src, was in the range 0.06-0.08 mM.  相似文献   

9.
This report provides a characterization of the effects of varying the concentrations of Mg2+, ATP, phosphorylase kinase, and the cAMP-dependent protein kinase on the activation and phosphorylation of phosphorylase kinase. The results show the following. (a) The Km for MgATP2- for the cAMP-dependent protein kinase-catalyzed phosphorylation is decreased by increasing Mg2+, probably as a consequence of decreasing the free ATP:MgATP2- ratio and increasing free Mg2+. (b) Whereas beta subunit phosphorylation of phosphorylase kinase plays a prominent role in determining its activity, alpha subunit phosphorylation can also modulate activity. (c) The phosphorylation of the alpha subunit, which occurs following the initial cAMP-dependent phosphorylation of the beta subunit, is catalyzed by the cAMP-dependent protein kinase and is not a consequence of EGTA-insensitive (or EGTA-sensitive) autophosphorylation occurring as a result of the enhanced phosphorylase kinase activity. (d) The relationship between subunit phosphorylation and phosphorylase kinase activation is complex and particularly dependent upon concentrations of cAMP-dependent protein kinase and phosphorylase kinase in the activation reaction. The data suggest the possibilities that the pathway of phospho-intermediates involved in the activation process probably varies with the activation conditions, that the efficacy of a specific site to be covalently modified is dependent upon the phosphorylation status of other sites, and that the effect of phosphorylation in regulating activity may also be dependent on the phosphorylation status of other sites. It is clear from the data that the activation process for phosphorylase kinase can be very complex, and it is possible that this complexity might have significant physiological ramifications.  相似文献   

10.
Bovine brain cytosol is shown to contain two heat-resistant inhibitors of protein kinase C, with the following characteristics: 1. One protein kinase C inhibitor can be easily purified to homogeneity. Evidence is presented that this polypeptide of Mr 19,000 is calmodulin. It inhibits protein kinase C with an EC50 of about 2.5 microM and the inhibition is Ca2+-independent. It inhibits only intact protein kinase C. Removal of the regulatory domain of protein kinase C, by limited proteolysis with trypsin, abolishes the inhibition. 2. Another protein kinase C inhibitory activity has been partially purified. Its Mr is low (Mr 600-700, as estimated by gel chromatography). It is not digested by proteases, is hydrophilic, acid- and alkali-resistant, acts Ca2+-independently, and, in contrast to calmodulin, inhibits even the catalytic fragment of protein kinase C after removal of the regulatory domain by limited proteolysis. This inhibition is, at least partially, due to a competition with ATP. Besides protein kinase C, calcium/calmodulin-dependent protein kinase II is inhibited to a similar extent. cAMP-dependent protein kinase is not affected.  相似文献   

11.
The ATP analog specificities of the homogeneous cGMP-dependent protein kinase and the catalytic subunit of cAMP-dependent protein kinase have been compared by the ability of 27 analogs to compete with ATP in the protein kinase reaction. Although the data suggest general similarities between the ATP sites of the two homologous cyclic-nucleotide-dependent protein kinases, specific differences especially in the adenine binding pocket are indicated. These differences in affinity suggest potentially useful ATP analog inhibitors of each kinase. For example, apparent autophosphorylation of the purified regulatory subunit of the cAMP-dependent protein kinase is blocked by nebularin triphosphate, suggesting that the phosphorylation is catalyzed by trace contamination of cGMP-dependent protein kinase. Some of the ATP analogs have also been tested using phosphorylase b kinase in order to compare this enzyme with the cyclic-nucleotide-dependent enzymes. All three protein kinases have high specificity for the purine moiety of ATP, and lower specificity for the ribose or triphosphate. The similarity between the ATP site of phosphorylase b kinase to that of the cyclic-nucleotide-dependent protein kinases suggests that it is related to them. The ATP analog specificities of enzymes examined in this study are different from those reported for several unrelated ATP-utilizing enzymes.  相似文献   

12.
Two phosphorylase kinase activities were resolved by DEAE-cellulose chromatography. The main activity peak was enriched 2800-fold, the minor appeared to be an aggregate of the enzyme. Phosphorylase kinase also phosphorylated histone and casein with no changes in phosphorylation ratios throughout the preparation steps but was most active on yeast phosphorylase. The molecular weight was 29000 +/- 2000. ATP, UTP, GTP served as substrates while CTP was inactive. Mg-ions activated the kinase without inhibition at high concentrations (30 mM). In addition to this cAMP-independent kinase, cAMP-dependent protein kinase also phosphorylated phosphorylase. The catalytic subunit and phosphorylase kinase were not identical since the latter was not inhibited by yeast cAMP binding protein.  相似文献   

13.
The regulatory subunit of the type I cAMP-dependent protein kinase (Rt) serves as a substrate for the phosphotransferase reaction catalyzed by cGMP-dependent protein kinase (Km = 2.2 microM). The reaction is stimulated by cGMP when RI . cAMP is the substrate, but not when nucleotide-free RI is used. The cGMP-dependent protein kinase catalyzes the incorporation of 2 mol of phosphate/mol of RI dimer in the presence of cAMP and a self-phosphorylation reaction to the extent of 4 mol of phosphate/mol of enzyme dimer. In the absence of cAMP, RI is a competitive inhibitor of the phosphorylation of histone H2B (Ki = 0.25 microM) and of the synthetic peptide substrate Leu-Arg-Arg-Ala-Ser-Leu-Gly (Ki = 0.15 microM) by the cGMP-dependent enzyme. Nucleotide-free RI also inhibits the intramolecular self-phosphorylation of cGMP-dependent protein kinase. The inhibition of the phosphorylation reactions are reversed by cAMP. The catalytic subunit of cAMP-dependent protein kinase does not catalyze the phosphorylation of RIand does not significantly alter the ability of RI to serve as a substrate or an inhibitor of cGMP-dependent protein kinase. These observations are consistent with the concept that the cGMP- and cAMP-dependent protein kinases are closely related proteins whose functional domains may interact.  相似文献   

14.
The interaction between the inhibitor protein and the catalytic subunit of the cAMP-dependent protein kinase has been investigated by steady state kinetics and by an assessment of the requirement of this interaction for ATP. By analysis for tightly bound inhibitors, inhibition by the inhibitor protein was shown to be competitive versus peptide substrate and uncompetitive versus Mg X ATP2-. This, together with the observations of Gronot et al. (Gronot, J., Mildvan, A.S., Bramson, H. N., Thomas, N., and Kaiser, E.T. (1981) Biochemistry 20, 602-610) and those given in the accompanying paper (Whitehouse, S., Feramisco, J.R., Casnellie, J.E., Krebs, E.G., and Walsh, D.A. (1983) J. Biol. Chem. 258, 3693-3701), would indicate that the probable reaction mechanism of the protein kinase is ordered with the nucleotide binding first and that the inhibitor protein blocks catalysis by interaction with the catalytic subunit-Mg X ATP complex. The Ki for this interaction at saturating Mg X ATP and zero peptide substrate is 0.49 nM. Multiple inhibition analysis in the presence of 5'-adenylimidodiphosphate (AMP X PNP) indicates that the inhibitor protein does not interact with a catalytic subunit-AMP X PNP complex. The requirement for ATP for the inhibitor protein-catalytic subunit interaction has also been demonstrated by direct binding measurements and by the observation that the efficiency of the inhibitor protein is increased by preincubation of the inhibitor protein, catalytic subunit, and ATP in the absence of peptide substrate. By either measurement, the catalytic subunit in the presence of the inhibitor protein, was shown to exhibit an apparent Kd of 20 approximately 60 nM for ATP; this value is two orders of magnitude higher than the affinity for ATP by the catalytic subunit alone. This high apparent affinity of the catalytic subunit for ATP (in the presence of the inhibitor) does not require that there be a specific binding site on the inhibitor protein for some moiety of the ATP but may simply be a reflection of the formation of a catalytic subunit-Mg X ATP X inhibitor protein complex with resultant displacement of the equilibrium of ATP binding to the protein kinase.  相似文献   

15.
The catalytic subunit of cAMP-dependent protein kinase from pig brain was shown to catalyse an isotope exchange reaction ATP in equilibrium with ADP. The kinetic parameters of the exchange were determined. The enzyme can also use GTP as the donor substrate; phosphotransferase and "GTPase" reactions were investigated. Based on the kinetic data obtained in this and in the previous paper the free energy profiles of protein kinase catalysed reactions are discussed.  相似文献   

16.
A phosphatase that is active in dephosphorylating the isolated 20,000-Da light chain of myosin, as well as the enzyme myosin light chain kinase, has been purified to apparent homogeneity from turkey gizzards. The enzyme has a molecular weight of 165,000 by sedimentation-equilibrium centrifugation under nondenaturing conditions and is composed of three subunits (Mr = 60,000, 55,000, and 38,000) in a 1:1:1 molar ratio. The properties of the holoenzyme, as well as the purified catalytic subunit (Mr = 38,000) were compared using myosin light chains, intact myosin, and myosin light chain kinase as substrates. Although the holoenzyme is active in dephosphorylating the isolated myosin light chains and the enzyme myosin light chain kinase, the holoenzyme does not dephosphorylate myosin. On the other hand, the catalytic subunit of the holoenzyme dephosphorylates all three substrates. When myosin light chain kinase, which has been phosphorylated at two sites is used as substrate, both sites are rapidly dephosphorylated by the phosphatase in the absence of bound calmodulin. If calmodulin is bound to the diphosphorylated kinase, only one site is dephosphorylated. Interestingly, the single site dephosphorylated when calmodulin is bound to myosin light chain kinase is the site that is not phosphorylated when the calmodulin-myosin kinase complex is phosphorylated by cAMP-dependent protein kinase.  相似文献   

17.
The main kinetic parameters for purified phosphorylase kinase from chicken skeletal muscle were determined at pH 8.2: Vm = 18 micromol/min/mg; apparent Km values for ATP and phosphorylase b from rabbit muscle were 0.20 and 0.02 mM, respectively. The activity ratio at pH 6.8/8.2 was 0.1-0.4 for different preparations of phosphorylase kinase. Similar to the rabbit enzyme, chicken phosphorylase kinase had an absolute requirement for Ca2+ as demonstrated by complete inhibition in the presence of EGTA. Half-maximal activation occurred at [Ca2+] = 0.4 microM at pH 7.0. In the presence of Ca2+, the chicken enzyme from white and red muscles was activated 2-4-fold by saturating concentrations of calmodulin and troponin C. The C0.5 value for calmodulin and troponin C at pH 6.8 was 2 and 100 nM, respectively. Similar to rabbit phosphorylase kinase, the chicken enzyme was stimulated about 3-6-fold by glycogen at pH 6.8 and 8.2 with half-maximal stimulation occurring at about 0.15% glycogen. Protamine caused 60% inhibition of chicken phosphorylase kinase at 0.8 mg/ml. ADP (3 mM) at 0.05 mM ATP caused 85% inhibition with Ki = 0.2 mM. Unlike rabbit phosphorylase kinase, no phosphorylation of the chicken enzyme occurred in the presence of the catalytic subunit of cAMP-dependent protein kinase. Incubation with trypsin caused 2-fold activation of the chicken enzyme.  相似文献   

18.
The kinetic mechanism of the catalytic subunit of the cAMP-dependent protein kinase has been investigated employing the heptapeptide Kemptide (Leu-Arg-Arg-Ala-Ser-Leu-Gly) as substrate. Initial velocity measurements performed over a wide range of ATP and Kemptide concentrations indicated that the reaction follows a sequential mechanistic pathway. In line with this, the results of product and substrate inhibition studies, the patterns of dead end inhibition obtained employing the nonhydrolyzable ATP analogue, AMP X PNP (5'-adenylylimidodiphosphate), and equilibrium binding determinations, taken in conjunction with the patterns of inhibition observed with the inhibitor protein of the cAMP-dependent protein kinase that are reported in the accompanying paper (Whitehouse, S., and Walsh, D.A. (1983) J. Biol. Chem. 258, 3682-3692), are best fit by a steady state Ordered Bi-Bi kinetic mechanism. Although the inhibition patterns obtained employing the synthetic peptide analogue in which the phosphorylatable serine was replaced by alanine were apparently incompatible with this mechanism, these inconsistencies appear to be due to some element of the structure of this latter peptide such that it is not an ideal dead end inhibitor substrate analogue. The data presented both here and in the accompanying paper suggest that both this substrate, analogue and the ATP analogue, AMP X PNP, do not fully mimic the binding of Kemptide and ATP, respectively, in their mechanism of interaction with the protein kinase. It is proposed that, as with some other kinase reactions, the configuration of the terminal anhydride bond of ATP assumes a conformation once the nucleotide is bound to the protein kinase that assists in the binding of either Kemptide or the inhibitor protein but not the alanine-substituted peptide and that AMP X PNP, because of its terminal phosphorylimido bond, cannot assume this conformation which favors protein (or peptide) binding.  相似文献   

19.
Protein kinase C negatively modulated by phorbol ester   总被引:3,自引:0,他引:3  
Pretreatment of protein kinase C with 12-O-tetradecanoylphorbol-13-acetate (TPA) and phospholipid resulted in complete inhibition of ATP/phosphotransferase activity, irreversibly. The inactivation by TPA required the phospholipid, and TPA alone did not cause inactivation. Ca2+ and diacylglycerol mimicked TPA. This action of TPA was not general for all protein kinases as it did not accelerate the inactivation of the catalytic subunit of cAMP-dependent protein kinase by phospholipid. The addition of MgATP to the reaction mixture completely protected protein kinase C from being inactivated by TPA, in the presence of phospholipid. The nucleotide-binding site of the enzyme was probably influenced by the binding of TPA and phospholipid.  相似文献   

20.
In order to investigate the structure of the active site of the cAMP-dependent protein kinase catalytic subunit a synthesis of several previously unknown adenosine-5'-triphosphate (ATP) derivatives containing substituents of various nature at N(1), N(C6) and C(8) positions of the purine base was carried out. The interaction of these derivatives with a homogeneous preparation of the catalytic subunit of rabbit skeletal muscle cAMP-dependent protein kinase was investigated. All the nucleotide analogs were found to inhibit the enzyme activity; the inhibition was competitive with respect to ATP. It was assumed that the adenine moiety of the ATP molecule is bound to the active site of protein kinase by the hydrophobic interaction with the aromatic amino acid residues and by formation of the hydrogen bond between the exo-NH2-group of the substrate and a corresponding group of the enzyme. The "correct" binding of ATP to the enzyme active center is defined by the anti-conformation of the nucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号