首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Isoelectric focusing techniques (IEF) were used to examine the tissue distribution and genetic variability of aldehyde dehydrogenases (AHDs) from inbred strains of mice. Twelve zones of AHD activity were resolved which were differentially distributed between tissues. Liver extracts exhibited highest activity for most enzymes, with the exception of isozymes found in stomach (AHD-4) and testis (AHD-4 and AHD-6). Genetic variants for AHD-1 (liver mitochondrial isozyme) and AHD-4 (stomach isozyme) were examined from inbred strains and F1 hybrid animals. The results were consistent with dimeric subunit structures (designated as A2 and D2 isozymes respectively). IEF patterns for activity variants of testis-specific AHD-6 were identical, with 3-banded phenotypes being observed. pI values for the AHD forms as well as for aldehyde oxidase and xanthine oxidase isozymes, which stain in the absence of coenzyme, were reported.  相似文献   

2.
We describe a new murine cell-surface alloantigen, provisionally designated Thy-2, which is expressed primarily on thymocytes and brain tissue. Although Thy-2 is also expressed at lower levels on bone-marrow and spleen cells, this antigen does not appear to be present on lymph-node, liver, or red blood cells. Immunoprecipitation of surface-labeled thymocyte extracts from a variety of inbred strains reveals this antigen to be a single polypeptide of 150 000 daltons. Quantitative membrane immunofluorescence demonstrates that Thy-2 is a minor cell-surface component which is present on the majority of thymocytes. Mice heterozygous at theThy-2 locus express approximately 50 percent as much antigen as positive homozygotes. Expression of the Thy-2 alloantigen is controlled by a single semidominant gene located approximately 3 cM to the right of theH-2K locus on chromosome 17.  相似文献   

3.
An electrophoretic variant previously reported for the stomach isozyme of alcohol dehydrogenase (ADH-C2) in inbred strains of Mus musculus (Holmes, 1977) has been used to localize the gene encoding this enzyme (Adh-3) on chromosome 3 near Va (varitint) (9.6 ± 3.6% recombinants). Genetic variation of ADH-C2 activity in male and female reproductive tissues among inbred strains and Harwell linkage testing stocks was also observed. Reproductive tissue ADH-C2 phenotypes were inherited in a normal Mendelian fashion among F2 progeny of an F1 (LII × C57BL/Go) × C57BL/Go backcross as though controlled by a single cis-acting regulator locus (designated Adt-1) with two alleles: Adt-1 a (presence of ADH-C2) and Adt-1 b (absence or low activity of ADH-C2). No recombinants were observed among 73 progeny or among 13 inbred strains and six Harwell linkage testing stocks of mice, indicating that Adh-3 and Adt-1 are closely linked or identical genes. A single recombinant phenotype was observed in Peru-Coppock mice, suggesting that they are separate genes. Ontogenetic analyses demonstrated that ADH-B2 is present throughout development from late fetal stages in stomach, liver, and kidney; similar results were found for ADH-C2 in developing kidney and stomach extracts, whereas ADH-A2 exhibited high activity in liver extracts after 3 weeks of age in both sexes and in male kidney extracts after 6 weeks.  相似文献   

4.
Summary The mouse autosomal locus that determines the form of phosphoglycerate kinase found only in testes is shown here to be closely linked to but not included within the major histocompatibility complex on Chromosome 17. Data are presented that strongly favor the location of this locus, designated Pgk-2, distal to H-2, Qa-1, and Qa-2, and closely associated with T1a. The Pgk-2 strain distribution pattern for 103 inbred and congenic strains of mice is given. Because Pgk-2 is polymorphic among inbred strains, it should be of value in linkage studies.  相似文献   

5.
This collaborative work was undertaken to resolve discrepancies in reports of the number of forms of complement component C6 present in the circulation of mice from various inbred strains. Plasma C6 was analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and by isoelectric focusing (IEF), and C6 band patterns were developed by electroblotting and immunoprobing. Results of C6 allotyping of mice from 36 strains confirmed that while 20 strains (prototype strain BALB/c) possessed only one relative mass (M r) form which typed C6A1 on IEF, the other 16 strains all possessed more than one C6 M r form. Moreover, IEF analysis demonstrated additional polymorphic differences; among these 16 strains, 11 typed C6A l B l like the prototype strain CBA, the AKR and RF/J strains typed C6A2B2, and the Japanese MOM strain as well as the C57BR/cdJ and C57L/J strains possessed two forms with IEF mobilities intermediate between C6A1B1 and C6A2B2. These will now be referred to as C6A3B3. Thus, a total of four different mouse C6 haplotypes have been identified.Testing C6 allotypes in a limited number of wild mice revealed that haplotypes found in inbred strains of Western or Eastern origin tend to reflect haplotypes of the wild mice from Europe or Japan, respectively.  相似文献   

6.
The autosomal variation and the genetic control of GPI has been determined by a comparison of electrophoretic patterns of F1 and backcross progeny of three inbred strains of mice. The locus controlling the production of GPI in the mouse has been designated Gpi-1. Two alleles at this locus have been described and designated Gpi-1 a and Gpi-1 b, which represent, respectively, the slow and fast electrophoretic forms. Twenty-seven inbred strains of mice have been classified for these two alleles. The absence of close linkage of Gpi-1 to seven other genetic loci has been determined. It has been demonstrated that the polymorphism of Gpi-1 is widely distributed in feral mice. GPI was expressed in vitro and in four types of malignant tumors.Supported by U.S. Public Health Service Grants GM-09966, from General Medical Sciences, and GY 4193.  相似文献   

7.
Evidence obtained using recombinant inbred and congenic mouse strains has shown that thePC8 locus responsible for determining a marker on a singlek chain in inbred mice is linked to theLy-2,3 locus on chromosome 6. The upper limit of the map distance between these loci is approximately three centimorgans. This finding is discussed in relation to other known light-chain variants that are associated with theLy-2,3 locus.Abbreviations used in this paper are as follows L light chains - PC phosphocholine - H8 HOPC 8 - IEF isoelectric focusing - KLH keyhole limpet hemocyanin - RI recombinant inbred  相似文献   

8.
We have examined a polymorphism for liver GOX in inbred strains of the mouse Mus musculus. Genetic studies demonstrated that the two phenotypes for this enzyme present in BALB/C and NZC parental strains segregated as though they were controlled by codominant alleles at a single autosomal locus (GOX) which mapped closely to the agouti locus in linkage group V. Kidney HAOX activity is invariant in these inbred strains and is encoded by a separate genetic locus designated HAOX. BALB/C x NZC F(1) hybrid mice exhibited three intermediate forms of liver GOX activity, in addition to the parental enzymes, which is consistent with a tetrameric subunit structure.  相似文献   

9.
Evidence is presented for two new forms of mouse liver and kidney aldehyde reductase activity (designated AHR-3 and AHR-4) resolved using cellulose acetate electrophoresis zymogram techniques and stained by glyceraldehyde and NADPH as substrate and coenzyme, respectively. Activity variants were observed for those isozymes among inbred strains of mice and used in a genetic analyses to support a proposal for two new genetic loci (Ahr-3 and Ah-4) which control the activity phenotype for these isozymes. Segregation analysis indicated that these loci are separately localized on the mouse genome, with Ahr-3 positioned on the distal end of chromosome 7. Liver AHR-2 (or hexonate dehydrogenase) exhibited no detectable phenotypic variation among the 44 inbred strains of mice examined. The AHR-3 and AHR-4 isozymes were readily distinguished from AHR-1 [or aldehyde reductase A2, described previously by Duley and Holmes (Biochem. Genet. 20:1067, 1982)], hexonate dehydrogenase (AHR-2), and alcohol dehydrogenase A2 in terms of their differential substrate, coenzyme, and inhibitor specificities.  相似文献   

10.
The immune response to F antigen by a variety of inbred strains and F1 hybrids has been studied. All of the mice responding to appropriate preparations of F antigen share ak allele atH-2K orI-A. In F1 hybrids, however, this permissive gene is sometimes expressed as dominant responsiveness, while in other combinations as dominant nonresponsiveness. There appears to be a hierarchy of responsiveness among the responder strains tested. Finally, some strains produce nonprecipitating antibodies against F antigen which may represent a genetically controlled restriction of the response to this antigen.  相似文献   

11.
Genetic polymorphism in the expression of the GM1(NeuGc) ganglioside has been shown in the liver of inbred strains of mice. Through analysis of the gangliosides of H-2 congenic and recombinant strains, this polymorphism was demonstrated to be controlled by a locus mapped left outside of the H-2 complex on chromosome 17, and the locus was assumed to control the level of the activity of GM1(NeuGc) synthetase, UDP-galactose:GM2(NeuGc) galactosyltransferase (E.C.2.4.1.62) [Hashimotoet al., J Biochem (1983) 94:2049-54].In the present study we analyzed the genetic linkage between the activity of the galactosyltransferase and the H-2 haplotype. For this purpose, we selected two inbred strains of mice, WHT/Ht and BALB/c, because they have different levels of the transferase activity and show different H-2 haplotypes; the specific activity of the transferase obtained with BALB/c was one-eighth of that with WHT/Ht, and BALB/c expressed the la.7 antigen as one of the products encoded in their H-2d complex, whereas WHT/Ht did not. To analyze the linkage between these two phenotypes, WHT/Ht were mated with BALB/c to obtain the F1 mice, and the female F1 mice were then backcrossed to WHT/Ht. It was found that one half of the backcross generation expressed the la.7 antigen derived from BALB/c and had a significantly lower specific activity of the transferase than that of WHT/Ht, while the other half did not express the la.7 antigen but had the same specific activity of the transferase as that obtained with WHT/Ht.These results suggest that the locus controlling the level of the transferase activity in mouse liver is linked to the H-2 complex on chromosome 17.Abbreviations NeuGc N-glycolylneuraminic acid The ganglioside nomenclature is based on the system of Svennerholm, J Neurochem (1963) 10:613-23. The sialic acid species present is shown in parentheses after the ganglioside abbreviation.  相似文献   

12.
Spleen cells from C3H/An mice immunized with spleen cells of C57BL/6-H-2 k mice were fused with myeloma cell line NS.1. One established hybrid cell line continuously secreted antibody that recognized a new surface antigen provisionally called Ly-m18. The new alloantigen is expressed on 90 percent of thymus cells, 55 percent of spleen cells, and 45 percent of either lymphnode or bone-marrow cells. It is also expressed on cells derived from brain, kidney, and liver. Fifty percent of either peripheral T or B cells express the Ly-m18 antigen, and some tumor cell lines with T, B, pre-B or stem cell characteristics are Ly-m18 (+). The strain distribution pattern distinguishes Ly-m1 8 antigen from all other murine lymphocyte alloantigens. The typing data of two sets of CXB and AKXL recombinant inbred strains indicate that the Ly-m18 gene is linked to the Ltw-2 locus which has not yet been assigned to a chromosome.Abbreviations used in this paper RI recombinant inbred - Con-A concanavalin A - LPS lipopolysaccharide - MLR mixed lymphocyte reaction The prefix m (monoclonal) is used following a suggestion by Klein and co-workers (1979).  相似文献   

13.
The IGF‐1 signaling pathway plays an important role in regulating longevity. To identify the genetic loci and genes that regulate plasma IGF‐1 levels, we intercrossed MRL/MpJ and SM/J, inbred mouse strains that differ in IGF‐1 levels. Quantitative trait loci (QTL) analysis of IGF‐1 levels of these F2 mice detected four QTL on chromosomes (Chrs) 9 (48 Mb), 10 (86 Mb), 15 (18 Mb), and 17 (85 Mb). Haplotype association mapping of IGF‐1 levels in 28 domesticated inbred strains identified three suggestive loci in females on Chrs 2 (13 Mb), 10 (88 Mb), and 17 (28 Mb) and in four males on Chrs 1 (159 Mb), 3 (52 and 58 Mb), and 16 (74 Mb). Except for the QTL on Chr 9 and 16, all loci co‐localized with IGF‐1 QTL previously identified in other mouse crosses. The most significant locus was the QTL on Chr 10, which contains the Igf1 gene and which had a LOD score of 31.8. Haplotype analysis among 28 domesticated inbred strains revealed a major QTL on Chr 10 overlapping with the QTL identified in the F2 mice. This locus showed three major haplotypes; strains with haplotype 1 had significantly lower plasma IGF‐1 and extended longevity (P < 0.05) than strains with haplotype 2 or 3. Bioinformatic analysis, combined with sequencing and expression studies, showed that Igf1 is the most likely QTL gene, but that other genes may also play a role in this strong QTL.  相似文献   

14.
Electrophoretic variants for the mitochondrial isozyme of aldehyde dehydrogenase (AHD) have been observed in inbred strains and in Harwell linkage testing stocks of Mus musculus. F1 (LVC×C57BL/Go) mice showed a codominant allele three-banded phenotype, which suggests a dimeric subunit structure (designated AHD-A2). The anodal-migrating supernatant isozyme of AHD was electrophoretically invariant among the 23 inbred strains and stocks examined. The genetic locus encoding AHD-A2 (suggested name Ahd-1) is localized on chromosome 4 and was mapped close to je (jerker) and Gpd-1 (encoding the liver and kidney isozyme of glucose-6-phosphate dehydrogenase). Ontogenetic analyses demonstrated that both AHD isozymes exhibited low activity in late fetal and early neonatal liver and kidney extracts, and reached adult levels within 3 weeks of birth.  相似文献   

15.
Mouse aldehyde dehydrogenase genetics: Positioning of Ahd-1 on chromosome 4   总被引:1,自引:0,他引:1  
Electrophoretic variants of mitochondrial aldehyde dehydrogenase (AHD-A2) are widely distributed among inbred strains of Mus musculus and have been used to localize the gene encoding AHD-A2(Ahd-1) at the non-centromeric end of chromosome 4. In the mouse (Mus musculus), aldehyde dehydrogenase (AHD; E.C.1.2.1.3) exists as at least three isozymes which are differentially distributed in liver subcellular fractions (designated A2, B4 and Cy* for the mitochondrial, soluble and microsomal isozymes respectively) and in various tissues of this animal (Holmes, 1978a; 1978b; Timms & Holmes, 1981). Electrophoretic variants have been previously reported for the A2 and B4 isozymes among inbred strains of mice, and the genetic loci (designated Ahd-1 and Ahd-2) have been localized on chromosomes 4 and 19 respectively (Holmes, 1978b; Timms & Holmes, 1980). This paper describes further genetic analyses of AHD-A2 enabling Ahd-1 to be positioned at the non-centromeric end of chromosome 4. Forty-three inbred strains of Mus musculus were used in these studies (Table 1). Two series of matings were carried out. 1) Female SM/J mice and male NZC/B1 mice were mated to obtain F, female offspring which were backcrossed to male NZC/B1 mice. These progeny were used to examine the segregation and linkage relationship of b (brown), Pgm-2 (encoding phosphoglucomutase B) and Ahd-1 (Table 2). 2) Female C57BL/6J mice and male SM/J. mice were mated to obtain F, female offspring which were backcrossed to male SM/J mice. The segregation and linkage relationship of Pgm-2, Gpd-1 (encoding the liver and kidney isozyme of hexose-6 phosphate dehydrogenase) and Ahd-1 were examined for these backcross progeny (Table 3). Methods for preparing liver and kidney extracts and the cellulose acetate electrophoresis procedure for typing Ahd-1, Pgm-2 and Gpd-1 have been previously described (Holmes, 1978b). A previous study has described the electrophoretic patterns for allelic variants for mitochondria1 AHD and of the hybrid phenotype for this enzyme (Holmes, 1978b). The three-allelic isozyme pattern for hybrid animals was consistent with a dimeric subunit structure: AHD-A1A2, AHD-A1A2 and AHD-3, with the A1 and A2 subunits being encoded by separate alleles at a single locus, designated Ahd-1 (Ahd-1oand Ahd-1brespectively). The distribution of these alleles among 43 inbred strains of mice is given in Table 1. The allelic variants were approximately equally distributed among the inbred strains examined and no divergence of phenotype was observed among the 6 substrains of C57BL mice (Ahd-1aallele) and 5 substrains of BALB/c (Ahd-1ballele) mice examined. Genetic variants for phosphoglucomutase-B (PGM-B) have been reported by Shows, Ruddle and Roderick (1969) and the gene (Pgm-2) was subsequently localized on chromosome 4 near b (brown) by Chapman, Ruddle and Roderick (1970). Table 2 illustrates the results of a three-point cross between b, Pgm-2 and Ahd-1. Variation from the expected 1:1:1:1:1:1 ratio for unlinked loci was significant(x2= 73.15; 7 df; P < 1 × 10-5), indicating that the three loci are linked. Recombination frequency data are consistent with the gene order: b - Pgm-2 - Ahd-1 The second cross examined the segregation of Pgm-2, Ahd-1 and Gpd-1 loci (Table 3). The latter locus has been previously positioned on chromosome 4 (linkage group VIII) by Hutton & Roderick (1970) and Chapman (1975), and has been used to localize Ahd-1 in this region (Ahd-1 and Gpd-1 exhibit a recombination frequency of 10.3 ± 3.7 %) (Holmes, 1978b). The data from Table 3 is consistent with a gene order of Pgm-2 - Ahd-1 - Gpd-1. The recombination frequency data of Ahd-1 with Gpd-1, Pgm-2 and b also supports the proposal that Ahd-1 is localized between Pgm-2 and Gpd-1 (Tables 2 and 3; Holmes, 1978b). Recent metabolic studies have indicated that mitochondria1 aldehyde dehydrogenase (AHD) plays a very important role in the metabolism of acetaldehyde derived from ethanol, ensuring a low concentration of acetaldehyde in the blood leaving the liver (Grunnet, 1973; Parilla et al., 1974; Corral1 et al., 1976). Moreover, genetic variation of this isozyme in human livers has been recently reported (Harada et al., 1978), and this polymorphism has been proposed as the molecular basis for individual and racial differences in alcohol sensitivity (Goedde et al., 1979). Consequently, genetic analyses of mitochondria1 AHD are of particular significance to studies on the genetic control of alcohol metabolism in mammals. In summary, this report confirms previous studies which demonstrated that the genetic locus encoding mitochondrial aldehyde dehydrogenase in the mouse (Ahd-1) is on chromosome 4 (Holmes, 1978b), and positions the gene with respect to b (brown), Pgrn-2 (encoding phosphoglucomutase B) and Gpd-1 (encoding the liver and kidney isozyme of hexose-6-phosphate dehydrogenase). In addition, the distribution of the 2-allelic phenotypes for this isozyme has been examined among 43 in- bred strains of mice.  相似文献   

16.
The phosphoglucomutase (PGM) electrophoretic phenotype of the mouse (Mus musculus) consists of several distinct components which can be grouped into two major zones designated PGM-1 and PGM-2. Evidence presented here indicates that each zone is controlled by a single genetic locus denoted Pgm-1 and Pgm-2, respectively. Two variant forms segregated at the Pgm-1 locus. They were codominantly expressed and inherited as alleles at an autosomal locus. The alleles were termed Pgm-1 a (fast) and Pgm-1 b (slow). These alleles were separately fixed in a number of inbred strains of mice. Preliminary evidence based on wild mouse phenotypes indicates that variant forms also exist for PGM-2 which are inherited as alleles at an autosomal locus. Genetic linkage relationships have not been determined for these loci. PGM-1 variants and PGM-2 were expressed in mouse fibroblasts in vitro.Supported by U.S. Public Health Service grants GM-09966 and GM-07249 from General Medical Sciences and 5 F2 HD-35,531 from Child Health and Human Development; and Atomic Energy Commission contract AT(30-1)-3671.Postdoctoral Fellow of the U.S. Public Health Service.  相似文献   

17.
A comparison of electrophoretic patterns of F1 and backcross progeny of two inbred strains of mice has revealed a new autosomal variant of the mitochondrial form of GOT. The loci controlling the production of the soluble and mitochondrial forms of GOT have been designated Got-1 and Got-2, respectively. The two alleles of the Got-2 locus have been designated Got-2 a and Got-2 b, which represent the slow- and fast-migrating electrophoretic forms. Twenty-seven inbred strains of mice have been classified for Got-2 a and Got-2 b. It has been demonstrated that the polymorphism of Got-2 is widely distributed in feral mice. Got-2 was shown to be linked to Es-1, and evidence is also presented for linkage between Got-2 and Es-2, Es-5, and oligosyndactyly (Os). The absence of linkage of Got-2 to seven other loci has also been demonstrated. GOT was expressed in vitro in cell lines derived from human and mouse tissues.  相似文献   

18.
A further esterase, esterase 11, which exhibits a polymorphism detectable by electrophoresis, has been observed in the house mouse, Mus musculus. In 15 inbred strains and two outbred strains, the ES-11A phenotype has been found, composed of two bands of enzyme activity of greater anodal electrophoretic mobility than the two bands of the ES-11B phenotype found in one inbred strain, one wild stock, and 101 wild mice. In F1 hybrids (IS/Cam×C57 BL/Gr), the phenotype shown corresponds to a mixture of the two parental phenotypes. In backcrosses, ES-11 segregates as an autosomal gene, designated Es-11, closely linked to Es-2 and Es-5 on chromosome 8.This work was supported by the Medical Research Council.  相似文献   

19.
Zymograms of single individuals of Aedes aegypti were obtained by means of starch gel electrophoresis, using alpha-naphthyl acetate as substrate. Inbred lines gave consistently homogeneous patterns; earlier results from random-breeding laboratory strains had shown considerable variability. Six distinct bands were observed. The furthest moving band, designated Esterase 6, showed differential migration in two inbred lines. Reciprocal crosses between these lines gave F1 progeny showing both bands. Backcrosses of F1 to either parental line gave a 1:1 segregation. These results are consistent with the hypothesis that the two forms of Esterase 6 are controlled by a single pair of codominant alleles at a single gene locus (Est 6 a and Est 6 b). Linkage tests with marker genes have demonstrated that Est 6 is on linkage group 2, with the following alignment: spot-abdomen (9.0±1.0) yellow-larva (17.4±1.3) Est 6. Crosses with another inbred line demonstrated a third band with intermediate mobility, designated Est 6 c. An additional electrophoretic variant which seems to have a simple Mendelian basis was found in esterase band 1.This work was supported by NIH Research Grant No. A1-02753.  相似文献   

20.
Quantitative genetic variation in the glyoxalase-1 content (QGlo-1) of red cells of mice is described. Its genetic control is shown to be exerted by either the Glo-1 locus or a closely linked gene to the left of H-2K. At least six alleles, designated QGlo-1 a through QGlo-1 f, can be found in different inbred strains of mice.This work was supported in part by Grants HL 0911 and AI 15413 of the National Institutes of Health and by a grant from the Sally and Alma Solomon Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号